157
Views
30
CrossRef citations to date
0
Altmetric
Research Article

Enzyme Reactor Design Under Thermal Inactivation

&
Pages 61-93 | Published online: 29 Sep 2008

REFERENCES

  • Abu-Reesh, I. and Faqir, N. 1996. Simulation of glucose isomerase reactor: optimum operating temperature. Bioproc. Eng. 14: 205–210.
  • Adams, M., Perler, F., and Kelly, R. 1995. Extremozymes: expanding the limits of biocatalysis. Bio/Technology 13: 662–668.
  • Adams, M. and Kelly, R. 1998. Finding and using hyperthermophilic enzymes. Trends Biotechnol. 16: 329–332.
  • Aitken, M. 1993. Waste treatment applications of enzymes: opportunities and obstacles. Chem. Eng. J. 52: B49–B58.
  • Almeida, M., Fontes, N., Nogueiro, E., García, S., Peres, C., Silva, A., Carvalho, M., and Barreiros, S. 1998. Effect of pressure on enzyme activity in compressed gases. In: Stability and Stabilization of Bio catalysts. pp. 487–491. Ballesteros, A., Plou, F., Iborra, J., and Halling, P., Eds., Elsevier, Amsterdam.
  • Alvaro, G., Fernández-Lafuente, R., Blanco, R., and Guisán, J. 1991. Stabilizing effect of penicillin G sulfoxide, a competitive inhibitor of penicillin G acylase: its practical applications. Enzyme Microb. Technol. 13: 210–214.
  • Azevedo, A., Fonseca, L., and Prazeres, D. 1999. Stability and stabilization of penicillin acylase. J. Chem. Technol. Biotechnol. 74: 1110–116.
  • Ballesteros, A., Plou, F., Iborra, J., and Halling, P. 1998. Stability and Stabilization of Biocatalysts, Elsevier, Amsterdam.
  • Bastos, F., dos Santos, A., Jones, J., Ostreicher, E., Pinto, G., and Paiva, L. 1999. Three different coupled enzymatic systems for situ regeneration of NADPH. Biotechnol. Techn. 13: 661–664.
  • Benkovic, S. and Ballesteros, A. 1997. Biocatalysts — the next generation. Trends Biotechnol. 15: 385–386.
  • Björup, P., Adlercreutz, P., and Clapés, P. 1999. Useful methods in enzymatic synthesis of peptides. A comparative study focussing on kinetically controlled synthesis of Ac-Phe-Ala-NH2 catalyzed by α-chymotripsin. Biocatal. Biotransform. 17: 319–345
  • Bourdillon, C., Hervagault, C., and Thomas, D. 1985. Increase in operational stability of glucose oxidase by the use of an artificial cosubstrate. Biotechnol. Bioeng. 27: 1619–1622.
  • Bruggink, A. 2001. Synthesis of β-lactam antibiotics. Kluwer Acad. Publ., Dordrecht.
  • Buchholz, K. 1982. Reaction engineering parameters for immobilized biocatalysts. In: Advances Biochemical Engineering 24. Fiechter, A., Ed., Springer-Verlag, Berlin.
  • Bucke, C. 1996. Oligosaccharide synthesis using glycosidases. J. Chem. Technol. Biotechnol. 67: 217–220.
  • Burdette, D., Tchernajencko, V., and Zeikus, J. 2000. Effect of thermal and chemical denaturants on Thermoanaerobacter ethanolicus secondary-alcohol dehydrogenase stability and activity. Enzyme Microb. Technol. 27: 11–18.
  • Cao, L., van Rantwijk, F., and Sheldon, R. 2000. Crosslinked enzyme aggregates: a simple and effective method for the immobilization of penicillin acylase. Org. Lett. 2: 1361–1364.
  • Carasik, W. and O’Carroll, J. 1983. Development of immobilized enzymes for production of high-fructose corn syrup Food Technol. 37(10): 85–91.
  • Caruana, C. 1997. Enzymes tackle tough processing. Chemical Eng. Prog., November, pp. 13–20.
  • Cavaille-Lefebvre, D. and Combes, D. 1998. Irreversible high-pressure inactivation of β-galactosidase from Kluyveromyces lactis: comparison with thermal inactivation. J. Biotechnol. 61: 85–93.
  • Chaplin, M. and Bucke, C. 1990. Enzyme Technology, Cambridge University Press, Cambridge.
  • Chen, K. and Wu, J. 1987. Substrate protection of immobilized glucose isomerase. Biotechnol. Bioeng. 30: 817–824.
