2,069
Views
5
CrossRef citations to date
0
Altmetric
Review Article

From psychosomatic medicine, brain–computer interface to brain–apparatus communication

, &
Pages 66-88 | Received 18 Mar 2022, Accepted 30 Aug 2022, Published online: 04 Oct 2022

References

  • Yao D, Zhang Y, Liu T, et al. Bacomics: a comprehensive cross area originating in the studies of various brain-apparatus conversations. Cogn Neurodyn. 2020;14(4):425–442.
  • Cannon WB. Bodily changes in pain, hunger, fear and rage. New York (NY); London: D. Appleton and Company; 1920.
  • Cannon WB. The interrelations of emotions as suggested by recent physiological researches. Am J Psychol. 1914;25(2):256–282.
  • Bard P. A diencephalic mechanism for the expression of rage with special reference to the sympathetic nervous system. Am J Physiol. 1928;84(3):490–515.
  • Bard P. The central representation of the sympathetic system: as indicated by certain physiologic observations. Arch NeurPsych. 1929;22(2):230–246.
  • Cannon WB. The James-Lange theory of emotions: a critical examination and an alternative theory. Am J Psychol. 1927;39(1/4):106–124.
  • Cannon WB. The mechanism of emotional disturbance of bodily functions. N Engl J Med. 1928;198(17):877–884.
  • Cannon WB. Again the James-Lange and the thalamic theories of emotion. Psychol Rev. 1931;38(4):281–295.
  • MacLean PD. Psychosomatic disease and the “visceral brain”; recent developments bearing on the Papez theory of emotion. Psychosom Med. 1949;11(6):338–353.
  • Papez JW. A proposed mechanism of emotion. Arch NeurPsych. 1937;38(4):725–743.
  • Alexander F. The development of psychosomatic medicine. Psychosom Med. 1962;24(1):13–24.
  • Alexander FE, French TME, editors. Studies in psychosomatic medicine; an approach to the cause and treatment of vegetative disturbances. Santa Fe (NM): Ronald Press; 1948.
  • Dunbar HF. Emotions and bodily changes: a survey of literature on psychosomatic interrelationships. New York (NY): Columbia University Press; 1954.
  • Wolff HG. Life stress and cardiovascular disorders. Circulation. 1950;1(2):187–203.
  • Wolff HG. Stress and disease. Springfield (IL): Charles C. Thomas; 1953.
  • Engel GL. A unified concept of health and disease. Perspect Biol Med. 1960;3:459–485.
  • Engel GL. The concept of psychosomatic disorder. J Psychosom Res. 1967;11(1):3–9.
  • Engel GL. The need for a new medical model: a challenge for biomedicine. Science. 1977;196(4286):129–136.
  • Lipowski ZJ. Review of consultation psychiatry and psychosomatic medicine. II. Clinical aspects. Psychosom Med. 1967;29(3):201–224.
  • Lipowski ZJ. Review of consultation psychiatry and psychosomatic medicine. I. General principles. Psychosom Med. 1967;29(2):153–171.
  • Lipowski ZJ. Review of consultation psychiatry and psychosomatic medicine. 3. Theoretical issues. Psychosom Med. 1968;30(4):395–422.
  • Krantz DS, Glass DC, Contrada R, et al. Behavior and health: the biobehavioral paradigm. In: Behavioral and social science research: a national resource: part II. Washington (DC): National Academy Press; 1982. p. 76–145.
  • Miller NE. Behavioral medicine: symbiosis between laboratory and clinic. Annu Rev Psychol. 1983;34(1):1–31.
  • Minuchin S, Baker L, Rosman BL, et al. A conceptual model of psychosomatic illness in children: family organization and family therapy. Arch Gen Psychiatry. 1975;32(8):1031–1038.
  • Starfield B, Gross E, Wood M, et al. Psychosocial and psychosomatic diagnoses in primary care of children. Pediatrics. 1980;66(2):159–167.
  • Frese M. Stress at work and psychosomatic complaints: a causal interpretation. J Appl Psychol. 1985;70(2):314–328.
  • Pennebaker JW, Susman JR. Disclosure of traumas and psychosomatic processes. Soc Sci Med. 1988;26(3):327–332.
  • Smith TW. Hostility and health: current status of a psychosomatic hypothesis. Health Psychol. 1992;11(3):139–150.
