510
Views
58
CrossRef citations to date
0
Altmetric
Research Article

Streptomyces Genetics: A Genomic Perspective

, , &
Pages 1-27 | Published online: 29 Sep 2008

REFERENCES

  • Bergey’s Manual of Systematic Bacteriology, Garrity, G. M., Ed., Springer-Verlag, New York, 2002,
  • Chater, K. F., Genetics of differentiation in Streptomyces, Amm. Rev. Microbiol 47, 685–713, 1993.
  • Chater, K. F., Regulation of sporulation in Streptomyces coelicolor A3(2): a checkpoint multiplex?, Curr. Opin. Microbiol. 4 (6), 667–673, 2001.
  • Bibb, M., 1995 Colworth Prize Lecture. The regulation of antibiotic production in Streptomyces coelicolor A3(2), Microbiology, 142, 1335–1344, 1996.
  • Hopwood, D. A., Chater, K. F., Bibb, M. J., Genetics of antibiotic production in Streptomyces coelicolor A3(2), a model streptomycete, in Genetics and Biochemistry of Antibiotic Production (Biotechnology, 28) L. C. Vining and C. Stuttard, Ed., Butterworth-Heinemann, Toronto, 1995, 65–102.
  • Baltz, R. H., Gene expression in recombinant Streptomyces, Bioprocess. Technoh, 22, 309–381, 1995.
  • Hopwood, D. A., Forty years of genetics with Streptomyces: from in vivo through in vitro to in silico, Microbiology, 145, 2183–2202, 1999.
  • Baltz, R. H., Genetic manipulation of antibiotic-producing Streptomyces, Trends Microbiol, 6 (2), 76–83, 1998.
  • Muth, G., Brolle, D. F., Wohlleben, W., Genetics of Streptomyces, in Manual of industrial microbiology and biotechnology Demain, A. L., Davies, Julian E., and Atlas, Ronald M., Eds., ASM Press, Washington, D. C, 1999, 353–367.
  • Kieser, T., Hopwood, D. A., Genetic manipulation of Streptomyces: integrating vectors and gene replacement. Methods Enzymol., 204, 430–458, 1991.
  • Kieser, T., Bibb, M. J., Buttner, M. J., Chater, K. F., Hopwood, D., Practical Streptomyces Genetics, Ed., The John Innes Foundation, Norwich, England, 2000,
  • Redenbach, M., Scheel, J., Schmidt, U., Chromosome topology and genome size of selected actinomycetes species, Antonie Van Leeuwenhoek, 78 (3–4), 227–235, 2000.
  • Bentley, S. D., Chater, K. F., Cerdeno-Tarraga, A. M., Challis, G. L., Thomson, N. R., James, K. D., Harris, D. E., Quail, M. A., Kieser, H., Harper, D., Bateman, A., Brown, S., Chandra, G., Chen, C. W., Collins, M., Cronin, A., Fraser, A., Goble, A., Hidalgo, J., Hornsby, T., Howarth, S., Huang, C. H., Kieser, T., Larke, L., Murphy, L., Oliver, K., O'Neil, S., Rabbinowitsch, E., Rajandream, M. A., Rutherford, K., Rutter, S., Seeger, K., Saunders, D., Sharp, S., Squares, R., Squares, S., Taylor, K., Warren, T., Wietzorrek, A., Woodward, J., Barrell, B. G., Parkhill, J., Hopwood, D. A., Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2), Nature, 417 (6885), 141–147, 2002.
  • Hopwood, D. A., Linkage and the mechanism of recombination in Streptomyces coelicolor., Ann. N. Y. Acad. Sci., 81, 887–898, 1959.
  • Hopwood, D. A., A circular linkage map in the actinomycete Streptomyces coelicolor., J Mol. Biol., 12, 514–516, 1965.
  • Kirby, R., An unstable genetic element affecting the production of the antibiotic holomycin by Streptomyces clavuligerus, FEMS Microbiol. Lett., 3, 283–286, 1978.
  • Smokvina, T., Francou, F., Luzzati, M., Genetic analysis in Streptomyces ambofaciens, J Gen. Microbiol, 134 (Pt 2), 395–402, 1988.
  • Haese, A., Keller, U., Genetics of actinomycin C production in Streptomyces chrysomallus, J Bacterial, 170 (3), 1360–1368, 1988.
  • Keller, U., Krengel, U., Haese, A., Genetic analysis in Streptomyces chrysomallus, J Gen. Microbiol, 131 (Pt 5), 1181–1191, 1985.
  • Crameri, R., Kieser, T., Ono, H., Sanchez, J., Hutter, R., Chromosomal instability in Streptomyces glaucescens: mapping of streptomycin-sensitive mutants, J Gen. Microbiol, 129 (Pt 2), 519–527, 1983.
  • Parag, Y., Genetic recombination in Streptomyces griseus, J Bacterial, 133 (2), 1027–1031, 1978.
  • Hopwood, D. A., Kieser, T., Wright, H. M., Bibb, M. J., Plasmids, recombination and chromosome mapping in Streptomyces lividans 66, J Gen. Microbiol, 129 (Pt 7), 2257–2269, 1983.
  • Doull, J. L., Vats, S., Chaliciopoulos, M., Stuttard, C., Wong, K., Vining, L. C., Conjugational fertility and location of chloramphenicol biosynthesis genes on the chromosomal linkage map of Streptomyces venezuelae, J Gen. Microbiol, 132 (Pt 5), 1327–1338, 1986.
  • Vats, S., Stuttard, C., Vining, L. C., Transductional analysis of chloramphenicol biosynthesis genes in Streptomyces venezuelae, J Bacterial, 169 (8), 3809–3813, 1987.
  • Stuttard, C., Transduction and genome structure in Streptomyces, Dev. Ind. Microbiol, 29, 69–75, 1988.
  • Redenbach, M., Kieser, H. M., Denapaite, D., Eichner, A., Cullum, J., Kinashi, H., Hopwood, D. A., A set of ordered cosmids and a detailed genetic and physical map for the 8 Mb Streptomyces coelicolor A3(2) chromosome, Mol. Microbiol, 21 (1), 77–96, 1996.
  • Friend, E. J., Hopwood, D. A., The linkage map of Streptomyces rimosus, J Gen. Microbiol, 68 (2), 187–197, 1971.
  • Lin, Y. S., Kieser, H. M., Hopwood, D. A., Chen, C. W., The chromosomal DNA of Streptomyces lividans 66 is linear, Mol. Microbiol, 10 (5), 923–933, 1993.
  • Huang, C. H., Lin, Y. S., Yang, Y. L., Huang, S. W., Chen, C. W., The telomeres of Streptomyces chromosomes contain conserved palindromic sequences with potential to form complex secondary structures, Mol. Microbiol, 28 (5), 905–916, 1998.
  • Kieser, H. M., Kieser, T., Hopwood, D. A., A combined genetic and physical map of the Streptomyces coelicolor A3(2) chromosome, J Bacterial, 174 (17), 5496–5507, 1992.
