92
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Oyster (Ostrea Plicatula Gmelin) Peptides Improve Exercise Endurance Capacity via Activating AMPK and HO-1

, , , , & ORCID Icon
Pages 437-451 | Received 14 Sep 2023, Accepted 11 Jan 2024, Published online: 02 Feb 2024

References

  • Wu RE, Huang WC, Liao CC, Chang YK, Kan NW, Huang CC. Resveratrol protects against physical fatigue and improves exercise performance in mice. Molecules. 2013;18(4):4689–702. doi:10.3390/molecules18044689.
  • Finkler M, Lichtenberg D, Pinchuk I. The relationship between oxidative stress and exercise. J Basic Clin Physiol Pharmacol. 2014;25(1):1–11. doi:10.1515/jbcpp-2013-0082.
  • Yeh TS, Huang CC, Chuang HL, Hsu MC. Angelica sinensis­improves exercise performance and protects against physical ­fatigue in trained mice. Molecules. 2014;19(4):3926–39. doi:10.3390/molecules19043926.
  • Wan J, Qin Z, Lei H, Wang P, Zhang Y, Feng J, Wei J, Sun Y, Liu X. Erythromycin has therapeutic efficacy on muscle fatigue acting specifically on orosomucoid to increase muscle bioenergetics and physiological parameters of endurance. Pharmacol Res. 2020;161:105118. doi:10.1016/j.phrs.2020.105118.
  • Wang P, Zeng H, Lin S, Zhang Z, Zhang Y, Hu J. Anti-fatigue activities of hairtail (Trichiurus lepturus) hydrolysate in an ­endurance swimming mice model. J Funct Foods. 2020;74:104207. doi:10.1016/j.jff.2020.104207.
  • Yang Z, Sunil C, Jayachandran M, Zheng X, Cui K, Su Y, Xu B. Anti-fatigue effect of aqueous extract of Hechong (Tylorrhynchus heterochaetus) via AMPK linked pathway. Food Chem Toxicol. 2020;135:111043. doi:10.1016/j.fct.2019.111043.
  • Lai JR, Hsu YW, Pan TM, Lee CL. Monascin and ankaflavin of Monascus purpureus prevent alcoholic liver disease through regulating AMPK-mediated lipid metabolism and enhancing both anti-inflammatory and anti-oxidative systems. Molecules. 2021;26(20):6301. doi:10.3390/molecules26206301.
  • Zimmermann K, Baldinger J, Mayerhofer B, Atanasov AG, Dirsch VM, Heiss EH. Activated AMPK boosts the Nrf2/HO-1 signaling axis—A role for the unfolded protein response. Free Radic Biol Med. 2015;88(Pt B):417–26. doi:10.1016/j.freeradbiomed.2015.03.030.
  • Lin S, Hao G, Lai D, Tian Y, Long M, Lai F, Xiong Y, Ji C, Zang Y. Effect of oyster meat preload on postmeal glycemic control in healthy young adults. J Am Coll Nutr. 2019;39(6):511–7. doi:10.1080/07315724.2019.1699475.
  • Hao G, Zhang C, Cao W, Hao J. Effects of intragastric administration of five oyster components on endurance exercise performance in mice. Pharm Biol. 2014;52(6):723–8. doi:10.3109/13880209.2013.866966.
  • Jiang DQ, Guo Y, Xu DH, Huang YS, Yuan K, Lv ZQ. Antioxidant and anti-fatigue effects of anthocyanins of mulberry juice purification (MJP) and mulberry marc purification (MMP) from different varieties mulberry fruit in China. Food Chem Toxicol. 2013;59:1–7. doi:10.1016/j.fct.2013.05.023.
  • Miao J, Liao W, Kang M, Jia Y, Wang Q, Duan S, Xiao S, Cao Y, Ji H. Anti-fatigue and anti-oxidant activities of oyster (Ostrea rivularis) hydrolysate prepared by compound protease. Food Funct. 2018;9(12):6577–85. doi:10.1039/c8fo01879k.
  • Xiao M, Lin L, Chen HP, Ge X, Huang Y, Zheng Z, Li S, Pan Y, Liu B, Zeng F. Anti-fatigue property of oyster polypeptide fraction and its effect on gut microbiota in mice. Food Funct. 2020;11(10):8659–69. doi:10.1039/d0fo01713b.