  • Fava GA. The concept of psychosomatic disorder. Psychother Psychosom. 1992;58(1):1–12.
  • Fava GA, Freyberger HJ, Bech P, et al. Diagnostic criteria for use in psychosomatic research. Psychother Psychosom. 1995;63(1):1–8.
  • Engel GL. From biomedical to biopsychosocial. Being scientific in the human domain. Psychosomatics. 1997;38(6):521–528.
  • Fava GA. Subclinical symptoms in mood disorders: pathophysiological and therapeutic implications. Psychol Med. 1999;29(1):47–61.
  • Blanchard EB. Behavioral medicine and health psychology. New York (NY): John Wiley & Sons; 1994.
  • Emmelkamp PM, Van Oppen P. Cognitive interventions in behavioral medicine. Psychother Psychosom. 1993;59(3–4):116–130.
  • Fava GA. Well-being therapy: conceptual and technical issues. Psychother Psychosom. 1999;68(4):171–179.
  • Hellman CJ, Budd M, Borysenko J, et al. A study of the effectiveness of two group behavioral medicine interventions for patients with psychosomatic complaints. Behav Med. 1990;16(4):165–173.
  • Cameron OG. Interoception: the inside story—a model for psychosomatic processes. Psychosom Med. 2001;63(5):697–710.
  • Grossman P. On measuring mindfulness in psychosomatic and psychological research. J Psychosomat Res. 2008;64(4):405–408.
  • Gramann K, Gwin JT, Ferris DP, et al. Cognition in action: imaging brain/body dynamics in mobile humans. Rev Neurosci. 2011;22(6):593–608.
  • Lane RD. Neural substrates of implicit and explicit emotional processes: a unifying framework for psychosomatic medicine. Psychosom Med. 2008;70(2):214–231.
  • Kiecolt-Glaser JK, McGuire L, Robles TF, et al. Psychoneuroimmunology and psychosomatic medicine: back to the future. Psychosom Med. 2002;64(1):15–28.
  • Maes M. Inflammatory and oxidative and nitrosative stress pathways underpinning chronic fatigue, somatization and psychosomatic symptoms. Curr Opin Psychiatry. 2009;22(1):75–83.
  • Breit S, Kupferberg A, Rogler G, et al. Vagus nerve as modulator of the brain–gut axis in psychiatric and inflammatory disorders. Front Psychiatry. 2018;9:44.
  • Lima-Ojeda JM, Rupprecht R, Baghai TC. “I am I and my bacterial circumstances”: linking gut microbiome, neurodevelopment, and depression. Front Psychiatry. 2017;8:153.
  • Reavell J, Hopkinson M, Clarkesmith D, et al. Effectiveness of cognitive behavioral therapy for depression and anxiety in patients with cardiovascular disease: a systematic review and meta-analysis. Psychosom Med. 2018;80(8):742–753.
  • Blumenfield M, Tiamson-Kassab M. Psychosomatic medicine: a practical guide. New York (NY): Lippincott Williams & Wilkins; 2008.
  • Fava GA, Cosci F, Sonino N. Current psychosomatic practice. Psychother Psychosom. 2017;86(1):13–30.
  • Philbrick KL, Rundell JR, Netzel PJ, et al. Clinical manual of psychosomatic medicine: a guide to consultation-liaison psychiatry. Washington (DC): American Psychiatric Pub; 2012.
  • Berman MG, Kardan O, Kotabe HP, et al. The promise of environmental neuroscience. Nat Hum Behav. 2019;3(5):414–417.
  • Jamil N, Belkacem AN, Ouhbi S, et al. Noninvasive electroencephalography equipment for assistive, adaptive, and rehabilitative brain-computer interfaces: a systematic literature review. Sensors. 2021;21(14):4754.
  • Wolpaw JR, Birbaumer N, McFarland DJ, et al. Brain-computer interfaces for communication and control. Clin Neurophysiol. 2002;113(6):767–791.
  • Wolpaw JR, McFarland DJ, Neat GW, et al. An EEG-based brain-computer interface for cursor control. Electroencephalogr Clin Neurophysiol. 1991;78(3):252–259.
  • Kotchoubey B, Blankenhorn V, Fröscher W, et al. Stability of cortical self-regulation in epilepsy patients. Neuroreport. 1997;8(8):1867–1870.