  • Pandza, K., Pfalzer, G., Cullum, J., Hranueli, D., Physical mapping shows that the unstable Oxytetracycline gene cluster of Streptomyces rimosus lies close to one end of the linear chromosome, Microbiology, 143, 1493–1501, 1997.
  • Leblond, P., Fischer, G., Francou, F. X., Berger, F., Guerineau, M., Decaris, B., The unstable region of Streptomyces ambofaciens includes 210 kb terminal inverted repeats flanking the extremities of the linear chromosomal DNA, Mol. Microbiol, 19 (2), 261–271, 1996.
  • Lezhava, A., Mizukami, T., Kajitani, T., Kameoka, D., Redenbach, M., Shinkawa, H., Nimi, O., Kinashi, H., Physical map of the linear chromosome of Streptomyces griseus, J Bacterial., 177 (22), 6492–6498, 1995.
  • Stoll, A., Horvat, L. I., Lopes-Shikida, S. A., Padilla, G., Cullum, J., Isolation and cloning of Streptomyces terminal fragments, Antonie Van Leeuwenhoek, 78 (3–4), 223–226, 2000.
  • Bamas-Jacques, N., Lorenzon, S., Lacroix, P., De Swetschin, C., Crouzet, J., Cluster organization of the genes of Streptomyces pristinaespiralis involved in pristinamycin biosynthesis and resistance elucidated by pulsed-field gel electrophoresis, J Appl Microbiol, 87 (6), 939–948, 1999.
  • Pang, X., Zhou, X., Sun, Y., Deng, Z., Physical map of the linear chromosome of Streptomyces hygroscopicus 10–22 deduced by analysis of overlapping large chromosomal deletions, J Bacterial, 184 (7), 1958–1965, 2002.
  • Mchenney, M. A., Hosted, T. J., Dehoff, B. S., Rosteck, P. R., Jr., Baltz, R. H., Molecular cloning and physical mapping of the daptomycin gene cluster from Streptomyces roseosporus, J Bacterial, 180 (1), 143–151, 1998.
  • Omura, S., Ikeda, H., Ishikawa, J., Hanamoto, A., Takahashi, C., Shinose, M., Takahashi, Y., Horikawa, H., Nakazawa, H., Osonoe, T., Kikuchi, H., Shiba, T., Sakaki, Y., Hattori, M., Genome sequence of an industrial microorganism Streptomyces avermitilis: deducing the ability of producing secondary metabolites, Prac. Natl. Acad. Sci U.S.A, 98 (21), 12215–12220, 2001.
  • Reeves, A. R., Post, D. A., Vanden Boom, T. J., Physical-genetic map of the erythromycin-producing organism Saccharopolyspora erythraea, Microbiology, 144, 2151–2159, 1998.
  • Correia, A., Martin, J. F., Castro, J. M., Pulsed-field gel electrophoresis analysis of the genome of amino acid producing corynebacteria: chromosome sizes and diversity of restriction patterns, Microbiology, 140, 2841–2847, 1994.
  • Philipp, W. J., Poulet, S., Eiglmeier, K., Pascopella, L., Balasubramanian, V., Heym, B., Bergh, S., Bloom, B. R, Jacobs, W. R, Jr., Cole, S. T., An integrated map of the genome of the tubercle bacillus, Mycobacterium tuberculosis H37Rv, and comparison with Mycobacterium leprae, Proc. Natl. Acad. Sci U.S.A, 93 (7), 3132–3137, 1996.
  • Philipp, W. J., Nair, S., Guglielmi, G., Lagranderie, M., Gicquel, B., Cole, S. T., Physical mapping of Mycobacterium bovis BCG pasteur reveals differences from the genome map of Mycobacterium tuberculosis H37Rv and from M. bovis, Microbiology, 142, 3135–3145, 1996.
  • Pisabarro, A., Correia, A., Martin, J. F., Pulsed-field gel electrophoresis analysis of the genome of Rhodococcus fascians: genome size and linear and circular replicon composition in virulent and avirulent strains, Curr. Microbiol 36 (5), 302–308, 1998.
  • Bigey, F., Janbon, G., Arnaud, A., Galzy, P., Sizing of the Rhodococcus sp. R312 genome by pulsed-field gel electrophoresis. Localization of genes involved in nitrile degradation, Antonie Van Leeuwenhoek, 68 (2), 173–179, 1995.
  • Jakimowicz, D., Majka, J., Messer, W., Speck, C., Fernandez, M., Martin, M. C., Sanchez, J., Schauwecker, F., Keller, U., Schrempf, H., Zakrzewska-Czerwinska, J., Structural elements of the Streptomyces oriC region and their interactions with the DnaA protein, Microbiology, 144, 1281–1290, 1998.
  • Calcutt, M. J., Schmidt, F. J., Conserved gene arrangement in the origin region of the Streptomyces coelicolor chromosome, J Bacterial., 174 (10), 3220–3226, 1992.
  • Musialowski, M. S., Flett, F., Scott, G. B., Hobbs, G., Smith, C. P., Oliver, S. G., Functional evidence that the principal DNA replication origin of the Streptomyces coelicolor chromosome is close to the dnaA-gyrB region, J Bacterial, 176 (16), 5123–5125, 1994.
  • Zakrzewska-Czerwinska, J., Majka, J., Schrempf, H., Minimal requirements of the Streptomyces lividans 66 oriC region and its transcriptional and translational activities, J Bacterial., 177 (16), 4765–4771, 1995.
  • Messer, W., Weigel, C., Initiation of chromosome replication, in Escherichia coli and Salmonella: cellular and molecular biology Neidhardt, Frederick C. and Curtiss, Roy, Ed., ASM Press, Washington, D. C, 1996, 1579–1601.
  • Messer, W., Blaesing, F., Jakimowicz, D., Krause, M., Majka, J., Nardmann, J., Schaper, S., Seitz, H., Speck, C., Weigel, C., Wegrzyn, G., Welzeck, M., Zakrzewska-Czerwinska, J., Bacterial replication initiator DnaA. Rules for DnaA binding and roles of DnaA in origin unwinding and helicase loading, Biochimie, 83 (1), 5–12, 2001.
  • Zakrzewska-Czerwinska, J., Jakimowicz, D., Majka, J., Messer, W., Schrempf, H., Initiation of the Streptomyces chromosome replication, Antonie Van Leeuwenhoek, 78 (3–4), 211–221, 2000.
  • Yang, C. C., Huang, C. H., Li, C. Y., Tsay, Y. G., Lee, S. C., Chen, C. W., The terminal proteins of linear Streptomyces chromosomes and plasmids: a novel class of replication priming proteins, Mol. Microbiol, 43 (2), 297–305, 2002.
  • Bao, K., Cohen, S. N., Terminal proteins essential for the replication of linear plasmids and chromosomes in Streptomyces, Genes Dev., 15 (12), 1518–1527, 2001.