  • Li J, Yang L, Li G, Liu S, Cao W, Lin H, Chen Z, Qin X, Huang J, Zheng H. Low-molecular-weight oyster peptides ameliorate cyclophosphamide-chemotherapy side-effects in Lewis lung cancer mice by mitigating gut microbiota dysbiosis and immunosuppression. J Funct Foods. 2022;95:105196. doi:10.1016/j.jff.2022.105196.
  • Mudgil P, Baby B, Ngoh YY, Kamal H, Vijayan R, Gan CY, Maqsood S. Molecular binding mechanism and identification of novel antihypertensive peptides from camel milk protein hydrolysates. LWT. 2019;112:108193. doi:10.1016/j.lwt.2019.05.091.
  • Hargreaves M, Spriet LL. Skeletal muscle energy metabolism during exercise. Nat Metab. 2020;2(9):817–28. doi:10.1038/s42255-020-0251-4.
  • Li C, Li J, Xiong X, Liu Y, Lv Y, Qin S, Liu D, Wei R, Ruan X, Zhang J, et al. TRPM8 activation improves energy expenditure in skeletal muscle and exercise endurance in mice. Gene. 2018;641:111–6. doi:10.1016/j.gene.2017.10.045.
  • Sable R, Parajuli P, Jois S. Peptides, peptidomimetics, and polypeptides from marine sources: a wealth of natural sources for pharmaceutical applications. Mar Drugs. 2017;15(4):124. doi:10.3390/md15040124.
  • Hawley JA, Burke LM, Phillips SM, Spriet LL. Nutritional modulation of training-induced skeletal muscle adaptations. J Appl Physiol. 2011;110(3):834–45. doi:10.1152/japplphysiol.00949.2010.
  • Dreyer HC, Volpi E. Role of protein and amino acids in the pathophysiology and treatment of sarcopenia. J Am Coll Nutr. 2005;24(2):140S–5S. doi:10.1080/07315724.2005.10719455.
  • Torre-Villalvazo I, Alemán-Escondrillas G, Valle-Ríos R, Noriega LG. Protein intake and amino acid supplementation regulates ­exercise recovery and performance through the modulation of mTOR, AMPK, FGF21 and immunity. Nutr Res. 2019;72:1–17. doi:10.1016/j.nutres.2019.06.006.
  • Komorowski JR, Ojalvo SP, Sylla S, Tastan H, Orhan C, Tuzcu M, Sahin N, Sahin K. The addition of an amylopectin/chromium complex to branched-chain amino acids enhances muscle protein synthesis in rat skeletal muscle. J Int Soc Sports Nutr. 2020;17(1):26. doi:10.1186/s12970-020-00355-8.
  • Kato H, Suzuki K, Bannai M, Moore DR. Branched-chain amino acids are the primary limiting amino acids in the diets of endurance-trained men after a bout of prolonged exercise. J Nutr. 2018;148(6):925–31. doi:10.1093/jn/nxy048.
  • Ra SG, Miyazaki T, Kojima R, Komine S, Ishikura K, Kawanaka K, Honda A, Matsuzaki Y, Ohmori H. Effect of BCAA supplement timing on exercise-induced muscle soreness and damage: a pilot placebo-controlled double-blind study. J Sports Med Phys Fitness. 2018;58(11):1582–91. doi:10.23736/s0022-4707.17.07638-1.
  • Acworth I, Nicholass J, Morgan B, Newsholme EA. Effect of sustained exercise on concentrations of plasma aromatic and branched-chain amino acids and brain amines. Biochem Biophys Res Commun. 1986;137(1):149–53. doi:10.1016/0006-291X(86)91188-5.
  • Chantranupong L, Scaria SM, Saxton RA, Gygi MP, Shen K, Wyant GA, Wang T, Harper JW, Gygi SP, Sabatini DM. The CASTOR proteins are arginine sensors for the mTORC1 pathway. Cell. 2016;165(1):153–64. doi:10.1016/j.cell.2016.02.035.
