1,643
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Turning markers into targets – scoping neural circuits for motor neurofeedback training in Parkinson’s disease

ORCID Icon
Pages 1-27 | Received 28 Mar 2022, Accepted 30 Mar 2022, Published online: 10 May 2022

References

  • Lau L. D, Breteler MMB. The epidemiology of Parkinson’s disease. Lancet Neurol. 2006;5(6):525–535.
  • Cersosimo MG, Raina GB, Pecci C, et al. Gastrointestinal manifestations in Parkinson's disease: prevalence and occurrence before motor symptoms. J Neurol. 2013;260(5):1332–1338.
  • Suttrup I, Warnecke T. Dysphagia in Parkinson's disease. Dysphagia. 2016;31(1):24–32.
  • Suntrup S, Teismann I, Bejer J, et al. Evidence for adaptive cortical changes in swallowing in Parkinson's disease. Brain. 2013;136(Pt 3):726–738.
  • Chaudhuri RK, Healy DG, Schapira AV. Non-motor symptoms of Parkinson’ s disease: diagnosis and management related papers management. Lancet Neurol. 2006;5(3):235–245.
  • Barber TR, Lawton M, Rolinski M, et al. Prodromal parkinsonism and neurodegenerative risk stratification in rem sleep behavior disorder. Sleep. 2017;40(8):11–13.
  • Gratwicke J, Jahanshahi M, Foltynie T. Parkinson's disease dementia: a neural networks perspective. Brain. 2015;138(Pt 6):1454–1476.
  • Biundo R, Weis L, Antonini A. Cognitive decline in Parkinson's disease: the complex picture. NPJ Parkinsons Dis. 2016;2(1):16018.
  • Ba F, Obaid M, Wieler M, et al. Parkinson disease: the relationship between non-motor symptoms and motor phenotype. Can J Neurol Sci. 2016;43(2):261–267.
  • Muslimović D, Post B, Speelman JD, et al. Determinants of disability and quality of life in mild to moderate Parkinson disease. Neurology. 2008;70(23):2241–2247.
  • Tomlinson CL, Patel S, Meek C, et al. Physiotherapy intervention in Parkinson’s disease: systematic review and meta-analysis. BMJ. 2012;345(1):e5004–14.
  • Connolly BS, Lang AE. Pharmacological treatment of Parkinson disease: a review. JAMA - J Am Med Assoc. 2014;311(16):1670–1683.
  • Chiken S, Nambu A. Mechanism of deep brain stimulation: inhibition, excitation, or disruption? Neuroscientist. 2016;22(3):313–322.
  • Anil K, Hall SD, Demain S, et al. A systematic review of neurofeedback for the management of motor symptoms in Parkinson’s disease. Brain Sci. 2021;11(10):1292.
  • Losseff N, Brown M, Grieve J. Stroke and cerebrovascular disease. In: Clarke C, Howard R, Rossor M, Shorvon S, eds. Neurology: a queen square textbook. London: Wiley-Blackwell. 2009. p. 109–154.
  • Nambu A, Tokuno H, Takada M. Functional significance of the cortico- subthalamo- pallidal ‘hyperdirect’ pathway. Neuro Res. 2002;43(2):111–117.
  • Nambu A. Seven problems on the basal ganglia. Curr Opin Neurobiol. 2008;18(6):595–604.
  • Chu HY, McIver EL, Kovaleski RF, et al. Loss of hyperdirect pathway cortico-subthalamic inputs following degeneration of midbrain dopamine neurons. Neuron. 2017;95(6):1306–1318.e5.
  • Nambu A, Tachibana Y, Chiken S. Cause of parkinsonian symptoms: firing rate, firing pattern or dynamic activity changes? Basal Ganglia. 2015;5(1):1–6.
  • Rodriguez-Oroz MC, Jahanshahi M, Krack P, et al. Initial clinical manifestations of Parkinson’s disease: features and pathophysiological mechanisms. Lancet Neurol. 2009;8(12):1128–1139.
  • Neumann W, Schroll H, Luisa A, et al. Functional segregation of basal ganglia pathways in Parkinson’s disease. 2018;141(9):2655–2669.
  • Aron AR, Herz DM, Brown XP, et al. Frontosubthalamic circuits for control of action and cognition. J Neurosci. 2016;36(45):11489–11495.