  • Wang, S. J., Chang, H. M., Lin, Y. S., Huang, C. H., Chen, C. W., Streptomyces genomes: circular genetic maps from the linear chromosomes, Microbiology, 145, 2209–2220, 1999.
  • Yang, M. C., Losick, R., Cytological evidence for association of the ends of the linear chromosome in Streptomyces coelicolor, J Bacteriol., 183 (17), 5180–5186, 2001.
  • Fischcr, G., Holl, A. C., Volff, J. N., Vandewiele, D., Decaris, B., Leblond, P., Replication of the linear chromosomal DNA from the centrally located oriC of Streptomyces ambofaciens revealed by PFGE gene dosage analysis, Res. Microbiol, 149 (3), 203–210, 1998.
  • Chang, P. C., Cohen, S. N., Bidirectional replication from an internal origin in a linear streptomyces plasmid, Science, 265 (5174), 952–954, 1994.
  • Kinashi, H., Shimaji-Murayama, M., Hanafusa, T., Nucleotide sequence analysis of the unusually long terminal inverted repeats of a giant linear plasmid, SCP1, Plasmid, 26 (2), 123–130, 1991.
  • Goshi, K., Uchida, T., Lezhava, A., Yamasaki, M., Hiratsu, K., Shinkawa, H., Kinashi, H., Cloning and Analysis of the Telomere and Terminal Inverted Repeat of the Linear Chromosome of Streptomyces griseus, J Bacteriol, 184 (12), 3411–3415, 2002.
  • Cole, S. T., Brosch, R., Parkhill, J., Gamier, T., Churcher, C., Harris, D., Gordon, S. V., Eiglmeier, K., Gas, S., Barry, C. E., III, Tekaia, F., Badcock, K., Basham, D., Brown, D., Chillingworth, T., Connor, R., Davies, R., Devlin, K., Feltwell, T., Gentles, S., Hamlin, N., Holroyd, S., Hornsby, T., Jagels, K., Barrell, B. G., ., Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence, Nature, 393 (6685), 537–544, 1998.
  • Cole, S. T., Eiglmeier, K., Parkhill, J., James, K. D., Thomson, N. R., Wheeler, P. R., Honore, N., Gamier, T., Churcher, C., Harris, D., Mungall, K., Basham, D., Brown, D., Chillingworth, T., Connor, R., Davies, R. M., Devlin, K., Duthoy, S., Feltwell, T., Fraser, A., Hamlin, N., Holroyd, S., Hornsby, T., Jagels, K., Lacroix, C., Maclean, J., Moule, S., Murphy, L., Oliver, K., Quail, M. A., Rajandream, M. A., Rutherford, K. M., Rutter, S., Seeger, K., Simon, S., Simmonds, M., Skelton, J., Squares, R., Squares, S., Stevens, K., Taylor, K., Whitehead, S., Woodward, J. R., Barrell, B. G., Massive gene decay in the leprosy bacillus, Nature, 409 (6823), 1007–1011, 2001.
  • Brosch, R., Gordon, S. V., Billault, A., Gamier, T., Eiglmeier, K., Soravito, C., Barrell, B. G., Cole, S. T., Use of a Mycobacterium tuberculosis H37Rv bacterial artificial chromosome library for genome mapping, sequencing, and comparative genomics, Infect. Immun., 66 (5), 2221–2229, 1998.
  • Bibb, M., Schottel, J. L., Cohen, S. N., A DNA cloning system for interspecies gene transfer in antibiotic-producing Streptomyces, Nature, 284 (5756), 526–531, 1980.
  • Suarez, J. E., Chater, K. F., DNA cloning in Streptomyces: a bifunctional replicon comprising pBR322 inserted into a Streptomyces phage, Nature, 286 (5772), 527–529, 1980.
  • Thompson, C. J., Ward, J. M., Hopwood, D. A., DNA cloning in Streptomyces: resistance genes from antibiotic-producing species, Nature, 286 (5772), 525–527, 1980.
  • Wright, F., Bibb, M. J., Codon usage in the G+C-rich Streptomyces genome, Gene, 113 (1), 55–65, 1992.
  • Bibb, M. J., Findlay, P. R., Johnson, M. W., The relationship between base composition and codon usage in bacterial genes and its use for the simple and reliable identification of protein-coding sequences, Gene, 30 (1–3), 157–166, 1984.
  • Missiakas, D., Raina, S., The extracytoplasmic function sigma factors: role and regulation, Mol. Microbiol, 28 (6), 1059–1066, 1998.
  • Helmann, J. D., The extracytoplasmic function (ECF) sigma factors, Adv. Microb. Physiol, 46, 47–110, 2002.
  • Lonetto, M. A., Brown, K. L., Rudd, K. E., Buttner, M. J., Analysis of the Streptomyces coelicolor sigE gene reveals the existence of a subfamily of eubacterial RNA polymerase sigma factors involved in the regulation of extracytoplasmic functions, Proc. Natl. Acad. Sci U.SA, 91 (16), 7573–7577, 1994.
  • Paget, M. S., Leibovitz, E., Buttner, M. J., A putative two-component signal transduction system regulates sigmaE, a sigma factor required for normal cell wall integrity in Streptomyces coelicolor A3(2), Mol. Microbiol, 33 (1), 97–107, 1999.
  • Paget, M. S., Bae, J. B., Hahn, M. Y., Li, W., Kleanthous, C., Roe, J. H., Buttner, M. J., Mutational analysis of RsrA, a zinc-binding anti-sigma factor with a thiol-disulphide redox switch, Mol. Microbiol, 39 (4), 1036–1047, 2001.
  • Paget, M. S., Chamberlin, L., Atrih, A., Foster, S. J., Buttner, M. J., Evidence that the extracytoplasmic function sigma factor sigmaE is required for normal cell wall structure in Streptomyces coelicolor A3(2), J Bacterial, 181 (1), 204–211, 1999.
  • Paget, M. S., Molle, V., Cohen, G., Aharonowitz, Y., Buttner, M. J., Defining the disulphide stress response in Streptomyces coelicolor A3(2): identification of the sigmaR regulon, Mol. Microbiol, 42 (4), 1007–1020, 2001.
  • Chater, K., Bibb, M., Regulation of bacterial antibiotic production, in Biotechnology Vol 7: Products of Secondary Metabolism Kleinkauf, H. and von Dohren, H., Ed., VCH Press, Weinheim, Germany, 1997, 55–105.
  • Horinouchi, S., Beppu, T., Autoregulators, in Genetics and Biochemistry of Antibiotic Production (Biotechnology, 28) L. C. Vining and C. Stuttard, Ed., Butterworth-Heinemann, Toronto, 1995, 103–119.
  • Horinouchi, S., Beppu, T., A-factor and streptomycin biosynthesis in Streptomyces griseus, Antonie Van Leeuwenhoek, 64 (2), 177–186, 1993.