  • Shan L, Wang B, Gao G, Cao W, Zhang Y. l-Arginine supplementation improves antioxidant defenses through l-arginine/nitric oxide pathways in exercised rats. J Appl Physiol. 2013;115(8):1146–55. doi:10.1152/japplphysiol.00225.2013.
  • Zhang X, Jing S, Lin H, Sun W, Jiang W, Yu C, Sun J, Wang C, Chen J, Li H. Anti-fatigue effect of anwulignan via NRF2 and PGC-1α signaling pathway in mice. Food Funct. 2019;10(12):7755–66. doi:10.1039/c9fo01182j.
  • Takahashi Y, Matsunaga Y, Banjo M, Takahashi K, Sato Y, Seike K, Nakano S, Hatta H. Effects of nutrient intake timing on post-exercise glycogen accumulation and its related signaling pathways in mouse skeletal muscle. Nutrients. 2019;11(11):2555. doi:10.3390/nu11112555.
  • Gnoni A, Longo S, Gnoni GV, Giudetti AM. Carnitine in human muscle bioenergetics: can carnitine supplementation improve physical exercise? Molecules. 2020;25(1):182. doi:10.3390/molecules25010182.
  • Camera DM, Smiles WJ, Hawley JA. Exercise-induced skeletal muscle signaling pathways and human athletic performance. Free Radic Biol Med. 2016;98:131–43. doi:10.1016/j.freeradbiomed.2016.02.007.
  • Richter EA, Hargreaves M. Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol Rev. 2013;93(3):993–1017. doi:10.1152/physrev.00038.2012.
  • Luo C, Xu X, Wei X, Feng W, Huang H, Liu H, Xu R, Lin J, Han L, Zhang D. Natural medicines for the treatment of fatigue: bioactive components, pharmacology, and mechanisms. Pharmacol Res. 2019;148:104409. doi:10.1016/j.phrs.2019.104409.
  • Zhang Y, Ryu B, Cui Y, Li C, Zhou C, Hong P, Lee B, Qian ZJ. A peptide isolated from Hippocampus abdominalis improves exercise performance and exerts anti-fatigue effects via AMPK/PGC-1α pathway in mice. J Funct Foods. 2019;61:103489. doi:10.1016/j.jff.2019.103489.
  • Cui X, Yao L, Yang X, Gao Y, Fang F, Zhang J, Wang Q, Chang Y. SIRT6 regulates metabolic homeostasis in skeletal muscle through activation of AMPK. Am J Physiol Endocrinol Metab. 2017;313(4):E493–E505. doi:10.1152/ajpendo.00122.2017.
  • Uchitomi R, Oyabu M, Kamei Y. Vitamin D and sarcopenia: ­potential of vitamin D supplementation in sarcopenia prevention and treatment. Nutrients. 2020;12(10):3189. doi:10.3390/nu12103189.
  • Hardie DG. Energy sensing by the AMP-activated protein kinase and its effects on muscle metabolism. Proc Nutr Soc. 2010;70(1):92–9. doi:10.1017/s0029665110003915.
  • Papadopoulos S, Dipla K, Triantafyllou A, Nikolaidis MG, Kyparos A, Touplikioti P, Vrabas IS, Zafeiridis A. Beetroot increases muscle performance and oxygenation during sustained isometric exercise, but does not alter muscle oxidative efficiency and microvascular reactivity at rest. J Am Coll Nutr. 2018;37(5):361–72. doi:10.1080/07315724.2017.1401497.
  • Ighodaro OM, Adeosun AM, Asejeje FO, Soetan GO, Kassim OO. Time course effects of 5,5-dihydroxyl pyrimidine-2,4,6-trione (alloxan) as a diabetogenic agent in animal model. Alexandria J Med. 2018;54(4):705–10. doi:10.1016/j.ajme.2018.05.005.
  • Koyama H, Nojiri H, Kawakami S, Sunagawa T, Shirasawa T, Shimizu T. Antioxidants improve the phenotypes of dilated cardiomyopathy and muscle fatigue in mitochondrial superoxide dismutase-deficient mice. Molecules. 2013;18(2):1383–93. doi:10.3390/molecules18021383.