  • Herz DM, Little S, Pedrosa DJ, et al. Mechanisms underlying decision-making as revealed by deep-brain stimulation in patients with Parkinson's disease. Curr Biol. 2018;28(8):1169–1178.e6.
  • Mak MK, Wong-Yu IS, Shen X, et al. Long-term effects of exercise and physical therapy in people with Parkinson disease. Nat Rev Neurol. 2017;13(11):689–703.
  • Radder DLM, Lígia Silva de Lima A, Domingos J, et al. Physiotherapy in Parkinson's disease: a meta-analysis of present treatment modalities. Neurorehabil Neural Repair. 2020;34(10):871–880.
  • Ahlskog J, Muenter M. Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature. Mov Disord. 2001;16(3):448–458.
  • Pérez-Pérez J, Pagonabarraga J, Martínez-Horta S, et al. Head-to-head comparison of the neuropsychiatric effect of dopamine agonists in Parkinson's disease: a prospective, cross-sectional study in non-demented patients. Drugs Aging. 2015;32(5):401–407.
  • Antonini A, Tolosa E, Mizuno Y, et al. A reassessment of risks and benefits of dopamine agonists in Parkinson’s disease. Lancet Neurol. 2009;8(10):929–937.
  • Huot P, Johnston TH, Koprich JB, et al. The pharmacology of L-DOPA-induced dyskinesia in Parkinson's disease. Pharmacol Rev. 2013;65(1):171–222.
  • Benabid AL, Chabardes S, Mitrofanis J, et al. Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson’s disease. Lancet Neurol. 2009;8(1):67–81.
  • Wang JW, Zhang YQ, Zhang XH, et al. Deep brain stimulation of pedunculopontine nucleus for postural instability and gait disorder after Parkinson disease: a meta-analysis of individual patient data. World Neurosurg. 2017;102:72–78.
  • Accolla EA, Pollo C. Mood effects after deep brain stimulation for Parkinson’s disease: an update. Front Neurol. 2019;10:617–613.
  • Irmen F, Horn A, Mosley P, et al. Left prefrontal connectivity links subthalamic stimulation with depressive symptoms. Ann Neurol. 2020;87(6):962–975.
  • McGregor MM, Nelson AB. Circuit mechanisms of Parkinson's Disease. Neuron. 2019;101(6):1042–1056.
  • Jenkinson N, Brown P. New insights into the relationship between dopamine, beta oscillations and motor function. Trends Neurosci. 2011;34(12):611–618.
  • Chambers CD, Garavan H, Bellgrove MA. Insights into the neural basis of response inhibition from cognitive and clinical neuroscience. Neurosci Biobehav Rev. 2009;33(5):631–646.
  • Jahfari S, Waldorp L, van den Wildenberg WPM, et al. Effective connectivity reveals important roles for both the hyperdirect (Fronto-Subthalamic) and the indirect (Fronto-Striatal-Pallidal) Fronto-Basal ganglia pathways during response inhibition. J Neurosci. 2011;31(18):6891–6899.
  • Engel AK, Fries P. Beta-band oscillations-signalling the status quo? Curr Opin Neurobiol. 2010;20(2):156–165.
  • Little S, Brown P. The functional role of beta oscillations in Parkinson’s disease. Park Relat Disord. 2014;20(SUPPL.1):S44–S48.
  • Wichmann T, DeLong M. Pathophysiology of Parkinson's disease: the MPTP primate model of the human disorder. Ann NY Acad Sci. 2003;(991):199–213.
  • Jackson-Lewis V, Przedborski S. Protocol for the MPTP mouse model of Parkinson's disease. Nat Protoc. 2007;2(1):141–151.
  • Bergman H, Wichmann T, Karmon B, et al. The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. J Neurophysiol. 1994;72(2):507–520.
  • Moran A, Stein E, Tischler H, et al. Bar-Gad I. Decoupling neuronal oscillations during subthalamic nucleus stimulation in the parkinsonian primate. Neurobiol Dis. 2012;45(1):583–590.
  • Pogosyan A, Gaynor LD, Eusebio A, et al. Boosting cortical activity at beta-band frequencies slows movement in humans. Curr Biol. 2009;19(19):1637–1641.
  • Joundi RA, Jenkinson N, Brittain J-S, et al. Driving oscillatory activity in the human cortex enhances motor performance. Curr Biol. 2012;22(5):403–407.
  • Moisa M, Polania R, Grueschow M, et al. Brain network mechanisms underlying motor enhancement by transcranial entrainment of gamma oscillations. J Neurosci. 2016;36(47):12053–12065.