  • Kotchoubey B, Schleichert H, Lutzenberger W, et al. A new method for self-regulation of slow cortical potentials in a timed paradigm. Appl Psychophys Biof. 1997;22(2):77–93.
  • Lebedev MA, Nicolelis MA. Brain-machine interfaces: from basic science to neuroprostheses and neurorehabilitation. Physiol Rev. 2017;97(2):767–837.
  • Mudgal SK, Sharma SK, Chaturvedi J, et al. Brain computer interface advancement in neurosciences: applications and issues. Interdiscip Neurosurg. 2020;20:100694.
  • Pineda JA, Allison BZ, Vankov A. The effects of self-movement, observation, and imagination on mu rhythms and readiness potentials (RP's): toward a brain-computer interface (BCI). IEEE Trans Rehabil Eng. 2000;8(2):219–222.
  • Saha S, Baumert M. Intra- and inter-subject variability in EEG-based sensorimotor brain computer interface: a review. Front Comput Neurosci. 2019;13:87.
  • Dewan EM. Communication by voluntary control of the electroencephalogram. Vol. 284. Air Force Cambridge Research Laboratories, Office of Aerospace Research, United States Air Force; 1966. p. 1–7.
  • Vidal JJ. Toward direct brain-computer communication. Annu Rev Biophys Bioeng. 1973;2(1):157–180.
  • Fetz EE. Operant conditioning of cortical unit activity. Science. 1969;163(3870):955–958.
  • Walter WG, Cooper R, Aldridge VJ, et al. Contingent negative variation: an electric sign of sensorimotor association and expectancy in the human brain. Nature. 1964;203:380–384.
  • Birbaumer N, Cohen LG. Brain-computer interfaces: communication and restoration of movement in paralysis. J Physiol. 2007;579(Pt 3):621–636.
  • Birbaumer N, Ghanayim N, Hinterberger T, et al. A spelling device for the paralysed. Nature. 1999;398(6725):297–298.
  • Elbert T, Rockstroh B, Lutzenberger W, et al. Biofeedback of slow cortical potentials. I. Electroencephalogr Clin Neurophysiol. 1980;48(3):293–301.
  • Lutzenberger W, Elbert T, Rockstroh B, et al. The effects of self-regulation of slow cortical potentials on performance in a signal detection task. Int J Neurosci. 1979;9(3):175–183.
  • Kamiya J. The first communications about operant conditioning of the EEG. J Neurother. 2011;15(1):65–73.
  • Nowlis DP, Kamiya J. The control of electroencephalographic alpha rhythms through auditory feedback and the associated mental activity. Psychophysiology. 1970;6(4):476–484.
  • Mehler DMA. Turning markers into targets – scoping neural circuits for motor neurofeedback training in parkinson’s disease. Brain-Apparatus Communication: A Journal of Bacomics. 2022;1(1):1–27.
  • Plotkin WB. On the self-regulation of the occipital alpha rhythm: control strategies, states of consciousness, and the role of physiological feedback. J Exp Psychol Gen. 1976;105(1):66–99.
  • Sterman MB, Howe RC, Macdonald LR. Facilitation of spindle-burst sleep by conditioning of electroencephalographic activity while awake. Science. 1970;167(3921):1146–1148.
  • Birbaumer N. Breaking the silence: brain-computer interfaces (BCI) for communication and motor control. Psychophysiology. 2006;43(6):517–532.
  • Pfurtscheller G, Graimann B, Huggins JE, et al. Spatiotemporal patterns of beta desynchronization and gamma synchronization in corticographic data during self-paced movement. Clin Neurophysiol. 2003;114(7):1226–1236.
  • Wolpaw JR, McFarland DJ, Vaughan TM, et al. The Wadsworth center brain-computer interface (BCI) research and development program. IEEE Trans Neural Syst Rehabil Eng. 2003;11(2):204–207.
  • Farwell LA, Donchin E. Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol. 1988;70(6):510–523.
  • Guo F, Hong B, Gao X, et al. A brain–computer interface using motion-onset visual evoked potential. J Neural Eng. 2008;5(4):477–485.
  • McMillan GR, Calhoun G, Middendorf M, et al., editors. Direct brain interface utilizing self-regulation of steady-state visual evoked response (SSVER). In: Proceedings of the RESNA ‘95 Annual Conference; Vancouver, BC; 1995.
