88
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

A Synergistic Botanical Composition Increases Resting Energy Expenditure and Reduces Adiposity in High-Fat Diet-Fed Rats

, , , , , & ORCID Icon show all
Pages 286-295 | Received 15 Sep 2023, Accepted 03 Nov 2023, Published online: 28 Nov 2023

References

  • World Health Organization (WHO). Obesity and overweight, fact sheet; 2020 [accessed 2023 Jun 10]. https://www.who.int/en/news-room/fact-sheets/detail/obesity-and-overweight.
  • Romieu I, Dossus L, Barquera S, Blottière HM, Franks PW, Gunter M, Hwalla N, Hursting SD, Leitzmann M, Margetts B, et al. Energy balance and obesity: what are the main drivers? Cancer Causes Control. 2017;28(3):247–58. doi:10.1007/s10552-017-0869-z.
  • Tran LT, Park S, Kim SK, Lee JS, Kim KW, Kwon O. Hypothalamic control of energy expenditure and thermogenesis. Exp Mol Med. 2022;54(4):358–69. doi:10.1038/s12276-022-00741-z.
  • Chouchani ET, Kazak L, Spiegelman BM. New advances in adaptive termogenesis: UCP1 and beyond. Cell Metab. 2019;29(1):27–37. doi:10.1016/j.cmet.2018.11.002.
  • Dulloo AG, Schutz Y. Adaptive thermogenesis in resistance to obesity therapies: issues in quantifying thrifty energy expenditure phenotypes in humans. Curr Obes Rep. 2015;4(2):230–40. doi:10.1007/s13679-015-0156-9.
  • Jimenez V, Jambrina C, Casana E, Sacristan V, Muñoz S, Darriba S, Rodó J, Mallol C, Garcia M, León X, et al. FGF21 gene therapy as treatment for obesity and insulin resistance. EMBO Mol Med. 2018;10(8):e8791. doi:10.15252/emmm.201708791.
  • BonDurant LD, Potthoff MJ. Fibroblast growth factor 21: a versatile regulator of metabolic homeostasis. Annu Rev Nutr. 2018;38(1):173–96. doi:10.1146/annurev-nutr-071816-064800.
  • Kliewer SA, Mangelsdorf DJ. A dozen years of discovery: insights into the physiology and pharmacology of FGF21. Cell Metab. 2019;29(2):246–53. doi:10.1016/j.cmet.2019.01.004.
  • Ameka M, Markan KR, Morgan DA, BonDurant LD, Idiga SO, Naber MC, Zhu Z, Zingman LV, Grobe JL, Rahmouni K, et al. Liver derived FGF21 maintains core body temperature during acute cold exposure. Sci Rep. 2019;9(1):630. doi:10.1038/s41598-018-37198-y.
  • Nedergaard J, Cannon B. Brown adipose tissue as a heat-producing thermoeffector. Handb Clin Neurol. 2018;156:137–52. doi:10.1016/B978-0-444-63912-7.00009-6.
  • Nedergaard J, Petrovic N, Lindgren EM, Jacobsson A, Cannon B. PPARgamma in the control of brown adipocyte differentiation. Biochim Biophys Acta. 2005;1740(2):293–304. doi:10.1016/j.bbadis.2005.02.003.
  • Owen BM, Ding X, Morgan DA, Coate KC, Bookout AL, Rahmouni K, Kliewer SA, Mangelsdorf DJ. FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss. Cell Metab. 2014;20(4):670–7. doi:10.1016/j.cmet.2014.07.012.
  • Cero C, Lea HJ, Zhu KY, Shamsi F, Tseng Y-H, Cypess AM. β3-adrenergic receptors regulate human brown/beige adipocyte lipolysis and thermogenesis. JCI Insight. 2021;6(11):e139160. doi:10.1172/jci.insight.139160.
  • Abu-Odeh M, Zhang Y, Reilly SM, Ebadat N, Keinan O, Valentine JM, Hafezi-Bakhtiari M, Ashayer H, Mamoun L, Zhou X, et al. FGF21 promotes thermogenic gene expression as an autocrine factor in adipocytes. Cell Rep. 2021;35(13):109331. doi:10.1016/j.celrep.2021.109331.
  • Zhang Z, Zhang H, Li B, Meng X, Wang J, Zhang Y, Yao S, Ma Q, Jin L, Yang J, et al. Berberine activates thermogenesis in white and brown adipose tissue. Nat Commun. 2014;5(1):5493. doi:10.1038/ncomms6493.
  • Li H, Qi J, Li L. Phytochemicals as potential candidates to combat obesity via adipose non-shivering thermogenesis. Pharmacol Res. 2019;147:104393. doi:10.1016/j.phrs.2019.104393.
