102
Views
37
CrossRef citations to date
0
Altmetric
Research Article

The Renal Kallikrein-Kinin System: Its Role as a Safety Valve for Excess Sodium Intake, and Its Attenuation as a Possible Etiologic Factor in Salt-Sensitive Hypertension

&
Pages 43-115 | Published online: 29 Sep 2008

REFERENCES

  • Abelous JE, Bardier E. Les substances hypotensive de l’urine humaine normale. CR Soc Biol (Paris) 1909; 66: 511–2.
  • Frey EK. Zusammenhänge zwischen Herzarbeit und Nierentätigkeit. Arch Klin Chir 1926; 142: 663–9.
  • Kraut H, Frey EK, Bauer E. Über ein neues Kreislaufhormonen. II. Mitteilung. Hoppe-Seyler’s Z Physiol Chem 1930; 175: 97–106.
  • Rocha e Silva M, Beraldo WT, Rosenfeld G. Bradykinin, a hypotensive and smooth muscle stimulating factor released from plasma globulin by snake venom and by trypsin. Am J Physiol 1949; 156: 261–73.
  • Elliott DF, Lewis GP, Horton EW. The structure of bradykinin—a plasma kinin from ox blood. Biochem Biophys Res Commun 1960; 3: 87–91.
  • Pierce JV, Webster ME. Human plasma kallidins: isolation and chemical studies. Biochem Biophys Res Commun 1961; 78: 60–5.
  • Werle E, Trautshold I, Leysath G. Isolierung und Structur des Kallidins. Hoppe-Seyler’s Z Physiol Chem 1961; 326: 174–6.
  • Stürmer E, Berde B. A pharmacological comparison between synthetic bradykinin and synthetic kallidin. J Pharmacol Exp Ther 1963; 139: 38–41.
  • Ferreira SH, Vane JR. The disappearance of bradykinin and eledoisin in the circulation and vascular beds of the cat. Br J Pharmacol 1965; 30: 417–24.
  • Uchida Y, Katori M. Independent consumption of high and low molecular weight kininogens in vivo. In: Greenbaum L, Margolius H, eds. Kinins IV, Part A. Pp. 113–8. New York: Plenum Press, 1986.
  • Kato H, Enjyoji K, Miyata T, et al. Demonstration of arginyl-bradykinin moiety in rat HMW kininogen: Direct evidence for liberation of bradykinin by rat glandular kallikreins. Biochem Biophys Res Commun 1985; 127: 289–95.
  • Nossel HL. The contact system. In: Biggs, R, ed. Human Blood Coagulation, Haemostasis and Thrombosis. Pp. 79–132. London: Blackwell Science, 1972.
  • Kaplan AP, Silverberg M, Ghebrehiwer B: The intrinsic coagulation/kinin pathway—The classical complement pathway and their interactions. In: Greenbaum L, Margolius H, eds. Kinins IV, Part B. Pp. 11–25. New York: Plenum Press, 1986.
  • Rojkjaer R, Schmaier AH. Activation of the plasma kallikrein/kinin system on endothelial cell membranes. Immunopharmacology 1999; 43: 109–14.
  • Maeda H, Yamamoto T. Pathogenic mechanisms induced by microbial proteases in microbial infection. Biol Chem Hoppe Seyler 1996; 377: 217–26.
  • Inoue H, Fuki K, Miyake Y. Identification and structure of the rat true tissue kallikrein gene expressed in the kidney. J Biochem (Tokyo) 1989; 105: 834–40.
  • Berg T, Bradshaw RA, Carretero OA, et al. A common nomenclature for members of the tissue (glandular) kallikrein gene families. Agents Actions 1992; 38/I (Supplements): 19–25.
  • Clements JA, Hooper J, Dong Y, et al. The expanded human kallikrein (KLK) gene family: Genomic organisation, tissue-specific expression and potential functions. Biol Chem 2001; 382: 5–14.
  • Chao J, Chao L. Biochemistry, regulation and potential function of kallistatin. Biol Chem Hoppe Seyler 1995; 376: 705–13.
  • Chao J, Chen LM, Xiong W, et al. Tissue kallikrein-binding protein is a serpin. I. Purification, characterization, and distribution in normotensive and spontaneously hypertensive rats. J Biol Chem 1990; 265: 16394–401.
  • Erdös EG, Yang HYT: Kininases, In: Erdös E, ed. Bradykinin, Kallidin and Kallikrein. Pp. 289–323. Berlin: Springer-Verlag, 1970.
  • Ishida H, Scicli AG, Carretero OA. Contribution of various rat plasma peptidases to kinin hydrolysis. J Pharmacol Exp Ther 1989; 251: 817–20.