  • Allison BZ, Pineda JA. Effects of SOA and flash pattern manipulations on ERPs, performance, and preference: implications for a BCI system. Int J Psychophysiol. 2006;59(2):127–140.
  • Abiri R, Borhani S, Sellers EW, et al. A comprehensive review of EEG-based brain-computer interface paradigms. J Neural Eng. 2019;16(1):011001.
  • Jiang J, Yin E, Wang C, et al. Incorporation of dynamic stopping strategy into the high-speed SSVEP-based BCIs. J Neural Eng. 2018;15(4):046025.
  • Zhang Y, Xu P, Cheng K, et al. Multivariate synchronization index for frequency recognition of SSVEP-based brain–computer interface. J Neurosci Methods. 2014;221:32–40.
  • Chen X, Wang Y, Nakanishi M, et al. High-speed spelling with a noninvasive brain-computer interface. Proc Natl Acad Sci USA. 2015;112(44):E6058–E6067.
  • Cheng M, Gao X, Gao S, et al. Design and implementation of a brain-computer interface with high transfer rates. IEEE Trans Biomed Eng. 2002;49(10):1181–1186.
  • Chang MH, Baek HJ, Lee SM, et al. An amplitude-modulated visual stimulation for reducing eye fatigue in SSVEP-based brain-computer interfaces. Clin Neurophysiol. 2014;125(7):1380–1391.
  • Vialatte FB, Maurice M, Dauwels J, et al. Steady-state visually evoked potentials: focus on essential paradigms and future perspectives. Prog Neurobiol. 2010;90(4):418–438.
  • Volosyak I. SSVEP-based Bremen-BCI interface–boosting information transfer rates. J Neural Eng. 2011;8(3):036020.
  • Coyle SM, Ward TE, Markham CM. Brain–computer interface using a simplified functional near-infrared spectroscopy system. J Neural Eng. 2007;4(3):219–226.
  • Mellinger J, Schalk G, Braun C, et al. An MEG-based brain-computer interface (BCI). Neuroimage. 2007;36(3):581–593.
  • Yoo S-S, Jolesz FA. Functional MRI for neurofeedback: feasibility study on a hand motor task. Neuroreport. 2002;13(11):1377–1381.
  • Lotte F, Faller J, Guger C, et al. Combining BCI with virtual reality: towards new applications and improved BCI. In: Towards practical brain-computer interfaces. New York (NY): Springer; 2012. p. 197–220.
  • Putze F. Methods and tools for using BCI with augmented and virtual reality. In: Brain art. New York (NY): Springer; 2019. p. 433–446.
  • Jiang L, Stocco A, Losey DM, et al. BrainNet: a multi-person brain-to-brain interface for direct collaboration between brains. Sci Rep. 2019;9(1):6115.
  • Nijholt A, Poel M, editors. Multi-brain BCI: characteristics and social interactions. In: International Conference on Augmented Cognition. New York, NY: Springer; 2016.
  • Bartels J, Andreasen D, Ehirim P, et al. Neurotrophic electrode: method of assembly and implantation into human motor speech cortex. J Neurosci Methods. 2008;174(2):168–176.
  • Guenther FH, Brumberg JS, Wright EJ, et al. A wireless brain-machine interface for real-time speech synthesis. PLOS One. 2009;4(12):e8218.
  • Nijboer F, Furdea A, Gunst I, et al. An auditory brain-computer interface (BCI). J Neurosci Methods. 2008;167(1):43–50.
  • Ferrez PW, del RMJ. Error-related EEG potentials generated during simulated brain-computer interaction. IEEE Trans Biomed Eng. 2008;55(3):923–929.
  • Hunt AR, Kingstone A. Covert and overt voluntary attention: linked or independent? Brain Res Cogn Brain Res. 2003;18(1):102–105.
  • Min BK, Chavarriaga R, Millan JDR. Harnessing prefrontal cognitive signals for brain-machine interfaces. Trends Biotechnol. 2017;35(7):585–597.
  • Nijboer F, Morin FO, Carmien SP, et al., editors. Affective brain-computer interfaces: psychophysiological markers of emotion in healthy persons and in persons with amyotrophic lateral sclerosis. In: 2009 3rd International Conference on Affective Computing and Intelligent Interaction and Workshops. New York, NY: IEEE; 2009.