  • Chibata, I. and Tosa, T. 1976. Industrial application of immobilized microbial cells. In: Immobilized Enzyme Principles. pp. 329–364, Wingard, L., Katchalsky, E., and Goldstein, L., Eds., Academic Press, New York.
  • Coulon, D. and Ghoul, M. 1998. The enzymatic synthesis of non-ionic surfactants: the sugar esters. Agro Food Industry Hi-Tech 9: 22–26.
  • Dagys, R., Pauliukonis, A., and Kauzlauskas, D. 1984. New method for the determination of kinetic constants for two-stage deactivation of biocatalysts. Biotechnol. Bioeng. 26: 620–622.
  • Dixon, M., and Webb, C. 1979. Enzymes, 3rd ed. Academic Press, New York.
  • D’ Souza, S. 1999. Immobilized enzymes in bioprocess. Current Sci. 77: 69–78.
  • Engasser, J., and Horvath, C. 1976. Diffusion and kinetics with immobilized enzymes. In: Immobilized Enzyme Principles, pp. 127–220. Wingard, L., Katchalsky, E., and Goldstein, L., Eds., Academic Press, New York.
  • Ertan, H., Kazan, D., and Erarslan, A. Cross-linked stabilization of Escherichia coli penicillin G acylase against pH by dextran-dialdedhyde polymers. Biotechnol. Tech. 11: 225–229.
  • Faber, K. 1997. Biotransformations in Organic Chemistry, Springer, Berlin.
  • Faqir, N. and Abu-Reesh, I. 1998. Optimum temperature operation mode for glucose isomerase operating at constant glucose conversion. Bioprocess Eng. 19: 11–17.
  • Fernández-Lafuente, R., Rosell, C., Rodríguez, V., and Guisán, J. 1995. Strategies for enzyme stabilization by intramolecular crosslinking with bifunctional reagents. Enzyme Microb. Technol. 17: 517–523.
  • Fernández-Lafuente, R., Rosell, C., Canaan-Haden, L., Rodes, L., and Guisán, J. 1999. Facile synthesis of artificial enzyme nano-environments via solid-phase chemistry of immobilized derivatives: dramatic stabilization of penicillin acylase versus organic solvents. Enzyme Microb. Technol. 24: 96–103.
  • Fishman, M. 1978. Enzymes in analytical chemistry. Anal. Chem. 50: 261–273.
  • Gehlawat, J. 1991. High fructose syrups as a substitute for sugar. J. Scient. d. Res. 50: 289–300.
  • Gill, I., López-Fandiño, R., Jorba, X., and Vulfson, E. 1996. Biologically active peptides and enzymatic approaches to their production. Enzyme Microb. Technol. 18: 162–183.
  • Henley, J. and Sadana, A. 1985. Categorization of enzyme deactivation using a series type mechanism. Enzyme Microb. Technol. 7: 50–60.
  • Henley, J. and Sadana, A. 1986. Deactivation theory. Biotechnol. Bioeng. 28: 1277–1285.
  • Hummel, W. 1999. Large-scale applications of NAD(P)-dependent oxidoreductases: recent developments. Trends Biotechnol. 17: 487–493.
  • Illanes, A., Ruiz, A., Zuñiga, M., Aguirre, C., O’Reilly, S., and Curotto, E. 1990. Immobilization of lactase for the continuous hydrolysis of whey permeate. Bioproc. Eng. 5: 257–262.
  • Illanes, A., Zuñiga, M., Contreras, S., and Guerrero, A. 1992. Reactor design for the enzymatic isomerization of glucose to fructose. Bioproc. Eng. 7: 199–204.
  • Illanes, A., Altamirano, C., and Cartagena, O. 1994. Enzyme reactor performance under thermal inactivation. In: Advances Bioprocess Engineering, pp. 467–472, Galindo, E. and Ramírez, O., Eds., Kluwer Academic Publishers, Dordrecht.
  • Illanes, A., Acevedo, F., Gentina, J., Reyes, I., Torres, R., Cartagena, O., Ruiz, A., and Vásquez, M. 1994. Production of penicillin acylase from Bacillus megaterium in complex and defined media. Process Biochem. 29: 263–270.
  • Illanes, A. 1996. Biotecnología de Enzimas. Organización de Estados Americanos, Ediciones Universitarias de Valparaíso, Valparaíso.
  • Illanes, A., Altamirano, C., and Zuñiga, M. 1996. Thermal inactivation of immobilized penicillin acylase in the presence of substrate and products. Biotechnol. Bioeng. 50: 609–616.