  • Shima C, Majima M, Katori M. A stable degradation product of bradykinin, Arg-Pro-Pro-Gly-Phe, in the degradation pathway in human plasma. Jpn J Pharmacol 1992; 60: 111–9.
  • Majima M, Sunahara N, Harada Y, et al. Detection of the degradation products of bradykinin by enzyme immunoassays as markers for the release of kinin in vivo. Biochem Pharmacol 1993; 45: 559–67.
  • Majima M, Nishiyama K, Yao K, et al. Determination of bradykinin-(1-5) in the inflammatory exudate by a new ELISA as a reliable mediator for bradykinin generation. Inflamm Res 1996; 45: 416–23.
  • Majima M, Katori M, Oginao M, et al. Failure of endogenous blood kinin levels elevated by captopril to induce hypotension in normotensive and hypertensive rats: A study using a newly developed ELISA for kinin. Biomed Res 1996; 17: 15–25.
  • Majima M, Katori M, Ogino M, et al. Lack of contribution of circulatory kinin elevated by captopril to induce hypotension in normotensive and hypertensive rats. Immunopharmacology 1996; 33: 291–3.
  • Nakajima S, Ito H, Hayashi I, et al. Inhibition of kinin degradation on the luminal side of renal tubules reduces high blood pressure in deoxycorticosterone acetate salt-treated rats. Clin Exp Pharmacol Physiol 2000; 27: 80–7.
  • Campbell DJ, Duncan A-M, Kladis A. Angiotensin-converting enzyme inhibition modifies angiotensin but not kinin peptide levels in human atrial tissue. Hypertension 1999; 34: 171–5.
  • Regoli D, Barabe J. Pharmacology of bradykinin and related kinins. Pharmacol Rev 1980; 32: 1–46.
  • Regoli D, Rizzi A, Perron S, et al. Classification of kinin receptors. Biol Chem 2001; 382: 31–5.
  • Hock F, Wirth K, Albus U, et al. Hoe 140 a new potent and long acting bradykinin antagonist: In vitro studies. Br J Pharmacol 1991; 102: 769–73.
  • Wirth K, Hock F, Albus U, et al. Hoe 140 a new potent and long acting bradykinin antagonist: In vivo studies. Br J Pharmacol 1991; 102: 774–7.
  • Stewart JM, Gera L, York EJ, et al. Bradykinin antagonists: present progress and future prospects. Immunopharmacology 1999; 43: 155–61.
  • Stewart JM, Gera L, York EJ, et al. Metabolism-resistant bradykinin antagonists: Development and application. Biol Chem 2001; 382: 37–41.
  • Asano M, Inamura N, Hatori C, et al. Discovery of orally active nonpeptide bradykinin B2 receptor antagonists. Immunopharmacology 1999; 43: 163–8.
  • Roberts RA. Bradykinin receptors: Characterization, distribution and mechanisms of signal transduction. Prog Growth Factor Res 1989; 1: 237–52.
  • Higashida H, Yokoyama S, Hoshi N, et al. Signal transduction from bradykinin, angiotensin, adrenergic and muscarinic receptors to effector enzymes, including ADP-ribosyl cyclase. Biol Chem 2001; 382: 23–30.
  • Chai KX, Ni A, Wang D-Z, et al. Genomic DNA sequence, expression, and chromosomal localization of the human B1 bradykinin receptor gene BDKRB1. Genomics 1996; 31: 51–7.
  • Colman RW, Wong PY: Kallikrein-kinin system in pathologic conditions., In: Erdös E, ed. Bradykinin, Kallidin and Kallikrein. Pp. 569–607. Berlin: Springer-Verlag, 1979.
  • Katori M, Majima M, Odoi-Adome R, et al. Evidence for the involvement of a plasma kallikrein-kinin system in the immediate hypotension produced by endotoxin in anaesthetized rats. Br J Pharmacol 1989; 98: 1383–91.
  • Uchida Y, Tanaka K, Harada Y, et al.: Activation of plasma kallikrein-kinin system and its significant role in pleural fluid accumulation of rat carrageenin-induced pleurisy. In: Greenbaum L, Margolius H, eds. Kinin IV, Part A. Pp. 113–8. New York: Plenum Press, 1983.
  • Schölkens BA. Kinins in the cardiovascular system. Immunopharmacology 1996; 33: 209–16.
  • Chao J, Miao RQ, Chen V, et al. Novel roles of kallistatin, a specific tissue kallikrein inhibitor, in vascular remodeling. Biol Chem 2001; 382: 15–21.
  • Hilton SM: The physiological role of glandular kallikrein. In: Erdös E, Wilde A, eds. Brady-kinin, Kallidin, and Kallikrein. Pp. 389-98. Berlin: Springer-Verlag, 1970.
