220
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Integral manifolds for impulsive HCV conformable neural network models

ORCID Icon, , &
Article: 2345896 | Received 19 Feb 2024, Accepted 16 Apr 2024, Published online: 06 May 2024

References

  • Hu X, Li J, Feng X. Threshold dynamics of a HCV model with virus to cell transmission in both liver with CTL immune response and the extrahepatic tissue. J Biol Dyn. 2021;15(1):19–34. doi: 10.1080/17513758.2020.1859632
  • Zhang F, Li J, Zheng C, et al. Dynamics of an HBV/HCV infection model with intracellular delay and cell proliferation. Commun Nonlinear Sci Numer Simul. 2017;42:464–476. doi: 10.1016/j.cnsns.2016.06.009
  • Nowak MA, Bangham CRM. Population dynamics of immune responses to persistent viruses. Science. 1996;272(5258):74–79. doi: 10.1126/science.272.5258.74
  • Plauzolles A, Lucas M, Gaudieri S. Hepatitis C virus adaptation to T-cell immune pressure. Sci World J. 2013;2013:Article ID 673240. doi: 10.1155/2013/673240
  • Zhou X, Shi X, Zhang Z, et al. Dynamical behavior of a virus dynamics model with CTL immune response. Appl Math Comput. 2009;213(2):329–347. doi: 10.1016/j.amc.2009.03.026
  • Wodarz D. Hepatitis C virus dynamics and pathology: the role of CTL and antibody responses. J Gen Virvlogy. 2003;84:1743–1750. doi: 10.1099/vir.0.19118-0
  • Hattaf K, Yousfi N. Global stability for reaction-diffusion equations in biology. Comput Math Appl. 2013;66(8):1488–1497. doi: 10.1016/j.camwa.2013.08.023
  • Wang K, Wang W. Propagation of HBV with spatial dependence. Math Biosci. 2007;210(1):78–95. doi: 10.1016/j.mbs.2007.05.004
  • Xu R, Ma ZE. An HBV model with diffusion and time delay. J Theoret Biol. 2009;257(3):499–509. doi: 10.1016/j.jtbi.2009.01.001
  • Columbu A, Frassu S, Viglialoro G. Refined criteria toward boundedness in an attraction–repulsion chemotaxis system with nonlinear productions. Appl Anal. 2024;103(2):415–431. doi: 10.1080/00036811.2023.2187789
  • Li T, Frassu S, Viglialoro G. Combining effects ensuring boundedness in an attraction–repulsion chemotaxis model with production and consumption. Z Angew Math Phys. 2023;74(3):109. doi: 10.1007/s00033-023-01976-0
  • Ren X, Tian Y, Liu L, et al. A reaction-diffusion within-host HIV model with cell-to-cell transmission. J Math Biol. 2018;76:1831–1872. doi: 10.1007/s00285-017-1202-x
  • Wang KF, Wang WD, Song SP. Dynamics of an HBV model with diffusion and delay. J Theor Biol. 2008;253(1):36–44. doi: 10.1016/j.jtbi.2007.11.007
  • Wand J, Xie F, Kuniya T. Analysis of a reaction-diffusion cholera epidemic model in a spatially heterogeneous environment. Commun Nonlinear Sci Numer Simulat. 2020;80:Article ID 104951. doi: 10.1016/j.cnsns.2019.104951
  • Wang X, Zhao XQ, Wang J. A cholera epidemic model in a spatiotemporally heterogeneous environment. J Math Anal Appl. 2018;468:893–912. doi: 10.1016/j.jmaa.2018.08.039
  • Yamazaki K, Wang X. Global well-posedness and asymptotic behavior of solutions to a reaction-convection-diffusion cholera epidemic model. Discrete Contin Dyn Syst Ser B. 2016;21(4):1297–1316. doi: 10.3934/dcdsb.2016.21.1297
  • Bohner M, Stamov G, Stamova I, et al. On h-manifolds stability for impulsive delayed SIR epidemic models. Appl Math Model. 2023;118:853–862. doi: 10.1016/j.apm.2023.02.013
  • Hernandez-Mejia G, Alanis AY, Hernandez-Gonzalez M, et al. Passivity-based inverse optimal impulsive control for influenza treatment in the host. IEEE Trans Control Syst Technol. 2020;28(1):94–105. doi: 10.1109/TCST.2019.2892351
  • Hou SH, Wong KH. Optimal impulsive control problem with application to human immunodeficiency virus treatment. J Optim Theory Appl. 2011;151:385–401. doi: 10.1007/s10957-011-9833-3
  • Kim KS, Cho G, Nie LF, et al. State-dependent impulsive control strategies for a tumor-immune model. Discrete Dyn Nat Soc. 2016;2016:1. doi: 10.1155/2016/2979414
  • Rivadeneira PS, Moog CH. Impulsive control of single-input nonlinear systems with application to HIV dynamics. Appl Math Comput. 2012;218:8462–8474. doi: 10.1016/j.amc.2012.01.071
  • Chatterjee AN, Basir FA, Takeuchi Y. Effect of DAA therapy in hepatitis C treatment – an impulsive control approach. Math Biosci Eng. 2021;18(2):1450–1464. PMID: 33757193.doi: 10.3934/mbe.2021075.