  • Piepersberg, W., Streptomycin and related aminoglycosides, in Genetics and Biochemistry of Antibiotic Production (Biotechnology, 28) L. C. Vining and C. Stuttard, Ed., Butterworth-Heinemann, Toronto, 1995, 531–570.
  • Ruan, X., Stassi, D., Lax, S. A., Katz, L., A second type-I PKS gene cluster isolated from Streptomyces hygroscopicus ATCC 29253, a rapamycin-producing strain, Gene, 203 (1), 1–9, 1997.
  • Sun, Y., Zhou, X., Liu, J., Bao, K., Zhang, G., Tu, G., Kieser, T., Deng, Z., ‘Streptomyces nanchangensis’, a producer of the insecticidal polyether antibiotic nanchangmycin and the antiparasitic macrolide meilingmycin, contains multiple polyketide gene clusters, Microbiology, 148, 361–371, 2002.
  • Parche, S., Nothaft, H., Kamionka, A., Titgemeyer, F., Sugar uptake and utilisation in Streptomyces coelicolor: a PTS view to the genome, Antonie Van Leeuwenhoek, 78 (3–4), 243–251, 2000.
  • Lamb, D. C., Skaug, T., Song, H. L., Jackson, C. J., Podust, L. M., Waterman, M. R., Kell, D. B., Kelly, D. E., Kelly, S. L., The cytochrome P450 complement (CYPome) of streptomyces coelicolor A3(2), J Biol Chem 2002.
  • Li, N., Cannon, M. C., Gas vesicle genes identified in Bacillus megaterium and functional expression in Escherichia coli, J Bacterial, 180 (9), 2450–2458, 1998.
  • Ye, R. W., Wang, T., Bedzyk, L., Croker, K. M., Applications of DNA microarrays in microbial systems, J Microbiol Methods, 47 (3), 257–272, 2001.
  • Heller, M. J., DNA MICROARRAY TECHNOLOGY: Devices, Systems, and Applications, Annu. Rev. Biofned. Eng, 4, 129–153, 2002.
  • Huang, J., Lih, C. J., Pan, K. H., Cohen, S. N., Global analysis of growth phase responsive gene expression and regulation of antibiotic biosynthetic pathways in Streptomyces coelicolor using DNA microarrays, Genes Dev., 15 (23), 3183–3192, 2001.
  • Gust, B., Spatz, K., Spychaj, A., Redenbach, M., Region-specific transcriptional activity in the genome of Streptomyces coelicolor A3(2), Appl Environ. Microbiol, 67 (8), 3598–3602, 2001.
  • Gingeras, T. R., Ghandour, G., Wang, E., Berno, A., Small, P. M., Drobniewski, F., Alland, D., Desmond, E., Holodniy, M., Drenkow, J., Simultaneous genotyping and species identification using hybridization pattern recognition analysis of generic Mycobacterium DNA arrays, Genome Res., 8 (5), 435–448, 1998.
  • Troesch, A., Nguyen, H., Miyada, C. G., Desvarenne, S., Gingeras, T. R., Kaplan, P. M., Cros, P., Mabilat, C., Mycobacterium species identification and rifampin resistance testing with high-density DNA probe arrays, J Clin. Microbiol, 37 (1), 49–55, 1999.
  • Kato-Maeda, M., Rhee, J. T., Gingeras, T. R., Salamon, H., Drenkow, J., Smittipat, N., Small, P. M., Comparing genomes within the species Mycobacterium tuberculosis, Genome Res., 11 (4), 547–554, 2001.
  • Wilson, M., DeRisi, J., Kristensen, H. H., Imboden, P., Rane, S., Brown, P. O., Schoolnik, G. K, Exploring drug-induced alterations in gene expression in Mycobacterium tuberculosis by microarray hybridization, Proc. Natl. Acad. Sci U.S.A, 96 (22), 12833–12838, 1999.
  • Mann, M., Hendrickson, R. C., Pandey, A., Analysis of proteins and proteomes by mass spectrometry, Annu. Rev. Biochem, 70, 437–473, 2001.
  • Graves, P. R., Haystead, T. A., Molecular biologist's guide to proteomics, Microbiol Mol. Biol Rev., 66 (1), 39–63, 2002.
  • Washburn, M. P., Ulaszek, R., Deciu, C., Schieltz, D. M., Yates, J. R., III, Analysis of quantitative proteomic data generated via multidimensional protein identification technology, Anal. Chem, 74 (7), 1650–1657, 2002.
  • Ueberle, B., Frank, R., Herrmann, R., The proteome of the bacterium Mycoplasma pneumoniae: Comparing predicted open reading frames to identified gene products, Proteomics., 2 (6), 754–764, 2002.
  • Jungblut, P. R., Muller, E. C., Mattow, J., Kaufmann, S. H., Proteomics reveals open reading frames in Mycobacterium tuberculosis H37Rv not predicted by genomics, Infect. Immun., 69 (9), 5905–5907, 2001.
  • Nouwens, A. S., Cordwell, S. J., Larsen, M. R., Molloy, M. P., Gillings, M., Willcox, M. D., Walsh, B. J., Complementing genomics with proteomics: the membrane subproteome of Pseudomonas aeruginosa PAOl, Electrophoresis, 21 (17), 3797–3809, 2000.
  • Guglielmi, G., Mazodier, P., Thompson, C. J., Davies, J., A survey of the heat shock response in four Streptomyces species reveals two groEL-like genes and three groEL-like proteins in Streptomyces albus, J Bacterial, 173 (22), 7374–7381, 1991.
  • Puglia, A. M., Vohradsky, J., Thompson, C. J., Developmental control of the heat-shock stress regulon in Streptomyces coelicolor, Mol. Microbiol, 17 (4), 737–746, 1995.
  • Vohradsky, J., Li, X. M., Dale, G., Folcher, M., Nguyen, L., Viollier, P. H., Thompson, C. J., Developmental control of stress stimulons in Streptomyces coelicolor revealed by statistical analyses of global gene expression patterns, J Bacteriol, 182 (17), 4979–4986, 2000.
  • Hecker, M., Schumann, W., Volker, U., Heat-shock and general stress response in Bacillus subtilis, Mol. Microbiol, 19 (3), 417–428, 1996.
  • Muffler, A., Barth, M., Marschall, C., Hengge-Aronis, R., Heat shock regulation of sigmaS turnover: a role for DnaK and relationship between stress responses mediated by sigmaS and sigma32 in Escherichia coli, J Bacteriol, 179 (2), 445–452, 1997.
  • Kwak, J., McCue, L. A., Trczianka, K., Kendrick, K. E., Identification and characterization of a developmentally regulated protein, EshA, required for sporogenic hyphal branches in Streptomyces griseus, J Bacteriol, 183 (10), 3004–3015, 2001.
  • Anderson, T. B., Brian, P., Champness, W. C., Genetic and transcriptional analysis of absA, an antibiotic gene cluster-linked two-component system that regulates multiple antibiotics in Streptomyces coelicolor, Mol. Microbiol, 39 (3), 553–566, 2001.