  • Illanes, A., Altamirano, C., Aillapán, A., Tomasello, G., and Zuñiga, M. 1998a. Packed-bed reactor performance with immobilized lactase under thermal inactivation. Enzyme Microb. Technol. 23: 3–9.
  • Illanes, A. Wilson, L., Altamirano, C., and Aillapán, A. 1998b. Reactor performance under thermal inactivation and temperature optimization with chitin-immobilized lactase. In: Stability and Stabilization of Biocatalysts, pp. 27–34, Ballesteros, A., Plou, F., Iborra, J., and Halling, P., Eds., Elsevier, Amsterdam.
  • Illanes, A. 1999. Stability of biocatalysts. Electronic J. Biotechnol. 2(1): 7–15.
  • Illanes, A., Wilson, L., and Raiman, L. 1999. Design of immobilized reactors for the continuous production of fructose syrup from whey permeate. Bioprocess Eng. 21: 509–515.
  • Illanes, A., Wilson, L., and Tomasello, G. 2000. Temperature optimization for reactor operation with chitin-immobilized lactase under modulated inactivation. Enzyme Microb. Technol. 27: 270–278.
  • Illanes, A., Wilson, L., and Tomasello, G. 2001. Effect of modulation of enzyme inactivation on temperature optimization for reactor operation with chitin-immobilized lactase. J. Mol. Catal. B. Enzymatic 1: 531–540, 2001.
  • Imanaka, T., Shibazaki, M., and Takagi, M. 1988. A new way of enhancing the thermostability of proteases. Nature 324: 695–687.
  • Jaenicke, R. 2000. Stability and stabilization of globular proteins in solution. J. Biotechnol. 79: 193–203.
  • Joshi, J., Sawant, S., Patwardhan, A., Patil, D., Kshatriya, S., and Nere, N. 2001. Relation between flow pattern and deactivation of enzymes in stirred reactors. Chem. Eng. Sci. 56: 443–452.
  • Kamat, S., Beckman, E., and Russell, A. 1995. Enzyme activity in supercritical fluids. Crit. Rev. Biotechnol. 15: 41–71.
  • Katchalsky-Katzir, E. 1993. Immobilized enzymes — learning from past successes and failures. Trends Biotechnol. 11: 471–478.
  • Klein, M. and Langer, R. 1986. Immobilized enzymes in clinical medicine: an emerging approach to new drug therapies. Trends Biotechnol. 4: 179–186.
  • Klibanov, A. 1997. Why are enzymes less active in organic solvents than in water? Trends Biotechnol. 15: 97–101.
  • Koskinen, A. and Klibanov, A. 1996. Enzymatic Reactions in Organic Media, Blackie Academic & Professional, London.
  • Kumar, R., Suresh, K., and Shankar, S. 1996. Kinetics and reaction engineering of penicillin G hydrolysis. J. Chem. Technol. Biotechnol. 66: 243–250.
  • Lamare S. and Legoy M. 1993. Biocatalysis in the gas phase. Trends Biotechnol. 11: 413–418.
  • Levenspiel, O. 1972. Chemical Reaction Engineering, 2nd ed., John Wiley & Sons, New York.
  • Liang, J., Li, Y., and Yang, V. 2000. Biomedical application of immobilized enzymes. J. Pharm. Sci. 89: 979–990.
  • Linko, Y., Saarinen, P., and Linko, M. 1975. Starch conversion by soluble and immobilized α-amylase. Biotechnol. Bioeng. 17: 153–161.
  • Longo, M. and Combes, D. 1999. Thermostability of modified enzymes: a detailed study. J. Chem. Technol. Biotechnol. 74: 25–32.
  • Lonhienne, T., Gerday, C., and Feller, G. 2000. Psychrophilic enzymes: revisiting the thermodynamic parameters of activation may explain local flexibility. Biochim. Biophys. Acta 1543: 1–10.
  • Lübbert, A. and Jørgenssen, S. 2001. Bioreactor performance: a more scientific approach for practice. J. Biotechnol. 85: 187–212.
  • Ludikhuyze, L., Ooms, V., Weemans, C., and Hendrickx, M. 1999. Kinetic study of the irreversible inactivation of myrosinase from broccoli (Brassica oleracea L. Cv. Italica). J. Agric. Food Chem. 47: 1794–1800.
  • Margolin, A. 1996. Novel crystalline catalysts. Trends Biotechnol. 14: 223–230.
  • Marshall, C. 1997. Cold-adapted enzymes. Trends Biotechnol. 15: 359–364.
  • Messing, R. 1975. Immobilized Enzymes for Industrial Reactors, Academic Press, New York.