  • Zeinali S, Shahrokhi M, Ibeas A. Observer-based impulsive controller design for treatment of hepatitis C disease. Ind Eng Chem Res. 2020;59:19370–19382. doi: 10.1021/acs.iecr.0c04058
  • Benchohra M, Henderson J, Ntouyas S. Impulsive differential equations and inclusions. New York (NY): Hindawi Publishing Corporation; 2006.
  • Li X, Bohner M, Wang CK. Impulsive differential equations: periodic solutions and applications. Automatica. 2015;52:173–178. doi: 10.1016/j.automatica.2014.11.009
  • Li X, Bohner M. Exponential synchronization of chaotic neural networks with mixed delays and impulsive effects via output coupling with delay feedback. Math Comput Model. 2010;52(5-6):643–653. doi: 10.1016/j.mcm.2010.04.011
  • Li X, Song S. Impulsive systems with delays: stability and control. Singapore: Science Press & Springer; 2022.
  • Stamova IM, Stamov GT. Applied impulsive mathematical models. Cham: Springer; 2016.
  • Yang T. Impulsive control theory. Berlin: Springer; 2001.
  • Yang X, Peng D, Lv X, et al. Recent progress in impulsive control systems. Math Comput Simulat. 2019;155:244–268. doi: 10.1016/j.matcom.2018.05.003
  • Carvalho AR, Pinto CM, Baleanu D. HIV/HCV coinfection model: a fractional-order perspective for the effect of the HIV viral load. Adv Differ Equ. 2018;1:2. doi: 10.1186/s13662-017-1456-z
  • Hattaf K, Yousfi N. Global stability for fractional diffusion equations in biological systems. Complexity. 2020;2020:Article ID 5476842. doi: 10.1155/2020/5476842
  • Ionescu C, Lopes A, Copot D, et al. The role of fractional calculus in modeling biological phenomena: a review. Commun Nonlinear Sci Numer Simul. 2017;51:141–159. doi: 10.1016/j.cnsns.2017.04.001
  • Karaman B. The global stability investigation of the mathematical design of a fractional-order HBV infection. J Appl Math Comput. 2022;68:4759–4775. doi: 10.1007/s12190-022-01721-2
  • Tamilalagan P, Karthiga S, Manivannan P. Dynamics of fractional order HIV infection model with antibody and cytotoxic T-lymphocyte immune responses. J Comput Appl Math. 2021;382:Article ID 113064. doi: 10.1016/j.cam.2020.113064
  • Baleanu D, Hristov J, editors. Fractional dynamics in natural phenomena and advanced technologies. Cambridge: Cambridge Scholars Publishing; 2024.
  • Magin R. Fractional calculus in bioengineering. Redding (CT): Begell House; 2006.
  • Stamova IM, Stamov GT. Functional and impulsive differential equations of fractional order: qualitative analysis and applications. Boca Raton (FL): CRC Press, Taylor and Francis Group; 2017.