  • Indriyani NN, Anshori JA, Permadi N, Nurjanah S, Julaeha E. Bioactive components and their activities from different parts of Citrus aurantifolia (Christm.) swingle for food development. Foods. 2023;12(10):2036. doi:10.3390/foods12102036.
  • Lim SW, Lee DR, Choi BK, Kim HS, Yang SH, Suh JW, Kim KS. Protective effects of a polymethoxy flavonoids-rich Citrus aurantium peel extract on liver fibrosis induced by bile duct ligation in mice. Asian Pac J Trop Med. 2016;9(12):1158–64. doi:10.1016/j.apjtm.2016.10.009.
  • Nair AS, Sr RK, Nair AS, Baby S. Citrus peels prevent cancer. Phytomedicine. 2018;50:231–7. doi:10.1016/j.phymed.2017.08.01.
  • Wang QH, Shu ZP, Xu BQ, Xing N, Jiao WJ, Yang BY, Kuang HX. Structural characterization and antioxidant activities of polysaccharides from Citrus aurantium L. Int J Biol Macromol. 2014;67:112–23. doi:10.1016/j.ijbiomac.2014.03.004.
  • Narang N, Jiraungkoorskul W. Anticancer activity of key lime, Citrus aurantifolia. Pharmacogn Rev. 2016;10(20):118–22. doi:10.4103/0973-7847.194043.
  • Liu S, Lou Y, Li Y, Zhang J, Li P, Yang B, Gu Q. Review of phytochemical and nutritional characteristics and food applications of Citrus L. fruits. Front Nutr. 2022;9:968604. doi:10.3389/fnut.2022.968604.
  • Park J, Kim HL, Jung Y, Ahn KS, Kwak HJ, Um JY. Bitter orange (Citrus aurantium Linné) improves obesity by regulating adipogenesis and thermogenesis through AMPK activation. Nutrients. 2019;11(9):1988. doi:10.3390/nu11091988.
  • Liao X, Zhu Z, Wu S, Chen M, Huang R, Wang J, Wu Q, Ding Y. Preparation of antioxidant protein hydrolysates from Pleurotus geesteranus and their protective effects on H2O2 oxidative damaged PC12 cells. Molecules. 2020;25(22):5408. doi:10.3390/molecules25225408.
  • Kopustinskiene DM, Jakstas V, Savickas A, Bernatoniene J. Flavonoids as anticancer agents. Nutrients. 2020;12(2):457. doi:10.3390/nu12020457.
  • Kim J, Lee KW, Lee HJ. Cocoa (Theobroma cacao) seeds and phytochemicals in human health. In: Preedy VR, Watson RR, Patel VB, editors. Nuts and seeds in health and disease prevention. Cambridge (MA): Academic Press; 2011. p. 351–60. doi:10.1016/B978-0-12-375688-6.10042-8.
  • Coronado-Cáceres LJ, Rabadán-Chávez G, Mojica L, Hernández-Ledesma B, Quevedo-Corona L, Lugo Cervantes E. Cocoa (Theobroma cacao L.) seed proteins’ anti-obesity potential through lipase inhibition using in silico, in vitro and in vivo models. Foods. 2020;9(10):1359. doi:10.3390/foods9101359.
  • Müller TD, Blüher M, Tschöp MH, DiMarchi RD. Anti-obesity drug discovery: advances and challenges. Nat Rev Drug Discov. 2022;21(3):201–23. doi:10.1038/s41573-021-00337-8.
  • Jimenez-Munoz CM, López M, Albericio F, Makowski K. Targeting energy expenditure—drugs for obesity treatment. Pharmaceuticals. 2021;14(5):435. doi:10.3390/ph14050435.
  • Weir JB. New methods for calculating metabolic rate with special reference to protein metabolism. 1949. Nutrition. 1990;6(3):213–21.
  • Fonseca DC, Sala P, Ferreira BD, Reis J, Torrinhas RS, Bendavid I, Waitzberg DL. Body weight control and energy expenditure. Clin Nutr Exp. 2018;20:55–9. doi:10.1016/j.yclnex.2018.04.001.
  • Kharitonenkov A, Shiyanova TL, Koester A, Ford AM, Micanovic R, Galbreath EJ, Sandusky GE, Hammond LJ, Moyers JS, Owens RA, et al. FGF-21 as a novel metabolic regulator. J Clin Invest. 2005;115(6):1627–35. doi:10.1172/JCI23606.