  • Petrickova, K., Tichy, P., Petricek, M., Cloning and characterization of the pknA gene from Streptomyces coelicolor A3(2), coding for the Mn2+ dependent protein Ser/Thr kinase, Biochem Biophys. Res. Commun., 279 (3), 942–948, 2000.
  • Umeyama, T., Naruoka, A., Horinouchi, S., Genetic and biochemical characterization of a protein phosphatase with dual substrate specificity in Streptomyces coelicolor A3(2), Gene, 258 (1–2), 55–62, 2000.
  • Vomastek, T., Nadvornik, R., Janecek, J., Technikova, Z., Weiser, J., Branny, P., Characterisation of two putative protein Ser/Thr kinases from actinomycete Streptomyces granaticolor both endowed with different properties, Eur. J Biochem, 257 (1), 55–61, 1998.
  • Itoh, M., Penyige, A., Okamoto, S., Ochi, K., Proteins that interact with GTP in Streptomyces griseus and its possible implication in morphogenesis, FEMS Microbiol Lett., 135 (2–3), 311–316, 1996.
  • Yan, J. X., Sanchez, J. C., Binz, P. A., Williams, K. L., Hochstrasser, D. F., Method for identification and quantitative analysis of protein lysine methylation using matrix-assisted laser desorption/ionization—time-of-flight mass spectrometry and amino acid analysis, Electrophoresis, 20 (4–5), 749–754, 1999.
  • Mikulik, K., Dobrova, Z., Janecek, J., Khanh-Hoang, Q., Pattern of phosphoproteins during cell differentiation in Streptomyces collinus, FEMS Microbiol Lett., 158(1), 147–151, 1998.
  • Mikulik, K., Janda, I., Protein kinase associated with ribosomes phosphorylates ribosomal proteins of Streptomyces collinus, Biochem Biophys. Res. Commun., 238 (2), 370–376, 1997.
  • Mikulik, K., Suchan, P., Bobek, J., Changes in ribosome function induced by protein kinase associated with ribosomes of Streptomyces collinus producing kirromycin, Biochem Biophys. Res. Commun., 289 (2), 434–443, 2001.
  • Li, X. M., Novotna, J., Vohradsky, J., Weiser, J., Major proteins related to chlortetracycline biosynthesis in a Streptomyces aureofaciens production strain studied by quantitative proteomics, Appl Microbiol Biotechnol, 57 (5–6), 717–724, 2001.
  • Mohrle, V., Roos, U., Bormann, C., Identification of cellular proteins involved in nikkomycin production in Streptomyces tendae Tu901, Mol. Microbiol, 15 (3), 561–571, 1995.
  • Holt, T. G., Chang, C., Laurent-Winter, C., Murakami, T., Garrels, J. I., Davies, J. E., Thompson, C. J., Global changes in gene expression related to antibiotic synthesis in Streptomyces hygroscopicus, Mol. Microbiol, 6 (8), 969–980, 1992.
  • Martin, MF., Liras, P., Organization and expression of genes involved in the biosynthesis of antibiotics and other secondary metabolites, Annu. Rev. Microbiol, 43, 173–206, 1989.
  • Rudd, B. A., Hopwood, D. A., A pigmented mycelial antibiotic in Streptomyces coelicolor: control by a chromosomal gene cluster, J Gen. Microbiol, 119 (Pt 2), 333–340, 1980.
  • Smith, T. M., Jiang, Y. F., Shipley, P., Floss, H. G., The thiostrepton-resistance-encoding gene in Streptomyces laurentii is located within a cluster of ribosomal protein operons, Gene, 164 (1), 137–142, 1995.
  • Linton, K. J., Jarvis, B. W., Hutchinson, C. R., Cloning of the genes encoding thymidine diphosphoglucose 4,6-dehydratase and thymidine diphospho-4-keto-6-deoxyglucose 3,5-epimerase from the erythromycin-producing Saccharopolyspora erythraea, Gene, 153 (1), 33–40, 1995.
  • Madduri, K., Waldron, C., Merlo, D. J., Rhamnose biosynthesis pathway supplies precursors for primary and secondary metabolism in Saccharopolyspora spinosa, J Bacteriol, 183 (19), 5632–5638, 2001.
  • Yu, T. W., Bai, L., Clade, D., Hoffmann, D., Toelzer, S., Trinh, K. Q., Xu, J., Moss, S. J., Leistner, E., Floss, H. G., The biosynthetic gene cluster of the maytansinoid antitumor agent ansamitocin from Actinosynnema pretiosum, Proc. Natl. Acad. Sci U.S.A, 99 (12), 7968–7973, 2002.
  • Lal, R., Khanna, R., Kaur, H., Khanna, M., Dhingra, N., Lal, S., Gartemann, K. H., Eichenlaub, R., Ghosh, P. K., Engineering antibiotic producers to overcome the limitations of classical strain improvement programs, Crit Rev. Microbiol, 22 (4), 201–255, 1996.
  • Malpartida, F., Hopwood, D. A., Molecular cloning of the whole biosynthetic pathway of a Streptomyces antibiotic and its expression in a heterologous host, Nature, 309 (5967), 462–464, 1984.
  • Malpartida, F., Hopwood, D. A., Physical and genetic characterisation of the gene cluster for the antibiotic actinorhodin in Streptomyces coelicolor A3(2), Mol. Gen. Genet., 205 (1), 66–73, 1986.
  • Motamedi, H., Hutchinson, C. R., Cloning and heterologous expression of a gene cluster for the biosynthesis of tetracenomycin C, the anthracycline antitumor antibiotic of Streptomyces glaucescens, Proc. Natl. Acad. Sci U.S.A, 84 (13), 4445–1449, 1987.
  • Sherman, D. H., Malpartida, F., Bibb, M. J., Kieser, H. M., Bibb, M. J., Hopwood, D. A., Structure and deduced function of the granaticin-producing polyketide synthase gene cluster of Streptomyces violaceoruber Tu22, EMBO J, 8 (9), 2717–2725, 1989.
  • Anzai, H., Murakami, T., Imai, S., Satoh, A., Nagaoka, K., Thompson, C. J., Transcriptional regulation of bialaphos biosynthesis in Streptomyces hygroscopicus, J Bacteriol., 169 (8), 3482–3488, 1987.
  • Distler, J., Braun, C., Ebert, A., Piepersberg, W., Gene cluster for streptomycin biosynthesis in Streptomyces griseus: analysis of a central region including the major resistance gene, Mol. Gen. Genet., 208 (1–2), 204–210, 1987.
  • Ohnuki, T., Imanaka, T., Aiba, S., Self-cloning in Streptomyces griseus of an str gene cluster for streptomycin biosynthesis and streptomycin resistance, J Bacteriol, 164 (1), 85–94, 1985.