  • Miller, J. and Nagarajan, V. 2000. The impact of biotechnology on the chemical industry in the 21st century. Trends Biotechnol. 18: 190–196.
  • Misset, O. 1993. Stability of industrial enzymes. In: Stability and Stabilization of Enzymes. pp. 111–131. van den Tweel, W., Harder, A., and Buitelaar, R., Eds., Elsevier, Amsterdam.
  • Naik, S. and Karanth, N. 1978. Effect of internal and external diffusion on the apparent stability of immobilised enzyme catalysts. J. Appl. Chem. Biotechnol. 28: 569–580.
  • Neidelman, S. 1991. Historical perspective on the industrial uses of biocatalysts. In: Biocatalysts for Industry, pp. 21–33, Dordick, J., Ed., Plenum Press, New York.
  • Noritomi, H., Koyama, K., Kato, S., and Nagahama, K. 1998. Increased thermostability of cross-linked enzyme crystals of subtilisin in organic solvents. Biotechnol. Tech. 12: 467–469.
  • Ó Fágáin, C. 1997. Stabilizing Protein Function, Springer, Berlin.
  • >O’Neill, S. 1972. Thermal inactivation of immobilized enzymes in continuous reactors. Biotechnol. Bioeng. 14: 473–491.
  • Ortega, N., Busto, M., and Pérez-Mateos, M. 1998. Stabilization of β-glucosidase entrapped in alginate and polyacrylamide gels toward thermal and proteolytic deactivation. J. Chem. Technol. Biotechnol 73: 7–12.
  • Ospina, S., López-Munguía, A., González, R., and Quintero, R. 1992. Characterization and use of a penicillin acylase biocatalyst. J. Chem. Technol. Biotechnol. 53: 205–214.
  • Ospina, S., Barzana, E., Ramírez, O., and López-Munguía, A. 1996. Effect of pH in the synthesis of ampicillin by penicillin acylase. Enzyme Microb. Technol. 19: 462–469.
  • Palazzi, E. and Converti, A. 2001. Evaluation of diffusional resistances in the process of glucose isomerization to fructose by immobilized glucose isomerase. Enzyme Microb. Technol. 28: 246–252.
  • Parmar, A., Kumar, H., Marwaha, S., and Kennedy, J. 2000. Advances in enzymatic transformation of penicillins to 6–aminopenicillanic acid (6–APA). Biotechnol. Adv. 18: 289–301.
  • Peterson, R., Hill, C., and Amundson, C. 1989. Effects of temperature on the hydrolysis of lactose by immobilized β-galactosidase in a capillary bed reactor. Biotechnol. Bioeng. 34: 429–437.
  • Pitcher, W. 1978. Design and operation of immobilized enzyme reactors. In: Advances Biochemical Engineering, Vol. 10, pp. 1–25, Ghose, T., Fiechter, A., and Blakebrough, A., Eds., SpringerVerlag, Berlin.
  • Polastro, E. 1989. Enzymes in the fine-chemicals industry: dreams and realities. Bio/Technology 7: 1238–1241.
  • Poltorak, O., Chukhray, E., and Torshin, I. 1998. Dissociative thermal inactivation, stability, and activity of oligomeric enzymes. Biochemistry (Moscow) 63: 303–31.
  • Regan, D., Dunnill, P., and Lilly, M. 1974. Immobilized enzyme reaction stability. Attrition of the support materials. Biotechnol. Bioeng. 16: 333–339.
  • Rosell, C., Terreni, M., Fernández-Lafuente, R., and Guisán, J. 1998. A criterion for the selection of monophasic solvents for enzymatic synthesis. Enzyme Microb. Technol. 23: 64–69.
  • Rovito, B. and Kittrell, J. 1973. Film and pore diffusion studies with immobilized glucose oxidase. Biotechnol. Bioeng. 15: 143–161.
  • Rúa, M., Atomi, H., Schmidt-Dannert, C. and Schmid, R. 1998. High-level expression of the thermoalkalophilic lipase from Bacillus thermocatenulatus in Escherichia coli. Appl. Microbiol. Biotechnol. 49: 405–410.
  • Sarkar, P., Bhatacharya, P., Mukherjea, R., and Mukherjea, M. 1987. Isolation and purification of protease from human placenta by foam fractionation. Biotechnol. Bioeng. 29: 934–940.
  • Savidge, T. 1984. Enzymatic conversions used in the production of penicillins and cephalosporins. In: Biotechnology of Industrial Antibiotics, pp. 171–224, Vandamme, E., Ed., Marcel Dekker, New York.