  • Schachter M: Vasodilatation in the submandibular gland of the cat, rabbit, and sheep, In: Erdös E, Wilde A, eds. Bradykinin, Kallidin, and Kallikrein. Pp. 400–8. Berlin: Springer-Verlag, 1970.
  • Bhoola KD, Figueroa CD, Worthy K. Bioregulation of kinins: kallikreins, kininogens, and kininases. Pharmacol Rev 1992; 44: 1–80.
  • Rabito S, Scicli AG, Kher V, et al. Immunoreactive glandular kallikrein in rat plasma: a radioimmunoassay for its determination. Am J Physiol 1982; 242: H602–10.
  • Rabito SF, Orstavik T, Scicli AG, et al. Role of the autonomic nervous system in the release of rat submandibular gland kallikrein into the circulation. Circ Res 1983; 52: 635–41.
  • Nustad K, Orstravik TB, Gautivik KM. Radioimmunological measurement of rat submandibu-lar gland kallikrein in tissue and serum. Micorvasc Res 1978; 15: 115-6 (abstr).
  • Rabito SF, Amin V, Scicli AG, et al. Glandular kallikrein in plasma and urine., In: Fujii S, Moriya H, Suzuki T, eds. Kinins II. Pp. 127–42. New York: Plenum Press, 1979.
  • Geiger R, Calusnitzer B, Fink E, et al. Isolation of an enzymatically active glandular kallikrein from human plasma. Hoppe-Seyler’s Z Physiol Chem 1980; 1361: 1795–803.
  • Lawton WT, Proud D, French ME, et al. Characterization and origin of immunoreactive glandular kallikrein in rat plasma. Biochem Pharmacol 1981; 30: 11731–7.
  • Scicli AG, Mindroiu T, Scicli G, et al. Blood kinins, their concentration in normal subjects and in patients with congenital deficiency in plasma prekallikrein and kininogen. J Lab Clin Med 1982; 100: 81–93.
  • Kaizu T, Margolius HS. Studies on rat renal cortical cell kallikrein. 1. Separation and measurement. Biochim Biophys Acta 1975; 411: 305–15.
  • Tomita K, Endou H, Sakai F. Localization of kallikrein-like activity along a single nephron in rabbits. Pflügers Archiv 1981; 389: 91–5.
  • Omata K, Carretero OA, Scicli AG, et al. Localization of active and inactive kallikrein in the isolated tubular segments of the rabbit nephron. Kidney Int 1982; 22: 602–7.
  • Proud D, Knepper MA, Pisano JJ. Distribution of immunoreactive kallikrein along the rat nephron. Am J Physiol 1983; 244: F510–5.
  • Ostravik TB, Nustad K, Brandtzaeg P, et al. Cellular origin of urinary kallikreins. J Histochem Cytochem 1976; 24: 1037–9.
  • Ostravik TB, Inagami T. The localization of kallikrein in the rat kidney and its anatomical relationship to renin. J Histochem Cytochem 1982; 30: 385–90.
  • Figueroa CD, Caorsi I, Subiabre J, et al. Immunoreactive kallikrein localization in the rat kidney: an immuno-electron-microscopic study. J Histochem Cytochem 1984; 32: 117–21.
  • Figueroa CD, Aorst I, Vio CP. Visualization of renal kallikrein in luminal and basolateral membranes: Effect of tissue processing method. J Histochem Cytochem 1984; 32: 1238–40.
  • Vio CP, Figueroa CD. Subcellular localization of renal kallikrein by ultrastructural immuno-cytochemistry. Kidney Int 1985; 28: 35–42.
  • Figueroa CD, MacIver AG, Mackenzie JC, et al. Localization of immunoreactive kininogen and tissue kallikrein in the human nephron. Histochemistry 1988; 89: 437–42.
  • Vio CP, Figueroa CD, Caorsi I. Anatomical relationship between kallikrein-containing tubules and the juxtaglomerular apparatus in the human kidney. Am J Hypertens 1988; 1: 269–71.
  • Xiong W, Chao L, Chao J. Renal kallikrein mRNA localization by in situ hybridization. Kidney Int 1989; 35: 1324–9.
  • El-Dahr SS, Chao J. Spacial and temporal expression of kallikrein and its mRNA during nephron maturation. Am J Physiol 1992; 262: F705–11.
  • Cumming AD, Walsh T, Wojtacha D, et al. Expression of tissue kallikrein in human kidney. Clin Sci 1994; 87: 5–11.
  • Hial V, Keiser HR, Pisano JJ. Origin and content of methionyl-lysyl bradykinin, lysyl-bradykinin and bradykinin in human urine. Biochem Pharmacol 1976; 25: 2499–503.
  • Pisano JJ, Yates K, Pierce JV. Kininogen in human urine. Agents Actions 1978; 8: 1–2.