  • Pollok B, Krause V, Martsch W, et al. Motor-cortical oscillations in early stages of Parkinson's disease. J Physiol. 2012;590(13):3203–3212.
  • Brown P, Oliviero A, Mazzone P, et al. Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. J Neurosci. 2001;21(3):1033–1038.
  • Marsden JF, Limousin-Dowsey P, Ashby P, et al. Subthalamic nucleus, sensorimotor cortex and muscle interrelationships in Parkinson’s disease. Brain. 2001;124(2):378–388.
  • Kühn AA, Tsui A, Aziz T, et al. Pathological synchronisation in the subthalamic nucleus of patients with Parkinson's disease relates to both bradykinesia and rigidity. Exp Neurol. 2009;215(2):380–387.
  • Hammond C, Bergman H, Brown P. Pathological synchronization in Parkinson's disease: networks, models and treatments. Trends Neurosci. 2007;30(7):357–364.
  • Gatev P, Darbin O, Wichmann T. Oscillations in the basal ganglia under normal conditions and in movement disorders. Mov Disord. 2006;21(10):1566–1577.
  • Zaidel A, Arkadir D, Israel Z, et al. Akineto-rigid vs. tremor syndromes in parkinsonism. Curr Opin Neurol. 2009;22(4):387–393.
  • Pogosyan A, Yoshida F, Chen CC, et al. Parkinsonian impairment correlates with spatially extensive subthalamic oscillatory synchronization. Neuroscience. 2010;171(1):245–257.
  • van Wijk BCM. Is broadband gamma activity pathologically synchronized to the beta rhythm in Parkinson's Disease? J Neurosci. 2017;37(39):9347–9349.
  • Santaniello S, McCarthy MM, Montgomery EB, Gale JT, et al. Therapeutic mechanisms of high-frequency stimulation in Parkinson's disease and neural restoration via loop-based reinforcement. Proc Natl Acad Sci USA. 2015;112(6):E586–E595.
  • Wang DD, de Hemptinne C, Miocinovic S, et al. Pallidal deep brain stimulation disrupts pallidal beta oscillations and coherence with primary motor cortex in Parkinson’s disease. J Neurosci. 2018;10:431–418.
  • Akram H, Georgiev D, Mahlknecht P, et al. Subthalamic deep brain stimulation sweet spots and hyperdirect cortical connectivity in Parkinson’s disease. Neuroimage. 2017;158:332–345.
  • Chou Y, Hickey PT, Sundman M, et al. Effects of repetitive transcranial magnetic stimulation on motor symptoms in Parkinson disease. JAMA Neurol. 2015;72(4):432.
  • Oswal A, Cao C, Yeh CH, et al. Neural signatures of hyperdirect pathway activity in Parkinson’s disease. Nat Commun. 2021;12(1).
  • Zaidel A, Spivak A, Grieb B, et al. Subthalamic span of β oscillations predicts deep brain stimulation efficacy for patients with Parkinson’s disease. Brain. 2010;133(7):2007–2021.
  • Weinberger M, Mahant N, Hutchison WD, et al. Beta oscillatory activity in the subthalamic nucleus and its relation to dopaminergic response in Parkinson's disease. J Neurophysiol. 2006;96(6):3248–3256.
  • Cassidy M, Mazzone P, Oliviero A, et al. Movement‐related changes in synchronization in the human basal ganglia. Brain. 2002;125(6):1235–1246.
  • Engel AK, Moll CKE, Fried I, et al. Invasive recordings from the human brain: clinical insights and beyond. Nat Rev Neurosci. 2005;6(1):35–47.
  • Lopes da Silva F. EEG: Origin and measurement. In: Mulert C, Lemieux L, eds. Eeg-fmri. 1st ed. Berlin, Heidelberg: Springer; 2010. 19–38.
  • Ros TJ, Baars B, Lanius RA, et al. Tuning pathological brain oscillations with neurofeedback: a systems neuroscience framework. Front Hum Neurosci. 2014;8:1–22.
  • Kranczioch C, Zich C, Schierholz I, et al. Mobile EEG and its potential to promote the theory and application of imagery-based motor rehabilitation. Int J Psychophysiol. 2014;91(1):10–15.
  • Kühn AA, Doyle L, Pogosyan A, et al. Modulation of beta oscillations in the subthalamic area during motor imagery in Parkinson's disease. Brain. 2006;129(Pt 3):695–706.