  • Malpartida, F., Hallam, S. E., Kieser, H. M., Motamedi, H., Hutchinson, C. R., Butler, M. J., Sugden, D. A., Warren, M., McKillop, C., Bailey, C. R.,., Homology between Streptomyces genes coding for synthesis of different polyketides used to clone antibiotic biosynthetic genes, Nature, 325 (6107), 818–821, 1987.
  • Marti, T., Hu, Z., Pohl, N. L., Shah, A. N., Khosla, C., Cloning, nucleotide sequence, and heterologous expression of the biosynthetic gene cluster for R1128, a non-steroidal estrogen receptor antagonist. Insights into an unusual priming mechanism, J Biol Chem, 275 (43), 33443–33448, 2000.
  • Ichinose, K., Bedford, D. J., Tornus, D., Bechthold, A., Bibb, M. J., Revill, W. P., Floss, H. G., Hopwood, D. A., The granaticin biosynthetic gene cluster of Streptomyces violaceoruber Tu22: sequence analysis and expression in a heterologous host, Chem Biol, 5 (11), 647–659, 1998.
  • Sanchez, C., Butovich, I. A., Brana, A. F., Rohr, J., Mendez, C., Salas, J. A., The biosynthetic gene cluster for the antitumor rebeccamycin. Characterization and generation of indolocarbazole derivatives, Chem Biol, 9 (4), 519–531, 2002.
  • Cortes, J., Velasco, J., Foster, G., Blackaby, A. P., Rudd, B. A., Wilkinson, B., Identification and cloning of a type III polyketide synthase required for diffusible pigment biosynthesis in Saccharopolyspora erythraea, Mol. Microbiol, 44 (5), 1213–1224, 2002.
  • Mao, Y., Varoglu, M., Sherman, D. H., Genetic localization and molecular characterization of two key genes (mitAB) required for biosynthesis of the antitumor antibiotic mitomycin C, J Bacteriol., 181 (7), 2199–2208, 1999.
  • Motamedi, H., Shafiee, A., The biosynthetic gene cluster for the macrolactone ring of the immunosuppressant FK506, Eur. J Biochem., 256 (3), 528–534, 1998.
  • Sohng, J. K, Oh, T. J., Lee, J. J., Kim, C. G., Identification of a gene cluster of biosynthetic genes of rubradirin substructures in S. achromogenes var. rubradiris NRRL3061, Mol. Cells, 7 (5), 674–681, 1997.
  • Decker, H., Gaisser, S., Pelzer, S., Schneider, P., Westrich, L., Wohlleben, W., Bechthold, A., A general approach for cloning and characterizing dNDP-glucose dehydratase genes from actinomycetes, FEMS Microbiol Lett., 141 (2–3), 195–201, 1996.
  • Metsa-Ketela, M., Salo, V., Halo, L., Hautala, A., Hakala, J., Mantsala, P., Ylihonko, K, An efficient approach for screening minimal PKS genes from Streptomyces, FEMS Microbiol Lett., 180 (1), 1–6, 1999.
  • Sosio, M., Bossi, E., Bianchi, A., Donadio, S., Multiple peptide synthetase gene clusters in Actinomycetes, Mol. Gen. Genet., 264 (3), 213–221, 2000.
  • Stockmann, M., Piepersberg, W., Gene probes for the detection of 6-deoxyhexose metabolism in secondary metabolite-producing streptomycetes, FEMS Microbiol Lett., 69 (2), 185–189, 1992.
  • Mendez, C., Kunzel, E., Lipata, F., Lombo, F., Cotham, W., Walla, M., Bearden, D. W., Brana, A. F., Salas, J. A., Rohr, J., Oviedomycin, an Unusual Angucyclinone Encoded by Genes of the Oleandomycin-Producer Streptomyces antibioticus ATCC11891, J Nat. Procl., 65 (5), 779–782, 2002.
  • Cortes, J., Haydock, S. F., Roberts, G. A., Bevitt, D. J., Leadlay, P. F., An unusually large multifunctional polypeptide in the erythromycin-producing polyketide synthase of Saccharopolyspora erythraea, Nature, 348 (6297), 176–178, 1990.
  • Donadio, S., Staver, M. J., McAlpine, J. B., Swanson, S. J., Katz, L., Modular organization of genes required for complex polyketide biosynthesis, Science, 252 (5006), 675–679, 1991.
  • Khosla, C., Gokhale, R. S., Jacobsen, J. R., Cane, D. E., Tolerance and specificity of polyketide synthases, Annu. Rev. Biochem, 68, 219–253, 1999.
  • Moore, B. S., Hertweck, C., Biosynthesis and attachment of novel bacterial polyketide synthase starter units, Nat. Prod. Rep., 19 (1), 70–99, 2002.
  • Rawlings, B. J., Type I polyketide biosynthesis in bacteria (Part A—erythromycin biosynthesis), Nat. Prod. Rep., 18 (2), 190–227, 2001.
  • Rawlings, B. J., Type I polyketide biosynthesis in bacteria (part B), Nat. Prod. Rep., 18 (3), 231–281, 2001.
  • Ueda, K, Kim, K. M., Beppu, T., Horinouchi, S., Overexpression of a gene cluster encoding a chalcone synthase-like protein confers redbrown pigment production in Streptomyces griseus, J Antibiot. (Tokyo), 48 (7), 638–646, 1995.
  • Funa, N., Ohnishi, Y., Fujii, I., Shibuya, M., Ebizuka, Y., Horinouchi, S., A new pathway for polyketide synthesis in microorganisms, Nature, 400 (6747), 897–899, 1999.
  • Pfeifer, V., Nicholson, G. J., Ries, J., Recktenwald, J., Schefer, A. B., Shawky, R. M., Schroder, J., Wohlleben, W., Pelzer, S., A polyketide synthase in glycopeptide biosynthesis: the biosynthesis of the non-proteinogenic amino acid (S)-3,5-dihydroxyphenylglycine, J Biol Chem, 276 (42), 38370–38377, 2001.
  • Marahiel, M. A., Stachelhaus, T., Mootz, H. D., Modular Peptide Synthetases Involved in Nonribosomal Peptide Synthesis, Chem Rev., 97 (7), 2651–2674, 1997.
  • Cane, D. E., Walsh, C. T., The parallel and convergent universes of polyketide synthases and nonribosomal peptide synthetases, Chem Biol, 6 (12), R319-R325, 1999.
  • Haydock, S. F., Aparicio, J. F., Molnar, I., Schwecke, T., Khaw, L. E., Konig, A., Marsden, A. F., Galloway, I. S., Staunton, J., Leadlay, P. F., Divergent sequence motifs correlated with the substrate specificity of (methyl)malonyl-CoA:acyl carrier protein transacylase domains in modular polyketide synthases, FEBS Lett., 374 (2), 246–248, 1995.
  • Conti, E., Stachelhaus, T., Marahiel, M. A., Brick, P., Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S, EMBO J, 16 (14), 4174–4183, 1997.