  • Proud D, Perkins M, Pierce JV, et al. Characterization and localization of human renal kininogen. J Biol Chem 1981; 256: 10634–9.
  • Iwai N, Matsubara M, Kita T, et al. Detection of low molecular kininogen messenger RNA in human kidney. J Hypertens 1988; 6 (Suppl. 4): S399-400.
  • Mimura T, Hayashi I, Hoshino T, et al. Demonstration of high-molecular-weight kininogen in kininogen-deficient rat kidney. J Biochem (Tokyo) 1994; 116: 59–63.
  • Hagiwara Y, Kojima M, Hayashi I, et al. Demonstration of derivation of rat urinary bradykinin from plasma low-molecular-weight kininogen: A study using kininogen-deficient rats. Biochim Biophys Acta 1994; 204: 1219–24.
  • Chao J, Chao L. A major difference of kalllikrein-binding protein in spontaneously hypertensive versus normotensive rats. J Hypertens 1988; 6: 551–7.
  • Okamoto H, Greenbaum L. Isolation and structure of T-kinin. Biochem Biophys Res Commun 1983; 112: 701–8.
  • Cole T, Inglis A, Roxburgh C, et al. Major acute phase alpha-1-protein of the rat is homologous to bovine kininogen and contains the sequence for bradykinin: its synthesis is regulated at the mRNA level. FEBS Lett 1985; 11: 57–61.
  • Utsunomiya I, Oh-ishi S, Hayashi I, et al. Monoclonal antibodies against rat T-kininogen: application to radioimmunoassay and immunohistochemistry. J Biochem (Tokyo) 1988; 103: 225–30.
  • Miwa I, Erdös EG, Seki T. Presence of three peptides in urinary kinin (substance Z) preparations. Life Sci 1968; 7: 1339–43.
  • Miwa I, Erdös EG, Seki T. Separation of peptide components of urinary kinin (substance Z). Proc Soc Exp Biol Med 1969; 131: 768–72.
  • Yoshinaga K, Abe K, Miwa I, et al. Evidence for the renal origin of urinary kinin. Experientia 1964; 20: 396–7.
  • Abe K. Urinary excretion of kinin in man with special reference to its origin. Tohoku J Exp Med 1965; 82: 175.
  • Nasjletti A, Colina-Chourio J, McGiff JC. Disappearance of bradykinin in the renal circulation of dogs: effects of kininase inhibition. Circ Res 1975; 37: 59–65.
  • Kauker ML. Bradykinin action on the efflux of luminal 22Na in the rat nephron. J Pharmacol Exp Therap 1980; 214: 119–23.
  • Tomita K, Pisano JJ. Binding of [3H]-bradykinin in isolated nephron segments of the rabbit. Am J Physiol 1984; 246: F732–7.
  • Figueroa CD, Gonzalez CB, Grigoriev S, et al. Probing for the bradykinin B2 receptor in rat kidney by antipeptide and anti-ligand antibodies. J Histochem Cytochem 1995; 43: 137–48.
  • Song Q, Wang D-Z, Harley RA, et al. Cellular localization of low-molecular-weight kininogen and bradykinin B2 receptor mRNAs in human kidney. Am J Physiol 1996; 270: F919–26.
  • Tomita K, Pisano JJ, Knepper MA. Control of sodium and potassium transport in the cortical collecting duct of the rat. J Clin Invest 1985; 76: 132–6.
  • Carone FA, Ullman TN, Oparil S, et al. Micropuncture evidence of rapid hydrolysis of bradykinin by rat proximal tubules. Am J Physiol 1976; 230:</b>1420-1424.
  • Marchetti J, Roseau S, Alhenc-Gelas F. Angiotensin converting enzyme and kinin-destroying enzymes along the rabbit single nephron. Kidney Int 1987; 31: 744–51.
  • Ikemoto F, Song G, Tominaga M, et al. Angiotensin-converting enzyme in the rat kidney. Activity, distribution, and response to angiotensin-converting enzyme inhibitors. Nephron 1990; 55 (Suppl.): 3–9.
  • Marinkovi KG, Ward PE, Erdös EG, et al. Carboxypeptidase-type kininase of human kidney and urine. Proc Soc Exp Biol Med 1980; 156: 6–12.
  • Kuribayashi Y, Majima M, Katori M. Major kininases in rat urine are neutral endopeptidase and carboxypeptidase Y-like exopeptidase. Biomed Res 1993; 14: 191–201.
  • Majima M, Shima C, Saito M, et al. Poststatin, a novel inhibitor of bradykinin-degrading enzymes in rat urine. Eur J Pharmacol 1993; 232: 181–90.