  • Fischer P, Pogosyan A, Cheeran B, et al. Subthalamic nucleus beta and gamma activity is modulated depending on the level of imagined grip force. Exp Neurol. 2017;293:53–61.
  • Fukuma R, Yanagisawa T, Tanaka M, et al. Real-time neurofeedback to modulate β-band power in the subthalamic nucleus in Parkinson’s disease patients. eNeuro. 2018;5(6):1–8.
  • Bichsel O, Stieglitz LH, Oertel MF, et al. Deep brain electrical neurofeedback allows Parkinson patients to control pathological oscillations and quicken movements. Sci Rep. 2021;11(1):1–10.
  • He S, Mostofi A, Syed E, et al. Subthalamic beta-targeted neurofeedback speeds up movement initiation but increases tremor in parkinsonian patients. Elife. 2020;9:1–20.
  • Esmail S, Linden D. Neural networks and neurofeedback in Parkinson’s disease. NR. 2014;1(3-4):240–272.
  • Singh A, Cole RC, Espinoza AI, et al. Frontal theta and beta oscillations during lower-limb movement in Parkinson's disease. Clin Neurophysiol. 2020;131(3):694–702.
  • Ardi Handojoseno AM, Shine JM, Nguyen TN, et al. Analysis and prediction of the freezing of gait using EEG brain dynamics. IEEE Trans Neural Syst Rehabil Eng. 2015;23(5):887–896.
  • Shine JM, Handojoseno AMA, Nguyen TN, et al. Abnormal patterns of theta frequency oscillations during the temporal evolution of freezing of gait in Parkinson's disease. Clin Neurophysiol. 2014;125(3):569–576.
  • Azarpaikan A, Torbati HT, Sohrabi M. Neurofeedback and physical balance in Parkinson's patients. Gait Posture. 2014;40(1):177–181.
  • Jenkinson N, Kühn AA, Brown P. γ Oscillations in the human basal ganglia. Exp Neurol. 2013;245:72–76.
  • van Wijk BCM, Beudel M, Jha A, et al. Subthalamic nucleus phase-amplitude coupling correlates with motor impairment in Parkinson's disease. Clin Neurophysiol. 2016;127(4):2010–2019.
  • De Hemptinne C, Swann NC, Ostrem JL, et al. Therapeutic deep brain stimulation reduces cortical phase-amplitude coupling in Parkinson's disease. Nat Neurosci. 2015;18(5):779–786.
  • Halje P, Tamte M, Richter U, et al. Levodopa-Induced dyskinesia is strongly associated with resonant cortical oscillations. J Neurosci. 2012;32(47):16541–16551.
  • Swann NC, de Hemptinne C, Miocinovic S, et al. Gamma oscillations in the hyperkinetic state detected with chronic human brain recordings in Parkinson's Disease. J Neurosci. 2016;36(24):6445–6458.
  • Pfurtscheller G, Aranibar A. Evaluation of event-related desynchronization (ERD) preceding and following voluntary self-paced movement. Electroencephalogr Clin Neurophysiol. 1979;46(2):138–146.
  • Defebvre L, Bourriez J, Dujardin K, et al. Spatiotemporal study of Bereitschaftspotential and event-related desynchronization during voluntary movement in Parkinson’s disease. Brain Topogr. 1994. [cited 2017 May 22]. Accessed from: http://www.springerlink.com/index/T307406857L0664U.pdf.
  • Magnani G, Cursi M, Leocani L, et al. Acute effects of L-dopa on event-related desynchronization in Parkinson's disease. Neurol Sci. 2002;23(3):91–97.
  • Devos D, Labyt E, Derambure P, et al. Effect of L-Dopa on the pattern of movement-related (de)synchronisation in advanced Parkinson's disease. Neurophysiol Clin. 2003;33(5):203–212.
  • Wang HC, Lees A J, Brown P. Impairment of EEG desynchronisation before and during movement and its relation to bradykinesia in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1999;66(4):442–446.
  • Devos D, Defebvre L. Effect of deep brain stimulation and l-Dopa on electrocortical rhythms related to movement in Parkinson's disease. Prog Brain Res. 2006;159:331–349.
  • Abbasi O, Hirschmann J, Storzer L, et al. Unilateral deep brain stimulation suppresses alpha and beta oscillations in sensorimotor cortices. Neuroimage. 2018;174:201–207.