  • Ni B, Farrar JS, Vaitkus JA, Celi FS. Metabolic effects of FGF-21: thermoregulation and beyond. Front Endocrinol (Lausanne). 2015;6:148. doi:10.3389/fendo.2015.00148.
  • Lee P, Linderman JD, Smith S, Brychta RJ, Wang J, Idelson C, Perron RM, Werner CD, Phan GQ, Kammula US, et al. Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans. Cell Metab. 2014;19(2):302–9. doi:10.1016/j.cmet.2013.12.017.
  • Fisher FM, Kleiner S, Douris N, Fox EC, Mepani RJ, Verdeguer F, Wu J, Kharitonenkov A, Flier JS, Maratos-Flier E, et al. FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis. Genes Dev. 2012;26(3):271–81. doi:10.1101/gad.177857.111.
  • Bartelt A, Heeren J. Adipose tissue browning and metabolic health. Nat Rev Endocrinol. 2014;10(1):24–36. doi:10.1038/nrendo.2013.204.
  • Harms M, Seale P. Brown and beige fat: development, function and therapeutic potential. Nat Med. 2013;19(10):1252–63. doi:10.1038/nm.3361.
  • Inagaki T, Sakai J, Kajimura S. Transcriptional and epigenetic control of brown and beige adipose cell fate and function. Nat Rev Mol Cell Biol. 2016;17(8):480–95. Erratum in: Nat Rev Mol Cell Biol. 2017;18(8):527. doi:10.1038/nrm.2016.62.
  • Klingenspor M. Cold-induced recruitment of brown adipose tissue thermogenesis. Exp Physiol. 2003;88(1):141–8. doi:10.1113/eph8802508.
  • Trayhurn P, Wood IS. Adipokines: inflammation and the pleiotropic role of white adipose tissue. Br J Nutr. 2004;92(3):347–55. doi:10.1079/bjn20041213.
  • Ahima RS. Revisiting Leptin’s role in obesity and weight loss. J Clin Invest. 2008;118(7):2380–3. doi:10.1172/JCI36284.
  • Obradovic M, Sudar-Milovanovic E, Soskic S, Essack M, Arya S, Stewart AJ, Gojobori T, Isenovic ER. Leptin and obesity: role and clinical implication. Front Endocrinol (Lausanne). 2021;12:585887. doi:10.3389/fendo.2021.585887.
  • Albarracín MLG, Torres AYF. Adiponectin and leptin adipocytokines in metabolic syndrome: what is its importance? Dubai Diabetes Endocrinol J. 2020;26:93–102. doi:10.1159/000510521.
  • Senkus KE, Crowe-White KM, Bolland AC, Locher JL, Ard JD. Changes in adiponectin:leptin ratio among older adults with obesity following a 12-month exercise and diet intervention. Nutr Diabetes. 2022;12(1):30. doi:10.1038/s41387-022-00207-1.
  • Castela JR, Barreiros-Mota MJ, Silvestre MP, Marques C, Rodrigues C, Ismael S, Araújo JR, Ângelo-Dias M, Martins C, Borrego LM, et al. Decreased adiponectin/leptin ratio relates to insulin resistance in adults with obesity. Am J Physiol Endocrinol Metab. 2023;324(2):E115–9. doi:10.1152/ajpendo.00273.2022.
  • Schena G, Caplan MJ. Everything you always wanted to know about β3-AR * (* But were afraid to ask). Cells. 2019;8(4):357. doi:10.3390/cells8040357.
  • Xiao C, Goldgof M, Gavrilova O, Reitman ML. Anti-obesity and metabolic efficacy of the β3-adrenergic agonist, CL316243, in mice at thermoneutrality compared to 22 °C. Obesity. 2015;23(7):1450–9. doi:10.1002/oby.21124.
  • Finlin BS, Memetimin H, Confides AL, Kasza I, Zhu B, Vekaria HJ, Harfmann B, Jones KA, Johnson ZR, Westgate PM, et al. Human adipose beiging in response to cold and mirabegron. JCI Insight. 2018;3(15):e121510. doi:10.1172/jci.insight.121510.
  • O’Mara AE, Johnson JW, Linderman JD, Brychta RJ, McGehee S, Fletcher LA, Fink YA, Kapuria D, Cassimatis TM, Kelsey N, et al. Chronic mirabegron treatment increases human brown fat, HDL cholesterol, and insulin sensitivity. J Clin Invest. 2020;130(5):2209–19. doi:10.1172/JCI131126.
  • Roberts CK, Berger JJ, Barnard RJ. Long-term effects of diet on leptin, energy intake, and activity in a model of diet-induced obesity. J Appl Physiol. 2002;93(3):887–93. doi:10.1152/japplphysiol.00224.2002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.