  • Saito M, Majima M, Katori M, et al. Degradation of bradykinin in human urine by carbox-ypeptidase Y-like exopeptidase and neutral endopeptidase and their inhibition by ebelactone B and phosphoramidon. Int J Tissue React 1995; 17: 181–90.
  • Majima M, Kuribayashi Y, Ikeda Y, et al. Diuretic and natriuretic effect of ebelactone B in anesthetized rats by inhibition of a urinary carboxypeptidase Y-like kininase. Jpn J Pharmacol 1994; 65: 79–82.
  • Shima M, Seino Y, Torikai S, et al. Intrarenal localization of degradation of atrial natriuretic peptides in isolated glomeruli and cortical nephron segments. Life Sci 1988; 43: 357–63.
  • Schulz WW, Hagler HK, Buja IM, et al. Ultrastructural localization of angiotensin I-convert-ing enzyme (EC 3.4.15.1) and neutral metalloendopeptidase (EC 3.4.24.11) in the proximal tubules of the human kidney. Lab Invest 1988; 59: 789–97.
  • Sakakibara T, Ura N, Shimamoto K, et al.: Localization of neutral endopeptidase in the kidney determined by the stop-flow method. In: Abe K, Moriya H, Fujii S, eds. Kinin V. Pp. 349–53. New York: Plenum Press, 1989.
  • Skidgel RA, Davis RM, Erdös EG. Purification of a human urinary carboxipeptidase A, B or N. Anal Biochem 1984; 140: 520–31.
  • Ura N, Carretero OA, Erdös EG. Role of renal endopeptidase 24.11 in kinin metabolism in vitro and in vivo. Kidney Int 1987; 32: 507–13.
  • Ogata H, Ura N, Shimamoto K, et al.: A sensitive method for differential determination of kininase I, II and neutral endopeptidase (NEP) in human urine. In: Abe K, Moriya H, Fujii S, eds. Kinins V. Pp. 343–8, New York: Plenum Press, 1989.
  • Ura N, Shimamoto K, Satoh S, et al. Renal kininase I, kininase II and neutral endopeptidase 24.11 activities in patients with essential hypertension, primary aldosteronism and Cushing’s syndrome. Hypertens Res 1993; 16: 253–8.
  • Erdös EG. Some old and some new ideas on kinin metabolism. J Cardiovasc Pharmacol 1990; 15 (Suppl.): 520–4.
  • Wilks S. Prolyl endopeptidase. Life Sci 1983; 33: 2149–57.
  • Yang T, Terada Y, Nonoguchi H, et al. Distribution of kallikrein-binding protein mRNA in kidneys and difference between SHR ad WKY. Am J Physiol 1994; 267: F325–30.
  • Chen L-M, Song Q, Chao L, et al. Cellular localization of tissue kallikrein and kallistatin mRNAs in human kidney. Kidney Int 1995; 48: 690–7.
  • Chao J, Chao L. Kallikstatin in blood pressure regulation. Trends Cardiovasc Med 1997; 7: 307–11.
  • Mills IH, Ward PE. The relationship between kallikrein and water excretion and the conditional relationship between kallikrein and sodium excretion. J Physiol 1975; 246: 695–707.
  • Croxatto HR, Huidobro F, Rojas M, et al.: The effect of water, sodium overloading and diuretics upon urinary kallikrein. In: Sicuteri F, Back N, Haberland G, eds. Kinins: Pharma-codynamics and Biological Roles. Pp. 361–73. New York: Plenum Press, 1975.
  • Marin-Grez M, Carretero OA. Urinary kallikrein excretion in rats under low and high sodium intake. Physiologist 1971; 14: 189 (abstr.)
  • Adetuyibi A, Mills IH. Relation between urinary kallikrein and renal function, hypertension, and excretion of sodium and water in man. Lancet 1972; ii: 203–7.
  • Margolius HS, Horwitz D, Geller R, et al. Urinary kallikrein excretion in normal man. Relationships to sodium intake and sodium-retaining steroids. Circ Res 1974; 35: 812–9.
  • Greco AV, Porcelli G, Croxatio HR, et al. Ipertensione arteriosa e callicrenia urinaria. Minerva Med 1974; 65: 3058–62.
  • Seino J, Abe K, Otsuka Y, et al. Uninary kallikrein excretion and sodium metabolism in hypertensive patients. Tohoku J Exp Med 1975; 116: 359–67.
  • Zinner SH, Margolius HS, Rosner B, et al. Familial aggregation of urinary kallikrein concentration in childhood. Am J Epidemiol 1976; 104: 124–32.
  • Marin-Grez M, Bönner G, Gross F. The influence of isotonic saline administration on the urinary excretion of kallikrein in rats. Biochem Pharmacol 1984; 33: 3585–90.
  • Lieberthal W, Oza NB, Bernard DB, et al. Effects of alterations in sodium and water metabolism on urinary excretion of active and inactive kallikrein. J Clin Endocrinol Metab 1983; 56: 513–9.