  • Mühl C, Allison B, Nijholt A, et al. A survey of affective brain computer interfaces: principles, state-of-the-art, and challenges. Brain-Comput Interfaces. 2014;1(2):66–84.
  • Widge AS, Dougherty DD, Moritz CT. Affective brain-computer interfaces as enabling technology for responsive psychiatric stimulation. Brain Comput Interfaces. 2014;1(2):126–136.
  • Wu D, Liu Y, Yao D-Z. Listen to the brain in real time – the Chengdu brainwave music. J Electron Sci Technol. 2009;7(1):34–39.
  • Wu D, Li CY, Yao DZ. Scale-free music of the brain. PLOS One. 2009;4(6):e5915.
  • Garcia-Molina G, Tsoneva T, Nijholt A. Emotional brain–computer interfaces. IJAACS. 2013;6(1):9–25.
  • Shanechi MM. Brain-machine interfaces from motor to mood. Nat Neurosci. 2019;22(10):1554–1564.
  • Liu M, Tan J, Jiang Y, et al. Using deep learning to decode abnormal brain neural activity in MDD FROM single-trial EEG signals. Brain-Apparatus Communication: A Journal of Bacomics. 2022;1(1):28–37.
  • Zander TO, Jatzev S, editors. Detecting affective covert user states with passive brain-computer interfaces. In: 2009 3rd International Conference on Affective Computing and Intelligent Interaction and Workshops. New York, NY: IEEE; 2009.
  • Anumanchipalli GK, Chartier J, Chang EF. Speech synthesis from neural decoding of spoken sentences. Nature. 2019;568(7753):493–498.
  • Horikawa T, Tamaki M, Miyawaki Y, et al. Neural decoding of visual imagery during sleep. Science. 2013;340(6132):639–642.
  • Miyawaki Y, Uchida H, Yamashita O, et al. Visual image reconstruction from human brain activity using a combination of multiscale local image decoders. Neuron. 2008;60(5):915–929.
  • Nicolelis MA. Brain-machine-brain interfaces as the foundation for the next generation of neuroprostheses. Natl Sci Rev. 2021;9:nwab206.
  • Clark A. Being there: putting brain, body, and world together again. London: MIT Press; 1998.
  • Wilson AD, Golonka S. Embodied cognition is not what you think it is. Front Psychol. 2013;4:58.
  • Wilson M. Six views of embodied cognition. Psychon Bull Rev. 2002;9(4):625–636.
  • Bransfield RC, Cook MJ, Bransfield DR. Differentiating psychosomatic, somatopsychic, multisystem illnesses and medical uncertainty. Healthcare. 2019;7(4):114.
  • Hall RC, Gruzenski WP, Popkin MK. Differential diagnosis of somatopsychic disorders. Psychosomatics. 1979;20(6):381–389.
  • Qin Y, Liu T, Yao D. Bacomics – a new discipline integrating brain and the outside. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2021;38(3):507–511.
  • Ivanov PC, Liu KKL, Bartsch RP. Focus on the emerging new fields of network physiology and network medicine. New J Phys. 2016;18:100201.
  • Gorelick PB, Furie KL, Iadecola C, et al. Defining optimal brain health in adults: a presidential advisory from the American Heart Association/American Stroke Association. Stroke. 2017;48(10):e284–e303.
  • Mather M, Thayer JF. How heart rate variability affects emotion regulation brain networks. Curr Opin Behav Sci. 2018;19:98–104.
  • Soufer R, Arrighi JA, Burg MM. Brain, behavior, mental stress, and the neurocardiac interaction. J Nucl Cardiol. 2002;9(6):650–662.
  • Taggart P. Brain-heart interactions and cardiac ventricular arrhythmias. Neth Heart J. 2013;21(2):78–81.
  • Taggart P, Critchley H, van Duijvendoden S, et al. Significance of neuro-cardiac control mechanisms governed by higher regions of the brain. Auton Neurosci. 2016;199:54–65.
  • Candia-Rivera D, Catrambone V, Barbieri R, et al. Functional assessment of bidirectional cortical and peripheral neural control on heartbeat dynamics: a brain-heart study on thermal stress. Neuroimage. 2022;251:119023.
  • Nann M, Haslacher D, Colucci A, et al. Heart rate variability predicts decline in sensorimotor rhythm control. J Neural Eng. 2021;18(4):0460b5.