  • Stoffers D, Bosboom JLW, Deijen JB, et al. Increased cortico-cortical functional connectivity in early-stage Parkinson's disease: an MEG study. Neuroimage. 2008;41(2):212–222.
  • Airaksinen K, Butorina A, Pekkonen E, et al. Somatomotor mu rhythm amplitude correlates with rigidity during deep brain stimulation in parkinsonian patients. Clin Neurophysiol. 2012;123(10):2010–2017.
  • Brinkman L, Stolk A, Marshall TR, et al. Independent causal contributions of alpha- and beta-band oscillations during movement selection. J Neurosci. 2016;36(33):8726–8733.
  • Broetz D, Braun C, Weber C, et al. Combination of brain-computer interface training and goal-directed physical therapy in chronic stroke: a case report. Neurorehabil Neural Repair. 2010;24(7):674–679.
  • Llanos C, Rodriguez M, Rodriguez-Sabate C, et al. Mu-rhythm changes during the planning of motor and motor imagery actions. Neuropsychologia. 2013;51(6):1019–1026.
  • Mcfarland D, Mcfarland DJ, Sarnacki WA, et al. Effects of training pre-movement sensorimotor rhythms on behavioral performance effects of training pre-movement sensorimotor rhythms on behavioral performance. J Neural Eng. 2015;12(6):1–21.
  • Ring C, Cooke A, Kavussanu M, et al. Investigating the efficacy of neurofeedback training for expediting expertise and excellence in sport. Psychol Sport Exerc. 2015;16:118–127.
  • Cooke A, MacLeod C, Pritchard A, et al. Training the Brain to Mimic Medication: An Investigation of the Feasibility and Effectiveness of Home-Based “Brain Training” as a Non-Pharmacological Treatment for Motor Symptoms of Parkinson’s Disease. In: Poster Session Presented at International Association of Gerontology and Geriatrics – European Region Congress, Gothenburg, Sweden; 2019.
  • Shmuel A. Locally measured neuronal correlates of functional MRI signals. In: Mulert C, Lemieux L, eds. EEG - FMRI. Physiological basis, technique, and applications. 1st ed. Berlin Heidelberg: Springer-Verlag; 2010. 63–82.
  • Logothetis NK. The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. Philos Trans R Soc Lond B Biol Sci. 2002;357(1424):1003–1037.
  • Magri C, Schridde U, Murayama Y, et al. The amplitude and timing of the BOLD signal reflects the relationship between local field potential power at different frequencies. J Neurosci. 2012;32(4):1395–1407.
  • Jech R, Mueller K. Investigating network effects of DBS with fMRI. In: Connectomic deep brain stimulation. London, Oxford, Boston, New York und San Diego: Elsevier Inc.; 2022. 275–301.
  • Poldrack RA. Can cognitive processes be inferred from neuroimaging data? Trends Cogn Sci. 2006;10(2):59–63.
  • Stephan KE, Penny WD, Moran RJ, et al. Ten simple rules for dynamic causal modeling. Neuroimage. 2010;49(4):3099–3109.
  • Kahan J, Urner M, Moran R, et al. Resting state functional MRI in Parkinson's disease: the impact of deep brain stimulation on 'effective' connectivity. Brain. 2014;137(Pt 4):1130–1144.
  • Subramanian L, Hindle JV, Johnston S, et al. Real-time functional magnetic resonance imaging neurofeedback for treatment of Parkinson's disease. J Neurosci. 2011;31(45):16309–16317.
  • Subramanian L, Morris MB, Brosnan M, et al. Functional magnetic resonance imaging neurofeedback-guided motor imagery training and motor training for Parkinson's disease: randomized trial. Front Behav Neurosci. 2016;10:111.
  • Buyukturkoglu K, Rana M, Ruiz S, et al. Volitional Regulation of the Supplementary Motor Area with fMRI – BCI neurofeedback in Parkinson ’ s Disease : A Pilot Study. 2013. 6–8.
  • Sorger B, Scharnowski F, Linden DEJ, et al. Control freaks: towards optimal selection of control conditions for fMRI neurofeedback studies. Neuroimage. 2019;186:256–265.
  • Thibault RT, Lifshitz M, Raz A. The climate of neurofeedback: scientific rigour and the perils of ideology. Brain. 2018; 141(2):e11–2019.
  • Hétu S, Grégoire M, Saimpont A, et al. The neural network of motor imagery: an ALE meta-analysis. Neurosci Biobehav Rev. 2013;37(5):930–949.