  • Levy SB, Lilly JJ, Frigon RP, et al. Urinary kallikrein and plasma renin activity as determinants of renal blood flow. J Clin Invest 1977; 60: 129–38.
  • Johnston CI, Matthews HS, Dax E: Effects of dietary sodium, diuretics, and hypertension on renin and kallikrein. In: Sambhi MP ed. Systemic Effects of Antihypertensive Agents. Pp. 323–38. New York: Stratton Intercontinental, 1976.
  • Abe K, Seino J, Otsuka Y, et al.: Urinary kallikrein excretion and sodium metabolism in human hypertension. In: Pisano JJ, Austen KF, eds. Chemistry and Biology of the Kallikrein Kinin System in Health and Disease. Pp. 411–4. Washington, DC: Washington Fogarty International Center Proc. 1977.
  • Geller RG, Margolius HS, Pisano JJ, et al. Effects of mineralcorticoids, altered sodium intake and adrenalectomy on urinary kallikrein. Circ Res 1972; 31: 857–61.
  • Bascands JL, Girolami J-P, Pecher C, et al. Compared effects of a low and a high sodium diet on the renal and urinary concentration and activity of kallikrein in normal rats. J Hypertens 1987; 5: 311–5.
  • Omata K, Carretero OA, Itoh S, et al. Active and inactive kallikrein in rabbit connecting tubules and urine during low and normal sodium intake. Kidney Int 1983; 24: 714–8.
  • Margolius HS, Geller RG, Pisano JJ, et al. Altered urinary kallikrein excretion in human hypertension. Lancet 1971; ii: 1063–5.
  • Margolius HS, Horwitz D, Pisano JJ, et al. Urinary kallikrein excretion in hypertensive man: Relationships to sodium intake and sodium-retaining steroids. Circ Res 1974; 35: 820–5.
  • Miyashita A. Urinary kallikrein determination and its physiological role in human kidney. J Urol 1971; 62: 507–18.
  • Seino J, Abe K, Sakurai Y, et al. Effect of spironolactone on urinary kallikrein excretion in patients with essential hypertension and in primary aldosteronism. Tohoku J Exp Med 1977; 121: 111–9.
  • Horwitz D, Margolius HS, Keiser HR. Effects of potassium intake on urinary kallikrein. Clin Res 1975; 23: 221A.
  • Lechi A, Covi G, Lechi C, et al. Urinary kallikrein excretion in Bartter’s Syndrome. J Clin Endocrinol Metab 1976; 43: 1175–8.
  • Halushka PV, Wohltmann H, Privitera PJ, et al. Bartter’s syndrome: Urinary prostaglandin E-like material and kallikrein; indomethacin effects. Ann Intern Med 1977; 87: 281–6.
  • Ward PE, Margolius HS: Renal and urinary kallikrein., In: Erdös E, ed. Bradykinin, Kallidin and Kallikrein. Pp. 525–48. Berlin: Springer-Verlag, 1979.
  • Mills IH: Renal kallikrein and regulation of blood pressure in man. In: Erdös E, ed. Bradykinin, Kallidin and Kallikrein. Pp. 549–67. Berlin: Springer-Verlag, 1979.
  • Haynes RC, Murad F. Adenocorticotropic hormone; adrenocortical steroids and their synthetic analogs: Inhibitors of adrenocortical steroid biosynthesis. In: Gilman A, Goodman T, Rall T, Murad F, eds. The Pharmacological Basis of Therapeutics, P. 1469. New York: MacMillan. 1985.
  • Nishimura K, Alhenc-Gelas F, White A, et al. Activation of membrane bound kallikrein and renin in the kidney. Proc Natl Acad Sci USA 1980; 77: 59–65.
  • Marchetti J, Imbert-Teboul M, Alhec-Gelas F, et al. Kallikrein along the rabbit microdissected nephron: a micromethod for its measurement. Effect of adrenalectomy and DOCA treatment. Pfluegers Archiv 1984; 401: 27–33.
  • August JT, Nelson DH, Thorn GW. Response of normal subjects to large amounts of aldos-terone. J Clin Invest 1958; 38: 1549–55.
  • Edwards OM, Adetuyibi A, Mills IH. Kallikrein excretion during “escape” from the sodium retaining effect of flurocortisone. J Endocrinol 1973; 59: xxxiv.
  • Vio CP, Figueroa CD. Evidence for a stimulatory effect of high potassium diet on renal kallikrein. Kidney Int 1987; 31: 1327–34.
  • Suzuki T, Katori M, Fujita T, et al. Involvement of the renal kallikrein-kinin system in K+-induced diuresis and natriuresis in anesthetized rats. Eur J Pharmacol 2000; 399: 223–7.