  • Fulling C, Dinan TG, Cryan JF. Gut microbe to brain signaling: what happens in vagus. Neuron. 2019;101(6):998–1002.
  • Klimovich A, Giacomello S, Bjorklund A, et al. Prototypical pacemaker neurons interact with the resident microbiota. Proc Natl Acad Sci USA. 2020;117(30):17854–17863.
  • Levinthal DJ, Strick PL. Multiple areas of the cerebral cortex influence the stomach. Proc Natl Acad Sci USA. 2020;117(23):13078–13083.
  • Liang S, Wu XL, Hu X, et al. Recognizing depression from the microbiota-gut-brain axis. IJMS. 2018;19(6):1592.
  • Long-Smith C, O'Riordan KJ, Clarke G, et al. Microbiota-gut-brain axis: new therapeutic opportunities. Annu Rev Pharmacol Toxicol. 2020;60:477–502.
  • Needham BD, Funabashi M, Adame MD, et al. A gut-derived metabolite alters brain activity and anxiety behaviour in mice. Nature. 2022;602(7898):647–653.
  • Vujic A, Krause C, Tso G, et al. Gut-brain computer interfacing (GBCI): wearable monitoring of gastric myoelectric activity. Annu Int Conf IEEE Eng Med Biol Soc. 2019;2019:5886–5889.
  • Azzalini D, Rebollo I, Tallon-Baudry C. Visceral signals shape brain dynamics and cognition. Trends Cogn Sci. 2019;23(6):488–509.
  • Hosang L, Canals RC, van der Flier FJ, et al. The lung microbiome regulates brain autoimmunity. Nature. 2022;603(7899):138–144.
  • Davenport A. The brain and the kidney–organ cross talk and interactions. Blood Purif. 2008;26(6):526–536.
  • Hu Y, Ji G, Li G, et al. Brain connectivity, and hormonal and behavioral correlates of sustained weight loss in obese patients after laparoscopic sleeve gastrectomy. Cereb Cortex. 2021;31(2):1284–1295.
  • Li HC, Cao WF, Zhang XX, et al. BOLD-fMRI reveals the association between renal oxygenation and functional connectivity in the aging brain. Neuroimage. 2019;186:510–517.
  • Mrozek S, Constantin JM, Geeraerts T. Brain-lung crosstalk: implications for neurocritical care patients. World J Crit Care Med. 2015;4(3):163–178.
  • Rebollo I, Devauchelle AD, Beranger B, et al. Stomach-brain synchrony reveals a novel, delayed-connectivity resting-state network in humans. Elife. 2018;7:33321.
  • Schiller M, Ben-Shaanan TL, Rolls A. Neuronal regulation of immunity: why, how and where? Nat Rev Immunol. 2021;21(1):20–36.
  • Karpati FJ, Giacosa C, Foster NE, et al. Dance and the brain: a review. Ann N Y Acad Sci. 2015;1337:140–146.
  • Zhang X, Zhang S, Lu B, et al. Dynamic corticomuscular multi-regional modulations during finger movement revealed by time-varying network analysis. J Neural Eng. 2022;19(3):036014.
  • Gujing L, Hui H, Xin L, et al. Increased insular connectivity and enhanced empathic ability associated with dance/music training. Neural Plast. 2019;2019:9693109.
  • Pedersen BK. Physical activity and muscle-brain crosstalk. Nat Rev Endocrinol. 2019;15(7):383–392.
  • Cathomas F, Murrough JW, Nestler EJ, et al. Neurobiology of resilience: interface between mind and body. Biol Psychiatry. 2019;86(6):410–420.
  • Lozano AM, Lipsman N, Bergman H, et al. Deep brain stimulation: current challenges and future directions. Nat Rev Neurol. 2019;15(3):148–160.
  • Scangos KW, Khambhati AN, Daly PM, et al. Closed-loop neuromodulation in an individual with treatment-resistant depression. Nat Med. 2021;27(10):1696–1700.
  • Sun FT, Morrell MJ. Closed-loop neurostimulation: the clinical experience. Neurotherapeutics. 2014;11(3):553–563.
  • Filmer HL, Dux PE, Mattingley JB. Applications of transcranial direct current stimulation for understanding brain function. Trends Neurosci. 2014;37(12):742–753.
  • Polania R, Nitsche MA, Ruff CC. Studying and modifying brain function with non-invasive brain stimulation. Nat Neurosci. 2018;21(2):174–187.