  • Ahmed E, El-Saka HA. On fractional order models for hepatitis C. Nonlinear Biomed Phys. 2010;4(1):1–3. doi: 10.1186/1753-4631-4-1
  • Saad KM, Alqhtani M, Gómez-Aguilar JF. Fractal-fractional study of the hepatitis C virus infection model. Results Phys. 2020;19:Article ID 103555. doi: 10.1016/j.rinp.2020.103555
  • Sadki M, Danane J, Allali K. Hepatitis C virus fractional-order model: mathematical analysis. Model Earth Syst Environ. 2023;9:1695–1707. doi: 10.1007/s40808-022-01582-5
  • Abdeljawad T. On conformable fractional calculus. J Comput Appl Math. 2015;279:57–66. doi: 10.1016/j.cam.2014.10.016
  • Khalil R, Al Horani M, Yousef A, et al. A new definition of fractional derivative. J Comput Appl Math. 2014;264:65–70. doi: 10.1016/j.cam.2014.01.002
  • Chung WS. Fractional Newton mechanics with conformable fractional derivative. J Comput Appl Math. 2015;290:150–158. doi: 10.1016/j.cam.2015.04.049
  • Kiskinov H, Petkova M, Zahariev A, et al. Some results about conformable derivatives in Banach spaces and an application to the partial differential equations. AIP Conf Proc. 2021;2333:Article ID 120002. doi: 10.1063/5.0041758
  • Martynyuk A, Stamov G, Stamova I. Practical stability analysis with respect to manifolds and boundedness of differential equations with fractional-like derivatives. Rocky Mountain J Math. 2019;49(1):211–233. doi: 10.1216/RMJ-2019-49-1-211
  • Martínez F, Martínez I, Kaabar MKA, et al. Note on the conformable boundary value problems: Sturm's theorems and Green's function. Rev Mex Fis. 2021;67(3):471–481. doi: 10.31349/revmexfis.67.47
  • Souahi A, Ben Makhlouf A, Hammami MA. Stability analysis of conformable fractional-order nonlinear systems. Indag Math. 2017;28:1265–1274. doi: 10.1016/j.indag.2017.09.009
  • Al Nuwairan M. The exact solutions of the conformable time fractional version of the generalized Pochhammer–Chree equation. Math Sci. 2023;17:305–316. doi: 10.1007/s40096-022-00471-3
  • Bohner M, Hatipoğlu VF. Cobweb model with conformable fractional derivatives. Math Methods Appl Sci. 2018;41:9010–9017. doi: 10.1002/mma.4846
  • Eslami M, Rezazadeh H. The first integral method for Wu-Zhang system with conformable time-fractional derivative. Calcolo. 2016;53:475–485. doi: 10.1007/s10092-015-0158-8
  • Harir A, Malliani S, Chandli LS. Solutions of conformable fractional-order SIR epidemic model. Int J Differ Equ. 2021;2021:Article ID 6636686. doi: 10.1155/2021/6636686
  • Thabet H, Kendre S. Conformable mathematical modeling of the COVID-19 transmission dynamics: a more general study. Math Methods Appl Sci. 2023;46(17):18126–18149. doi: 10.1002/mma.9549
  • Xie W, Liu C, Wu WZ, et al. Continuous grey model with conformable fractional derivative. Chaos Solitons Fract. 2020;139:Article ID 110285. doi: 10.1016/j.chaos.2020.110285
  • Martynyuk A, Stamov G, Stamova I, et al. Formulation of impulsive ecological systems using the conformable calculus approach: qualitative analysis. Math. 2023;11:2221. doi: 10.3390/math11102221
  • Sitho S, Ntouyas SK, Agarwal P, et al. Noninstantaneous impulsive inequalities via conformable fractional calculus. J Inequal Appl. 2018;2018:261. doi: 10.1186/s13660-018-1855-z
  • Stamov G, Martynyuk A, Stamova I. Impulsive fractional-like differential equations: practical stability and boundedness with respect to h-manifolds. Fractal Fract. 2019;3:50. doi: 10.3390/fractalfract3040050
  • Tariboon J, Ntouyas SK. Oscillation of impulsive conformable fractional differential equations. Open Math. 2016;14:497–508. doi: 10.1515/math-2016-0044
  • Bohner M, Stamova I, Stamov G. Impulsive control functional differential systems of fractional order: stability with respect to manifolds. Eur Phys J Special Topics. 2017;226:3591–3607. doi: 10.1140/epjst/e2018-00076-4
  • Constantin P, Foias C, Nicolaenko BIntegral manifolds and inertial manifolds for dissipative partial differential equations. New York (NY): Springer-Verlag; 1989.
  • Stamov G, Stamova I, Venkov G, et al. Global stability of integral manifolds for reaction-diffusion delayed neural networks of Cohen–Grossberg-type under variable impulsive perturbations. Math. 2020;8:1082. doi: 10.3390/math8071082
  • Stamov G, Stamova I, Martynyuk A, et al. Almost periodic dynamics in a new class of impulsive reaction–diffusion neural networks with fractional-like derivatives. Chaos Solitons Fract. 2021;143:Article ID 110647. doi: 10.1016/j.chaos.2020.110647
  • Shuai Z. Global stability of infectious disease models using Lyapunov functions. SIAM J Appl Math. 2013;73:1513–1532. doi: 10.1137/12087664