  • Han Y, Jiang Q, Gao H, Fan J, Wang Z, Zhong F, Zheng Y, Gong Z, Wang C. The anti-apoptotic effect of polypeptide from Chlamys farreri (PCF) in UVB-exposed HaCaT cells involves inhibition of iNOS and TGF-β1. Cell Biochem Biophys. 2014;71(2):1105–15. doi:10.1007/s12013-014-0315-8.
  • Su X, Hao S, Li W, Li X, Mo Z, Li Y, Xiao L, Wang W, Wang F. Gardenia fruit and Eucommia leaves combination improves hyperlipidemia and hyperglycemia via pancreatic lipase and AMPK-PPARα and Keap-1-Nrf2-HO-1 regulation. J Funct Foods. 2023;100:105394. doi:10.1016/j.jff.2022.105394.
  • Ma J, Li M, Kalavagunta PK, Li J, He Q, Zhang Y, Ahmad O, Yin H, Wang T, Shang J. Protective effects of cichoric acid on H2O2-induced oxidative injury in hepatocytes and larval zebrafish models. Biomed Pharmacother. 2018;104:679–85. doi:10.1016/j.biopha.2018.05.081.
  • Jansen T, Kvandová M, Daiber A, Stamm P, Frenis K, Schulz E, Münzel T, Kröller-Schön S. The AMP-activated protein kinase plays a role in antioxidant defense and regulation of vascular ­inflammation. Antioxidants (Basel). 2020;9(6):525. doi:10.3390/antiox9060525.
  • Petsouki E, Cabrera SNS, Heiss EH. AMPK and NRF2: interactive players in the same team for cellular homeostasis? Free Radic Biol Med. 2022;190:75–93. doi:10.1016/j.freeradbiomed.2022.07.014.
  • Zhao C, Gong Y, Zheng L, Zhao M. Whey protein hydrolysate enhances exercise endurance, regulates energy metabolism, and attenuates muscle damage in exercise mice. Food Biosci. 2023;52:102453. doi:10.1016/j.fbio.2023.102453.
  • Koh JH, Hancock CR, Terada S, Higashida K, Holloszy JO, Han DH. PPARβ is essential for maintaining normal levels of PGC-1α and mitochondria and for the increase in muscle mitochondria induced by exercise. Cell Metab. 2017;25(5):1176–85.e5. doi:10.1016/j.cmet.2017.04.029.
  • Zhang D, Xiong J, Zhao X, Gan Y. Anti-fatigue activities of γ-aminobutyric acid-enriched soymilk in an acute exercise-treated mouse model via regulating AMPK/PGC-1α pathway. Food Biosci. 2023;55:103060. doi:10.1016/j.fbio.2023.103060.
  • Galvan-Alvarez V, Gallego-Selles A, Martinez-Canton M, García-Gonzalez E, Gelabert-Rebato M, Ponce-Gonzalez JG, Larsen S, Morales-Alamo D, Losa-Reyna J, Perez-Suarez I, et al. Antioxidant enzymes and Nrf2/Keap1 in human skeletal muscle: influence of age, sex, adiposity and aerobic fitness. Free Radic Biol Med. 2023;209(Pt 2):282–91. doi:10.1016/j.freeradbiomed.2023.10.393.
  • Zhu D, Yuan Z, Wu D, Wu C, El-Seedi HR, Du M. The dual-function of bioactive peptides derived from oyster (Crassostrea gigas) proteins hydrolysates. Food Sci Hum Wellness. 2023;12(5):1609–17. doi:10.1016/j.fshw.2023.02.006.
  • Mirzaei M, Mirdamadi S, Ehsani MR, Aminlari M. Production of antioxidant and ACE-inhibitory peptides from Kluyveromyces marxianus protein hydrolysates: purification and molecular docking. J Food Drug Anal. 2018;26(2):696–705. doi:10.1016/j.jfda.2017.07.008.
  • Jiao X, Jin X, Ma Y, Yang Y, Li J, Liang L, Liu R, Li Z. A comprehensive application: molecular docking and network pharmacology for the prediction of bioactive constituents and elucidation of mechanisms of action in component-based Chinese medicine. Comput Biol Chem. 2021;90:107402. doi:10.1016/j.compbiolchem.2020.107402.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.