  • Stachelhaus, T., Mootz, H. D., Marahiel, M. A., The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases, Chem Biol, 6 (8), 493–505, 1999.
  • Challis, G. L., Ravel, J., Townsend, C. A., Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains, Chem Biol, 7 (3), 211–224, 2000.
  • Challis, G. L., Ravel, J., Coelichelin, a new peptide siderophore encoded by the Streptomyces coelicolor genome: structure prediction from the sequence of its non-ribosomal peptide synthetase, FEMS Microbiol Lett., 187 (2), 111–114, 2000.
  • Stassi, D., Donadio, S., Staver, M. J., Katz, L., Identification of a Saccharopolyspora erythraea gene required for the final hydroxylation step in erythromycin biosynthesis, J Bacteriol., 175 (1), 182–189, 1993.
  • Weber, J. M., Leung, J. O., Swanson, S. J., Idler, K. B., McAlpine, J. B., An erythromycin derivative produced by targeted gene disruption in Saccharopolyspora erythraea, Science, 252 (5002), 114–117, 1991.
  • Weber, J. M., Schoner, B., Losick, R., Identification of a gene required for the terminal step in erythromycin A biosynthesis in Saccharopolyspora erythraea (Streptomyces erythreus), Gene, 75 (2), 235–241, 1989.
  • Paulus, T. J., Tuan, J. S., Luebke, V. E., Maine, G. T., DeWitt, J. P., Katz, L., Mutation and cloning of eryG, the structural gene for erythromycin O-methyltransferase from Saccharopolyspora erythraea, and expression of eryG in Escherichia coli, J Bacteriol., 172 (5), 2541–2546, 1990.
  • Recktenwald, J., Shawky, R., Puk, O., Pfennig, F., Keller, U., Wohlleben, W., Pelzer, S., Nonribosomal biosynthesis of vancomycin-type antibiotics: a heptapeptide backbone and eight peptide synthetase modules, Microbiology, 148, 1105–1118, 2002.
  • Hubbard, B. K., Thomas, M. G., Walsh, C. T., Biosynthesis of L-p-hydroxyphenylglycine, a non-proteinogenic amino acid constituent of peptide antibiotics, Chem Biol, 7 (12), 931–942, 2000.
  • Chen, H., Thomas, M. G., O'Connor, S. E., Hubbard, B. K., Burkart, M. D., Walsh, C. T., Aminoacyl-S-enzyme intermediates in beta-hydroxylations and alpha, beta-desaturations of amino acids in peptide antibiotics, Biochemistry, 40 (39), 11651–11659, 2001.
  • Chen, H., Hubbard, B. K., O'Connor, S. E., Walsh, C. T., Formation of beta-hydroxy histidine in the biosynthesis of nikkomycin antibiotics, Chem Biol, 9 (1), 103–112, 2002.
  • Wu, K, Chung, L., Revill, W. P., Katz, L., Reeves, C. D., The FK520 gene cluster of Streptomyces hygroscopicus var. ascomyceticus (ATCC 14891) contains genes for biosynthesis of unusual polyketide extender units, Gene, 251 (1), 81–90, 2000.
  • Hopwood, D. A., Malpartida, F., Kieser, H. M., Ikeda, H., Duncan, J., Fujii, I., Rudd, B. A., Floss, H. G., Omura, S., Production of ‘hybrid’ antibiotics by genetic engineering, Nature, 314 (6012), 642–644, 1985.
  • Cane, D. E., Walsh, C. T., Khosla, C., Harnessing the biosynthetic code: combinations, permutations, and mutations, Science, 282 (5386), 63–68, 1998.
  • Hutchinson, C. R., Microbial polyketide synthases: more and more prolific, Proc. Natl. Acad. Sci U.S.A, 96 (7), 3336–3338, 1999.
  • Leadlay, P. F., Combinatorial approaches to polyketide biosynthesis, Curr. Opin. Chem Biol, 1 (2), 162–168, 1997.
  • Reynolds, K. A., Combinatorial biosynthesis: lesson learned from nature, Proc. Natl. Acad. Sci U.S.A, 95 (22), 12744–12746, 1998.
  • Rodriguez, E., McDaniel, R., Combinatorial biosynthesis of antimicrobials and other natural products, Curr. Opin. Microbiol, 4 (5), 526–534, 2001.
  • Weymouth-Wilson, A. C., The role of carbohydrates in biologically active natural products, Nat. Prod. Rep., 14 (2), 99–110, 1997.
  • Mendez, C., Salas, J. A., Altering the glycosylation pattern of bioactive compounds, Trends Biotechnol, 19 (11), 449–456, 2001.
  • Fu, H., Khosla, C., Antibiotic activity of polyketide products derived from combinatorial biosynthesis: implications for directed evolution, Mol. Divers., 1 (2), 121–124, 1996.
  • McDaniel, R., Ebert-Khosla, S., Hopwood, D. A., Khosla, C., Engineered biosynthesis of novel polyketides, Science, 262 (5139), 1546–1550, 1993.
  • Wohlert, S.-E., Blanco, G., Lombo, F., Fernandez, E., Brana, A. F., Reich, S., Udvamoki, G., Mendez, C., Decker, H., Frevert, J., Salas, J. A., Rohr, J., Novel hybrid tetracenomycins through combinatorial biosynthesis using a glycosyltransferase encoded by the elm genes in cosmid 16F4 and which shows a broad sugar substrate specificity, J. Am. Chem. Soc., 120, 10596–10601, 1998.
  • Decker, H., Rohr, J., Motamedi, H., Zahner, H., Hutchinson, C. R., Identification of Streptomyces olivaceus Tu 2353 genes involved in the production of the polyketide elloramycin, Gene, 166 (1), 121–126, 1995.
  • Rohlin, L., Oh, M. K., Liao, J. C., Microbial pathway engineering for industrial processes: evolution, combinatorial biosynthesis and rational design, Curr. Opin. Microbiol, 4 (3), 330–335, 2001.
  • Khetan, A., Malmberg, L. H., Sherman, D. H., Hu, W. S., Metabolic engineering of cephalosporin biosynthesis in Streptomyces clavuligerus, Ann. N.Y. Acad. Sci, 782, 17–24, 1996.
  • Bailey, J. E., Toward a science of metabolic engineering, Science, 252 (5013), 1668–1675, 1991.
  • Stephanopoulos, G., Vallino, J. J., Network rigidity and metabolic engineering in metabolite overproduction, Science, 252 (5013), 1675–1681, 1991.
  • Daae, E. B., Ison, A. P., Classification and sensitivity analysis of a proposed primary metabolic reaction network for Streptomyces lividans, Metab Eng, 1 (2), 153–165, 1999.
  • Naeimpoor, F., Mavituna, F., Metabolic flux analysis in Streptomyces coelicolor under various nutrient limitations, Metab Eng, 2 (2), 140–148, 2000.