  • Emmert K, Kopel R, Sulzer J, et al. Meta-analysis of real-time fMRI neurofeedback studies using individual participant data: how is brain regulation mediated? Neuroimage. 2016;124(Pt A):806–812.
  • Zhao Z, Yao S, Zweerings J, et al. Putamen volume predicts real-time fMRI neurofeedback learning success across paradigms and neurofeedback target regions. Hum Brain Mapp. 2021;42(6):1879–1887.
  • Lubianiker N, Goldway N, Fruchtman-Steinbok T, et al. Process-based framework for precise neuromodulation. Nat Hum Behav. 2019;3(5):436–445.
  • Berman BD, Horovitz SG, Venkataraman G, et al. Self-modulation of primary motor cortex activity with motor and motor imagery tasks using real-time fMRI-based neurofeedback. Neuroimage. 2012;59(2):917–925.
  • Mehler DMA, Williams AN, Krause F, et al. The BOLD response in primary motor cortex and supplementary motor area during kinesthetic motor imagery based graded fMRI neurofeedback. Neuroimage. 2019;184(September 2018):36–44.
  • Blefari ML, Sulzer J, Hepp-Reymond M-C, et al. Improvement in precision grip force control with self-modulation of primary motor cortex during motor imagery. Front Behav Neurosci. 2015;9:18.
  • Kober SE, Grössinger D, Wood G. Effects of motor imagery and visual neurofeedback on activation in the swallowing network: a real-time fMRI study. Dysphagia. 2019;34(6):879–895.
  • Mehler DMA, Kording KP. The lure of misleading causal statements in functional connectivity research. arXiv. 2018.
  • Koush Y, Ashburner J, Prilepin E, et al. Real-time fMRI data for testing OpenNFT functionality. Data Brief. 2017;14:344–347.
  • Pilgramm S, de Haas B, Helm F, et al. Motor imagery of hand actions: decoding the content of motor imagery from brain activity in frontal and parietal motor areas. Hum Brain Mapp. 2016;37(1):81–93.
  • Zabicki A, de Haas B, Zentgraf K, et al. Imagined and executed actions in the human motor system: Testing neural similarity between execution and imagery of actions with a multivariate approach. Cereb Cortex. 2016;27(9):4523–4536.
  • Park C. h, Chang WH, Lee M, et al. Which motor cortical region best predicts imagined movement? Neuroimage. 2015;113:101–110.
  • Kolasinski J, Dima DC, Mehler DMA, et al. Spatially and temporally distinct encoding of muscle and kinematic information in rostral and caudal primary motor cortex. Cereb Cortex Commun. 2020;1(1):tgaa009.
  • Cho S, Min H, In M, et al. Multivariate pattern classification on BOLD activation pattern induced by deep brain stimulation in motor, associative, and limbic brain networks. Sci Rep. 2020;10(1):1–12.
  • Kilmarx J, Oblak E, Sulzer J, et al. Towards a common template for neural reinforcement of finger individuation. Sci Rep. 2021;11(1):1–12.
  • Russo AG, Lührs M, Di Salle F, et al. Towards semantic fMRI neurofeedback: navigating among mental states using real-time representational similarity analysis. J Neural Eng. 2021;18(4):046015.
  • Cui X, Bray S, Bryant DM, et al. A quantitative comparison of NIRS and fMRI across multiple cognitive tasks. Neuroimage. 2011;54(4):2808–2821.
  • Strangman G, Culver JP, Thompson JH, et al. A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation. Neuroimage. 2002;17(2):719–731.
  • Scarapicchia V, Brown C, Mayo C, et al. Functional magnetic resonance imaging and functional near-infrared spectroscopy: insights from combined recording studies. Front Hum Neurosci. 2017;11:419–412.
  • Klempir O, Krupicka R, Mehnert J, et al. Reshaping cortical activity with subthalamic stimulation in Parkinson’s disease during finger tapping and gait mapped by near infrared spectroscopy. J Appl Biomed. 2019;17(3):157–166.
  • Orcioli-Silva D, Vitório R, Nóbrega-Sousa P, et al. Levodopa Facilitates Prefrontal Cortex Activation During Dual Task Walking in Parkinson Disease. 2020.
  • Kohl SH, Mehler DMA, Lührs M, et al. The potential of functional near-infrared spectroscopy-based neurofeedback – a systematic review and recommendations for best practice. Front Neurosci. 2020;14:594.