  • Barden A, Beilin LJ, Vandonagen R. Effect pf potassium supplementation on blood pressure and vasodilator mechanisms in spontaneously hypertensive rats. Clin Sci 1988; 75: 527–34.
  • Murakami E, Hiwada K, Kokubu T, et al.: Effect of oral potassium on urinary kallikrein excretion in essential hypertension. In: Abe K, Moriya H, Fujii S, eds. Kinins V. Pp. 133–7. New York: Plenum Press, 1989.
  • Himathongkam T, Dully RG, Williams GH. Potassium-aldosterone-renin interrelationships. J Clin Endocrinol Metab 1975; 41: 153–9.
  • Quinn SJ, Cornwall MC, Williams GH. Electronic properties of isolated rat adrenal glomerulosa and fasciculata cells. Endocrinology 1987; 120: 903–14.
  • Fujita T, Hayashi I, Kumagai Y, et al. Early increase in renal kallikrein excretion on administration of potassium or ATP-sensitive potassium channel blockers in rats. Br J Pharmacol 1999; 128: 1275–83.
  • Himathongkam T, Dluhy RG, Williams GH. Potassium-aldosterone-renin interrelationships. J Clin Endocrinol Metab 1975; 41: 153–9.
  • Hayashi I. A secretary mechanism of renal kallikrein by a high potassium ion: a possible involvement of ATP-sensitive potassium channel. Immunopharmacology 1999; 44: 49–55.
  • Guillemare E, Honore E, Wille JD, et al. Functional receptors in Xenopus oocytes for U-37883A, a novel ATP-sensitive K+ channel blocker: comparison with rat insulinoma cells. Mol Pharmacol 1994; 46: 139–45.
  • Imai M, Nakamura R. Function of distal convoluted and connecting tubules studied by isolated nephron fragments. Kidney Int 1982; 22: 465–72.
  • Wright F, Giebish G. Renal potassium: Contributions of individual nephron segments and populations. Am J Physiol 1978; 235: F515–F27.
  • Muto S. Potassium transport in the mammalian collecting duct. Physiol Rev 2001; 81: 85–116.
  • Stanton BA. Characterization of apical and basolateral membrane conductances of rat inner medullary collecting duct. Am J Physiol 1989; 256: F862–F8.
  • Fejes-Toth G, Zahajszky T, Filep J. Effect of vasopressin on renal kallikrein excretion. Am J Physiol 1980; 239: F388–F92.
  • Pisano JJ, Marks The renal kallikrein-kinin system: A look at the controversies., In: Greenbaum LM, Margolius HS, eds. Kinin IV, Part B. Pp. 193–205. New York: Plenum Press, 1986.
  • Bönner G, Rasher W, Speck G, et al. The renal kallikrein-kinin system in Brattleboro rats with hereditary hypothalamic diabetes inspidus. Acta Endocrinologica 1981; 98: 35–42.
  • Zucker A, Nasjetti A, Schneider EG. Effect of water deprivation on urinary excretion of PGE2 in the dog. Am J Physiol 1983; 245: R329–33.
  • Yamada K, Hasunuma K, Shiina T, et al. Interrelationship between kallikrein-kinins and arginine vasopressin in man. Clin Sci 1989; 76: 13–8.
  • Tomita K, Shiigai T, Shichiriki J, et al. Increased urinary kallikrein-like activity in the syndrome of inappropreate secretion of antidiuretic hormone. Nephron 1983; 35: 39–48.
  • Tomita K, Shiigai T, Iino Y, et al. Increased urinary kallikrein-like activity during ADH-induced hyponatremia in rats. Hypertension 1984; 6: 511–8.
  • Stephens GW, Lieberthal W, Oza NB, et al. Vasopressin stimulates urinary kallikrein excretion in the isolated erythrocyte-perfused rat kidney. Ren Physiol Biochem 1988; 11: 50–9.
  • Grenfell SJ, Albano JD, Waller DG. Kallikrein release from the kidney: In vitro effects of AVP and DDAVP. Arch Internat Pharmacodyn Ther 1988; 292: 281–5.
  • Marshall KG, Waller DG, Gross F. Kallikrein and kinin release using superfused disaggregated cortical cells from rat and human kidney. Agents Actions 1992; 38: 134–41.
  • Leake RD, Weitzman RE, Glatz TH, et al. Plasma oxytocin concentrations in men, nonpreg-nant women, and pregnant women before and during spontaneous labor. J Clin Endocrinol Metab 1981; 53: 730–3.
  • Sawyer WH. Posterior pituitary extracts and excretion of electrolytes by the rat. Am J Physiol 1952; 169: 349–64.
