70
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Negative Association of Serum β-Cryptoxanthin With Benzene and Its Derivatives

, &
Pages 397-403 | Received 24 Oct 2023, Accepted 24 Dec 2023, Published online: 16 Jan 2024

References

  • International Agency for Research on Cancer. Benzene. Vol. 120. World Health Organization; 2018.
  • IARC. IARC monographs on the evaluation of carcinogenic risks to humans; 2000. p. 257. https://publications.iarc.fr/_publications/media/download/2931/d7a4e802483b1374482768a36a7c78e1b33aa1c8.pdf
  • Cancer IAfRo. Chemical agents and related occupations. World Health Organization; 2012. p. 250. https://monographs.iarc.who.int/wp-content/uploads/2018/06/mono100F.pdf
  • World Health Organization. Exposure to benzene—a major public health concern; 2019. p. 2. https://www.who.int/publications/i/item/WHO-CED-PHE-EPE-19.4.2
  • Jiao Y, Reuss L, Wang Y. β-Cryptoxanthin: chemistry, occurrence, and potential health benefits. Curr Pharmacol Rep. 2019;5(1):20–34. doi:10.1007/s40495-019-00168-7.
  • Burri BJ, La Frano MR, Zhu C. Absorption, metabolism, and functions of β-cryptoxanthin. Nutr Rev. 2016;74(2):69–82. doi:10.1093/nutrit/nuv064.
  • Saini RK, Keum YS, Daglia M, Rengasamy KR. Dietary carotenoids in cancer chemoprevention and chemotherapy: a review of emerging evidence. Pharmacol Res. 2020;157:104830. doi:10.1016/j.phrs.2020.104830.
  • Männistö S, Smith-Warner SA, Spiegelman D, Albanes D, Anderson K, van den Brandt PA, Cerhan JR, Colditz G, Feskanich D, Freudenheim JL, et al. Dietary carotenoids and risk of lung cancer in a pooled analysis of seven cohort studies. Cancer Epidemiol Biomarkers Prev. 2004;13(1):40–8. doi:10.1158/1055-9965.epi-038-3.
  • De Stefani E, Brennan P, Boffetta P, Ronco AL, Mendilaharsu M, Deneo-Pellegrini H. Vegetables, fruits, related dietary antioxidants, and risk of squamous cell carcinoma of the esophagus: a case-control study in Uruguay. Nutr Cancer. 2000;38(1):23–9. doi:10.1207/S15327914NC381_4.
  • (2003-2004) NCfHS. National Health and Nutrition Examination Survey; [cited 2023 Mar 4]. Available from: https://wwwn.cdc.gov/Nchs/Nhanes/continuousnhanes/default.aspx?BeginYear=2003.
  • Survey NHaNE. 2003-2004 Data Documentation, Codebook, and Frequencies; 2006; [cited 2023 Mar 20]. Available from: https://wwwn.cdc.gov/Nchs/Nhanes/2003-2004/SMQ_C.htm#SMQ020
  • Collins JJ, Anteau SE, Swaen GM, Bodner KM, Bodnar CM. Lymphatic and hematopoietic cancers among benzene-exposed workers. J Occup Environ Med. 2015;57(2):159–63. doi:10.1097/JOM.0000000000000324.
  • Wong O, Harris F, Armstrong TW, Hua F. A hospital-based case-control study of acute myeloid leukemia in Shanghai: analysis of environmental and occupational risk factors by subtypes of the WHO classification. Chem Biol Interact. 2010;184(1-2):112–28. doi:10.1016/j.cbi.2009.10.017.
  • Saberi Hosnijeh F, Christopher Y, Peeters P, Romieu I, Xun W, Riboli E, Raaschou-Nielsen O, Tjønneland A, Becker N, Nieters A, et al. Occupation and risk of lymphoid and myeloid leukaemia in the European Prospective Investigation into Cancer and Nutrition (EPIC). Occup Environ Med. 2013;70(7):464–70. doi:10.1136/oemed-2012-101135.
  • Talibov M, Lehtinen-Jacks S, Martinsen JI, Kjærheim K, Lynge E, Sparén P, Tryggvadottir L, Weiderpass E, Kauppinen T, Kyyrönen P, et al. Occupational exposure to solvents and acute myeloid leukemia: a population-based, case-control study in four Nordic countries. Scand J Work Environ Health. 2014;40(5):511–7. doi:10.5271/sjweh.3436.
  • Rhomberg L, Goodman J, Tao G, Zu K, Chandalia J, Williams PRD, Allen B. Evaluation of acute nonlymphocytic leukemia and its subtypes with updated benzene exposure and mortality estimates: a lifetable analysis of the pliofilm cohort. J Occup Environ Med. 2016;58(4):414–20. doi:10.1097/JOM.0000000000000689.
  • Kirkeleit J, Riise T, Bråtveit M, Moen BE. Increased risk of acute myelogenous leukemia and multiple myeloma in a historical cohort of upstream petroleum workers exposed to crude oil. Cancer Causes Control. 2008;19(1):13–23. doi:10.1007/s10552-007-9065-x.
  • Schnatter AR, Glass DC, Tang G, Irons RD, Rushton L. Myelodysplastic syndrome and benzene exposure among petroleum workers: an international pooled analysis. J Natl Cancer Inst. 2012;104(22):1724–37. doi:10.1093/jnci/djs411.