  • Schmidt, E. 1994. Production of fine chemicals. In: Applied Biocatalysis, pp. 133–142. Cabral, J., Best, D., Boross, L., and Tramper, J., Eds., Harwood Acad. Publ., Chur.
  • Schokker, E. and van Boekel, M. 1999. Kinetics of thermal inactivation of the extracellular proteinase from Pseudomonas flurescens 22F: influence of pH, calcium and protein. J. Agric. Food Chem. 47: 1681–1686.
  • Scouten, W., Luong, J., and Brown, R. 1995. Enzyme or protein immobilization techniques for applications in biosensor design. Trends Biotechnol. 13: 178–185.
  • Shewale, J., Deshpande, J., Sudhakaran, V., and Ambedkar, S. 1990. Penicillin acylase: applications and potentials. Proc. Biochem. 26: 97–103.
  • Shewale, J. and Sudhakaran, V. 1997. Penicillin V acylase: its potential in the production of 6–aminopenicillanic acid. Enzyme Microb. Technol. 20: 402–410.
  • Siimer, E. 1978. Generalized rate equations for onesubstrate enzymatic reactions. Biotechnol. Bioeng. 20: 1853–1857.
  • Sundaram, P. and Venkatesh, R. 1998. Retardation of thermal and urea induced inactivation of α-chymotrypsin by modification with carbohydrate polymers. Protein Eng. 11: 699–705.
  • Stevenson, D., Stanley, R., and Furneaux, R. 1993. Optimization of β-d-galactopyranoside synthesis from lactose using commercially available β-galactosidases. Biotechnol. Bioeng. 42: 657–666.
  • Tischer, W. and Kasche, V. 1999. Immobilized enzymes: crystals or carriers? Trends Biotechnol. 17: 326–334.
  • Turner, N. and Vulfson, E. 2000. At what temperature can enzymes maintain their catalytic activity? Enzyme Microb. Technol. 27: 108–113.
  • Ulijn, R., Janssen, A., Moore, B., and Halling, P. 2001. Predicting when precipitating-driven synthesis is feasible: application to biocatalysis. Chem. Eur. J. 7: 2089–2098.
  • Undurraga, D., Markovits, A., and Erazo, S. 2001. Cocoa butter equivalent through enzymic esterification of palm oil midfraction. Process Biochem. 36: 933–939.
  • Verhoff, F. and Schlager, S. 1981. Enzyme activity maintenance in packed-bed reactors via continuous enzyme addition. Biotechnol. Bioeng. 23: 41–60.
  • Vieille, C. and Zeikus, J. 1996. Thermoenzymes: identifying molecular determinants of protein structural and functional stability. Trends Biotechnol. 14: 183–190.
  • Vieth, R., Venkatasubramanian, K., Constantinides, A., and Davidson, B. 1976. In: Immobilized Enzyme Principles, pp. 221–327, Wingard, L., Katchalsky, E., and Goldstein, L., Eds., Academic Press, New York.
  • Villaume, I., Thomas, D., and Legoy, M. 1990. Catalysis may increase the stability of an enzyme: the example of horse liver alcohol dehydrogenase. Enzyme Microb. Technol. 12: 506–509.
  • Vrábel, P., Polakovi, M., Godó, S., Bálea, V., Doomalansky, P., and Gemeiner, P. 1997. Influence of immobilization on the thermal inactivation of yeast invertase. Enzyme Microb. Technol. 21: 196–202.
  • Walsh, G., Power, R., and Headon, D. 1993. Enzymes in the animal-feed industry. Trends Biotechnol. 11: 424–430.
  • Weemaes, C., De Cordt, S., Goosens, K., Ludikhuyze, L., Hendrickx, M., Heremans, K., and Tobback, P. 1996. High pressure, thermal and combined pressure-temperature stabilities of α-amylase from Bacillus species. Biotechnol. Bioeng. 29: 934–940.
  • Wegman, M., Janssen, M., van Rantwijk, F., and Sheldon, R. 2001. Towards biocatalytic synthesis of β-lactam antibiotics. Adv. Synth. Catal. 343: 559–576.
  • Worstell, J., Doll, M., and Worstell, J. 2000. What’s causing your catalyst to decay? Chem. Eng. Prog. September, pp 59–64.
  • Wrotnowsky, C., 1997. Unexpected niche applications for industrial enzymes drives market growth. Genetic Eng. News 17(3): 14–30.
  • Yang, P., Chen, Q., Xie, Z., Chen, S., Yang, Y., Park, Y., and Zhou, H. 1999. Kinetics of thermal inactivation of Penaeus penicillatus acid phosphatase. Biochemistry (Moscow) 64: 464–467.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.