  • Mihara M, Hattori N, Hatakenaka M, et al. Near-infrared spectroscopy-mediated neurofeedback enhances efficacy of motor imagery-based training in poststroke victims: a pilot study. Stroke. 2013;44(4):1091–1098.
  • Mihara M, Fujimoto H, Hattori N, et al. Effect of Neurofeedback Facilitation on Poststroke Gait and Balance Recovery: A Randomized Controlled Trial. Vol 96; 2021.
  • Klein F, Debener S, Witt K, et al. fMRI ‑ based validation of continuous – wave fNIRS of supplementary motor area activation during motor execution and motor imagery. Sci Rep. 2022;12(1):1–20.
  • Mehler DMA, Williams AN, Whittaker JR, et al. Graded fMRI neurofeedback training of motor imagery in middle cerebral artery stroke patients: a preregistered proof-of-concept study. Front Hum Neurosci. 2020;14:226–217.
  • Uchitel J, Vidal-Rosas EE, Cooper RJ, et al. Wearable, Integrated EEG – fNIRS Technologies : A Review. 2021.
  • Trambaiolli LR, Cassani R, Mehler DMA, et al. Neurofeedback and the aging brain: a systematic review of training protocols for dementia and mild cognitive impairment. Front Aging Neurosci. 2021;13:682683.
  • Wang T, Mantini D, Gillebert CR. The potential of real-time fMRI neurofeedback for stroke rehabilitation: a systematic review. Cortex. 2018;107:148–165.
  • Trambaiolli L, Kohl SH, Linden DEJ, et al. Neurofeedback training in major depressive disorder: a systematic review of clinical efficacy, study quality and reporting practices. Neurosci Biobehav Rev. 2021;125:33–56.
  • Schönenberg M, Wiedemann E, Schneidt A, et al. Neurofeedback, sham neurofeedback, and cognitive-behavioural group therapy in adults with attention-deficit hyperactivity disorder: a triple-blind, randomised, controlled trial. Lancet Psychiatry. 2017;4(9):673–684.
  • Chenoweth L, Gallagher R, Sheriff JN, et al. Factors supporting self-management in Parkinson's disease: implications for nursing practice. Int J Older People Nurs. 2008;3(3):187–193.
  • Ellis T, Cavanaugh JT, Earhart GM, et al. Factors associated with exercise behavior in people with Parkinson disease. Phys Ther. 2011;91(12):1838–1848.
  • Zhuo C, Xue R, Luo L, et al. Efficacy of antidepressive medication for depression in Parkinson disease: a network meta-analysis. Medicine. 2017;96(22):e6698.
  • Colagiuri B, Schenk LA, Kessler MD, et al. The placebo effect: from concepts to genes. Neuroscience. 2015;307:171–190.
  • de la Fuente-Fernandez R, Stoessl AJ. The placebo effect in Parkinson’s disease. Trends Neurosci. 2002;25(6):302–306.
  • Algermissen J, Mehler DMA. May the power be with you: are there highly powered studies in neuroscience, and how can we get more of them? J Neurophysiol. 2018;119(6):2114–2117.
  • Horváth K, Aschermann Z, Ács P, et al. Minimal clinically important difference on the motor examination part of MDS-UPDRS. Parkinsonism Relat Disord. 2015;21(12):1421–1426.
  • Nijhuis FAP, Esselink R, de Bie RMA, et al. Translating evidence to advanced Parkinson's disease patients: a systematic review and meta-analysis. Mov Disord. 2021;36(6):1293–1307.
  • Stefan AM, Gronau QF, Schönbrodt FD, et al. A tutorial on bayes factor design analysis using an informed prior. Behav Res Methods. 2019;51(3):1042–1058.
  • Allen CPG, Mehler DMA. Open science challenges, benefits and tips in early career and beyond. PLoS Biol. 2019;17(5):e3000246.
  • Scheel AM, Schijen M, Lakens D. An excess of positive results: Comparing the standard psychology literature with registered reports. Preprint. 2020.
  • Ros T, Enriquez-Geppert S, Zotev V, et al. Consensus on the reporting and experimental design of clinical and cognitive-behavioural neurofeedback studies (CRED-nf checklist). Brain. 2020;143(6):1674–1685.
  • Mehler DMA. Clinical applications of real-time FMRI neurofeedback training – premises, promises, and pitfalls. PhD thesis at Cardiff University 2018.