  • Rossa, C. A., White, J., Kuiper, A., Postma, P. W., Bibb, M., Teixeira de Mattos, M. J., Carbon Flux Distribution in Antibiotic-Producing Chemostat Cultures of Streptomyces lividans, Metab Eng, 4 (2), 138–150, 2002.
  • Bruheim, P., Butler, M., Ellingsen, T. E., A theoretical analysis of the biosynthesis of actinorhodin in a hyper-producing Streptomyces lividansstrain cultivated on various carbon sources, Appl Microbiol Biotechnol, 58 (6), 735–742, 2002.
  • Butler, M. J., Bruheim, P., Jovetic, S., Marinelli, F., Postma, P. W., Bibb, M. J., Engineering of primary carbon metabolism for improved antibiotic production in Streptomyces lividans. Applied and Environmental Microbiology, 68 (10), 4731–4739, 2002.
  • Malmberg, L. H., Hu, W. S., Sherman, D. H., Precursor flux control through targeted chromosomal insertion of the lysine epsilon-aminotransferase (lat) gene in cephamycin C biosynthesis, J Bacteriol, 175 (21), 6916–6924, 1993.
  • Malmberg, L. H., Sherman, D. H., Hu, W. S., Analysis of rate-limiting reactions in cephalosporin biosynthesis, Ann. N.Y. Acad. Sci, 665, 16–26, 1992.
  • Ikeda, H., Pang, C. H., Endo, H., Ohta, T., Tanaka, H., Omura, S., Construction of a single component producer from the wild type avermectin producer Streptomyces avermitilis, J Antibiot.(Tokyo), 48 (6), 532–534, 1995.
  • Egan, L. A., Busby, R. W., Iwata-Reuyl, D., Townsend, C. A., Probable role of clavaminic acid as the terminal intermediate in the common pathway to clavulanic acid and the antipodal clavam metabolites, J. Am. Chem. Soc., 119, 2348–2355, 1997.
  • Paradkar, A. S., Mosher, R. H., Anders, C., Griffin, A., Griffin, J., Hughes, C., Greaves, P., Barton, B., Jensen, S. E., Applications of gene replacement technology to Streptomyces clavuligerus strain development for clavulanic acid production, Appl Environ. Microbiol, 67 (5), 2292–2297, 2001.
  • Khosla, C., Bailey, J. E., The Vitreoscilla hemoglobin gene: molecular cloning, nucleotide sequence and genetic expression in Escherichia coli, Mol. Gen. Genet., 214 (1), 158–161, 1988.
  • Khosla, C., Bailey, J. E., Heterologous expression of a bacterial haemoglobin improves the growth properties of recombinant Escherichia coli, Nature, 331 (6157), 633–635, 1988.
  • Brunker, P., Minas, W., Kallio, P. T., Bailey, J. E., Genetic engineering of an industrial strain of Saccharopolyspora erythraea for stable expression of the Vitreoscilla haemoglobin gene (vhb), Microbiology, 144, 2441–2448, 1998.
  • Lombo, F., Pfeifer, B., Leaf, T., Ou, S., Kim, Y. S., Cane, D. E., Licari, P., Khosla, C., Enhancing the atom economy of polyketide biosynthetic processes through metabolic engineering, Biotechnol Prog., 17 (4), 612–617, 2001.
  • Stassi, D. L., Kakavas, S. J., Reynolds, K. A., Gunawardana, G., Swanson, S., Zeidner, D., Jackson, M., Liu, H., Buko, A., Katz, L., Ethyl-substituted erythromycin derivatives produced by directed metabolic engineering, Proc. Natl. Acad. Sci U.S.A, 95 (13), 7305–7309, 1998.
  • Gandecha, A. R., Large, S. L., Cundliffe, E., Analysis of four tylosin biosynthetic genes from the tylLM region of the Streptomyces fradiae genome, Gene, 184 (2), 197–203, 1997.
  • Cropp, T. A., Wilson, D. J., Reynolds, K. A., Identification of a cyclohexylcarbonyl CoA biosynthetic gene cluster and application in the production of doramectin, Nat. Biotechnol, 18 (9), 980–983, 2000.
  • Madduri, K, Kennedy, J., Rivola, G., Inventi-Solari, A., Filippini, S., Zanuso, G., Colombo, A. L., Gewain, K. M., Occi, J. L., MacNeil, D. J., Hutchinson, C. R., Production of the antitumor drug epirubicin (4′-epidoxorubicin) and its precursor by a genetically engineered strain of Streptomyces peucetius, Nat. Bioteclmol 16 (1), 69–74, 1998.
  • Lazzarini, A., Cavaletti, L., Toppo, G., Marinelli, F., Rare genera of actinomycetes as potential producers of new antibiotics, Antonie Van Leeuwenhoek, 78 (3–4), 399–405, 2000.
  • Short, J. M., Recombinant approaches for accessing biodiversity, Nat. Bioteclmol 15 (13), 1322–1323, 1997.
  • Hara, O., Murakami, T., Imai, S., Anzai, H., Itoh, R., Kumada, Y., Takano, E., Satoh, E., Satoh, A., Nagaoka, K., ., The bialaphos biosynthetic genes of Streptomyces viridochromogenes: cloning, heterospecific expression, and comparison with the genes of Streptomyces hygroscopicus, J Gen. Microbiol, 137 (Pt 2), 351–359, 1991.
  • Butler, M. J., Friend, E. J., Hunter, I. S., Kaczmarek, F. S., Sugden, D. A., Warren, M., Molecular cloning of resistance genes and architecture of a linked gene cluster involved in biosynthesis of Oxytetracycline by Streptomyces rimosus, Mol. Gen. Genet., 215 (2), 231–238, 1989.
  • Kim, C. G., Yu, T. W., Fryhle, C. B., Handa, S., Floss, H. G., 3-Amino-5-hydroxybenzoic acid synthase, the terminal enzyme in the formation of the precursor of mC7N units in rifamycin and related antibiotics, J Biol Chem, 273 (11), 6030–6040, 1998.
  • Hyun, C., Kim, S. S., Sohng, J. K., Hahn, J., Kim, J., Suh, J., An efficient approach for cloning the dNDP-glucose synthase gene from actinomycetes and its application in Streptomyces spectabilis, a spectinomycin producer, FEMS Microbiol Lett., 183 (1), 183–189, 2000.
  • Trefzer, A., Pelzer, S., Schimana, J., Stockert, S., Bihlmaier, C., Fiedler, H. P., Welzel, K, Vente, A., Bechthold, A., Biosynthetic gene cluster of simocyclinone, a natural multihybrid antibiotic, Antimicrob. Agents Chemother., 46 (5), 1174–1182, 2002.
  • Piraee, M., Vining, L. C., Use of degenerate primers and touchdown PCR to amplify a halogenase gene fragment from Streptomyces venezuelae ISP5230., J. Ind. Microbiol. Bioteclmol, 29 (1), 1–5, 2002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.