  • Reinhart RMG, Nguyen JA. Working memory revived in older adults by synchronizing rhythmic brain circuits. Nat Neurosci. 2019;22(5):820–827.
  • Reis J, Swayne OB, Vandermeeren Y, et al. Contribution of transcranial magnetic stimulation to the understanding of cortical mechanisms involved in motor control. J Physiol. 2008;586(2):325–351.
  • Thut G, Miniussi C. New insights into rhythmic brain activity from TMS–EEG studies. Trends Cogn Sci. 2009;13(4):182–189.
  • Zhao Z, Yao S, Li K, et al. Real-time functional connectivity-informed neurofeedback of amygdala-frontal pathways reduces anxiety. Psychother Psychosom. 2019;88(1):5–15.
  • Chaudhary U, Birbaumer N, Ramos-Murguialday A. Brain-computer interfaces for communication and rehabilitation. Nat Rev Neurol. 2016;12(9):513–525.
  • He B, Yuan H, Meng J, et al. Brain–computer interfaces. In: Neural engineering. New York (NY): Springer; 2020. p. 131–183.
  • Kawala-Sterniuk A, Browarska N, Al-Bakri A, et al. Summary of over fifty years with brain-computer interfaces – a review. Brain Sci. 2021;11(1):43.
  • Mak JN, Wolpaw JR. Clinical applications of brain-computer interfaces: current state and future prospects. IEEE Rev Biomed Eng. 2009;2:187–199.
  • McFarland DJ, Daly J, Boulay C, et al. Therapeutic applications of BCI technologies. Brain Comput Interfaces (Abingdon). 2017;47(1–2):37–52.
  • McFarland DJ, Wolpaw JR. Brain-computer interfaces for communication and control. Commun ACM. 2011;54(5):60–66.
  • Moxon KA, Foffani G. Brain-machine interfaces beyond neuroprosthetics. Neuron. 2015;86(1):55–67.
  • Nicolas-Alonso LF, Gomez-Gil J. Brain computer interfaces, a review. Sensors. 2012;12(2):1211–1279.
  • Schalk G, Leuthardt EC. Brain-computer interfaces using electrocorticographic signals. IEEE Rev Biomed Eng. 2011;4:140–154.
  • Tan DS, Nijholt A. Brain-computer interfaces. London: Springer-Verlag London Limited; 2010.
  • Yadav D, Yadav S, Veer K. A comprehensive assessment of brain computer interfaces: recent trends and challenges. J Neurosci Methods. 2020;346:108918.
  • Penaloza CI, Nishio S. BMI control of a third arm for multitasking. Sci Robot. 2018;3(20):aat1228.
  • Shahriari D, Rosenfeld D, Anikeeva P. Emerging frontier of peripheral nerve and organ interfaces. Neuron. 2020;108(2):270–285.
  • Pisotta I, Ionta S. Are we the robots?: Man-machine integration. In: Emerging theory and practice in neuroprosthetics. London: IGI Global; 2014. p. 81–100.
  • Andersen RA, Kellis S, Klaes C, et al. Toward more versatile and intuitive cortical brain-machine interfaces. Curr Biol. 2014;24(18):R885–R897.
  • Bouton CE, Shaikhouni A, Annetta NV, et al. Restoring cortical control of functional movement in a human with quadriplegia. Nature. 2016;533(7602):247–250.
  • Kendrick KM, Yao D. Can computer-based cognitive therapy become a front-line option for prevention and treatment of mental disorders? AJP. 2017;174(4):303–304.
  • Robinson R, Wiley K, Rezaeivahdati A, et al., editors. “Let’s get physiological, physiological!” A systematic review of affective gaming. In: Proceedings of the Annual Symposium on Computer-Human Interaction in Play; 2020.
  • Liu S, Wang Z, Su Y, et al. A neuroanatomical basis for electroacupuncture to drive the vagal-adrenal axis. Nature. 2021;598(7882):641–645.
  • Zhang G, Cui Y, Zhang Y, et al. Computational exploration of dynamic mechanisms of steady state visual evoked potentials at the whole brain level. Neuroimage. 2021;237:118166.
  • Davenport M, Olum KD. Are there Boltzmann brains in the vacuum. arXiv Preprint 2010:arXiv:10080808.