  • Stenehjem JS, Kjærheim K, Bråtveit M, Samuelsen SO, Barone-Adesi F, Rothman N, Lan Q, Grimsrud TK. Benzene exposure and risk of lymphohaematopoietic cancers in 25 000 offshore oil industry workers. Br J Cancer. 2015;112(9):1603–12. doi:10.1038/bjc.2015.108.
  • Ireland B, Collins JJ, Buckley CF, Riordan SG. Cancer mortality among workers with benzene exposure. Epidemiology. 1997;8(3):318–20. doi:10.1097/00001648-199705000-00016.
  • Iskandar AR, Miao B, Li X, Hu KQ, Liu C, Wang XD. β-Cryptoxanthin reduced lung tumor multiplicity and inhibited lung cancer cell motility by downregulating nicotinic acetylcholine receptor α7 signaling. Cancer Prev Res (Phila). 2016;9(11):875–86. doi:10.1158/1940-6207.CAPR-16-0161.
  • San Millán C, Soldevilla B, Martín P, Gil-Calderón B, Compte M, Pérez-Sacristán B, Donoso E, Peña C, Romero J, Granado-Lorencio F, et al. β-Cryptoxanthin synergistically enhances the antitumoral activity of oxaliplatin through ΔNP73 negative regulation in colon cancer. Clin Cancer Res. 2015;21(19):4398–409. doi:10.1158/1078-0432.CCR-14-2027.
  • Gao M, Dang F, Deng C. β-Cryptoxanthin induced anti-proliferation and apoptosis by G0/G1 arrest and AMPK signal inactivation in gastric cancer. Eur J Pharmacol. 2019;859:172528. doi:10.1016/j.ejphar.2019.172528.
  • Miyazawa K, Miyamoto S, Suzuki R, Yasui Y, Ikeda R, Kohno H, et al. Dietary β-cryptoxanthin inhibits N-butyl-N-(4-hydroxybutyl)nitrosamine-induced urinary bladder carcinogenesis in male ICR mice. Oncol Rep. 2007;17(2):297–304.
  • Lim JY, Liu C, Hu K-Q, Smith DE, Wu D, Lamon-Fava S, Ausman LM, Wang X-D. Dietary β-cryptoxanthin inhibits high-refined carbohydrate diet–induced fatty liver via differential protective mechanisms depending on carotenoid cleavage enzymes in male mice. J Nutr. 2019;149(9):1553–64. doi:10.1093/jn/nxz106.
  • Powley MW, Carlson GP. Cytochromes P450 involved with benzene metabolism in hepatic and pulmonary microsomes. J Biochem Mol Toxicol. 2000;14(6):303–9. doi:10.1002/1099-0461(2000)14:6<303::AID-JBT2>3.0.CO;2-8.
  • Chaney AM, Carlson GP. Comparison of rat hepatic and pulmonary microsomal metabolism of benzene and the lack of benzene-induced pneumotoxicity and hepatotoxicity. Toxicology. 1995;104(1-3):53–62. doi:10.1016/0300-483x(95)03129-4.
  • Rappaport SM, Kim S, Lan Q, Vermeulen R, Waidyanatha S, Zhang L, Li G, Yin S, Hayes RB, Rothman N, et al. Evidence that humans metabolize benzene via two pathways. Environ Health Perspect. 2009;117(6):946–52. doi:10.1289/ehp.0800510.
  • Glatt H, Padykula R, Berchtold GA, Ludewig G, Platt KL, Klein J, Oesch F. Multiple activation pathways of benzene leading to products with varying genotoxic characteristics. Environ Health Perspect. 1989;82:81–9. doi:10.1289/ehp.898281.
  • Schattenberg DG, Stillman WS, Gruntmeir JJ, Helm KM, Irons RD, Ross D. Peroxidase activity in murine and human hematopoietic progenitor cells: potential relevance to benzene-induced toxicity. Mol Pharmacol. 1994;46(2):346–51.
  • Gut I, Nedelcheva V, Soucek P, Stopka P, Tichavská B. Cytochromes P450 in benzene metabolism and involvement of their metabolites and reactive oxygen species in toxicity. Environ Health Perspect. 1996;104(suppl 6):1211–8. doi:10.1289/ehp.961041211.
  • Snyder R, Hedli CC. An overview of benzene metabolism. Environ Health Perspect. 1996;104(suppl 6):1165–71. doi:10.1289/ehp.961041165.
  • Ross D. The role of metabolism and specific metabolites in benzene-induced toxicity: evidence and issues. J Toxicol Environ Health A. 2000;61(5-6):357–72. doi:10.1080/00984100050166361.
  • Darwish WS, Ikenaka Y, Nakayama S, Mizukawa H, Thompson LA, Ishizuka M. β-Carotene and retinol reduce benzo [a] pyrene-induced mutagenicity and oxidative stress via transcriptional modulation of xenobiotic metabolizing enzymes in human HepG2 cell line. Environ Sci Pollut Res Int. 2018;25(7):6320–8. doi:10.1007/s11356-017-0977-z.
  • Turner T, Burri BJ, Jamil KM, Jamil M. The effects of daily consumption of β-cryptoxanthin-rich tangerines and β-carotene-rich sweet potatoes on vitamin A and carotenoid concentrations in plasma and breast milk of Bangladeshi women with low vitamin A status in a randomized controlled trial. Am J Clin Nutr. 2013;98(5):1200–8. doi:10.3945/ajcn.113.058180.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.