  • Brooks FP, Pickford M. The effects of posterior pituitary hormones on the excretion of electrolytes in dogs. J Physiol 1958; 142: 468–93.
  • Chan WY, Sawyer WH. Saluretic action of neurohypophysial peptides in conscious dogs. Am J Physiol 1958; 201: 799–803.
  • Chan WY. Effect of neurophysial hormones and their deamino analogue on renal excretion of Na, K and water in rats. Endocrinology 1961; 77: 1097–104.
  • Balment RJ, Brimble MJ, Forsling ML. Release of oxytocin induced by salt loading and its influence on renal excretion in the male rat. J Physiol 1980; 308: 439–49.
  • Conrad KP, Gellai M, North WG, et al. Influence of oxytocin on renal hemodynamics and electrolytes and water excretion. Am J Physiol 1986; 251: F290–6.
  • Brimble MJ, Balment RJ, Smith CP, et al. Influence of oxytocin on sodium excretion in the anesthetized Brattleboro rat. J Endocrinol 1991; 129: 49–54.
  • Adachi K, Majima M, Katori M, et al. Oxytocin-induced natriuresis meditated by the renal kallikrein-kinin system in anesthetized male rats. Jpn J Pharmacol 1978; 67: 243–52.
  • Bevan DR, MacFarlane NAA, Mills IH. The dependence of urinary kallikrein excretion on renal artery pressure. J Physiol 1974; 241: 34P-5P.
  • Keiser HR, Andrews MJJ, Guyton RA, et al. Urinary kallikrein in dogs with constriction of one renal artery. Proc Soc Exp Biol Med 1976; 151: 53–6.
  • Maier M, Binder BB: Dependence of urokallikrein excretion on the perfusion pressure in explanted perfused kidneys. In: Fujii S, Moriya H, Suzuki T, eds. Kinin-II, Biochemistry, Pathology, and Clinical Aspects. Pp. 527–38. New York: Plenum Press, 1978.
  • Bönner G, Schwertschlag U, Marrin-Grez M, et al. Effect of changes in perfusion pressure on urinary kallikrein in the isolated perfused rat kidney. Ren Physiol 1983; 6: 288–94.
  • Misumi J, Alhenc-Gelas F, Marre M, et al. Regulation of kallikrein and renin release by the isolated perfused rat kidney. Kidney Int 1983; 24: 58–65.
  • Levinskey NG. The renal kallikrein-kinin system. Circ Res 1979; 44: 441–51.
  • Carretero OA, Scicli AG. The renal kallikrein-kinin system. Am J Physiol 1980; 238: F247–55.
  • Mayfield RK, Margolius HS. Renal kallikrein-kinin system. Relation to renal function and blood pressure. Am J Nephrol 1983; 3: 145–55.
  • Scicli AG, Carretero OA. Renal kallikrein-kinin system. Kidney Int 1986; 29: 120–30.
  • Margolius HS. Tissue kallikreins and kinins: Regulation and roles in hypertensive and diabetic diseases. Annu Rev Pharmacol 1989; 29: 343–64.
  • Carretero OA, Scicli AG. Kinins as regulators of blood flow and blood pressure. In: Laragh J, Brenner B, eds. Hypertension: Pathology, Diagnosis, and Management, Pp. 805–17. New York: Raven Press, 1990.
  • Margolius HS. Kallikreins and kinins. Some unanswered questions about system characteristics and roles in human disease. Hypertension 1995; 26: 221–9.
  • Gill JRJ, Melmon KL, Gillepsie LJ, et al. Bradykinin and renal function in normal man: Effects of adrenergic blockade. Am J Physiol 1965; 209: 844–8.
  • Bönner G, Preis S, Schunk U, et al. Hemodynamic effects of bradykinin on systemic and pulmonary circulation in healthy and hypertensive humans. J Cardiovasc Pharmacol 1990; 15 (Suppl. 6): 546–56.
  • Webster ME, Gilmore JP. Influence of kallidin-10 on renal function. Am J Physiol 1964; 206: 714–8.
  • Nakano J. Effects of synthetic bradykinin on the cardiovascular system. Arch Int Pharmacodyn Ther 1965; 157: 1–13.
  • Barraclough M, Mills IH. Effects of bradykinin on renal function. Clin Sci 1965; 28: 199–206.
  • Goldberg LI, Dollery CT, Pentecost BL. Effects of intrarenal infusions of bradykinin and acetylcholine on renal blood flow in man. J Clin Invest 1965; 44: 1952.
  • McNay JL, Goldberg LI. Comparison of the effects of dopamine, isoproterenol, norepineph-rine and bradykinin on canine renal femoral blood flow. J Pharmacol Exp Ther 1966; 151: 23–31.
  • Stein JH, Huprich JE, Smith YC, et al. Effect of renal vasodilatation on the distribution of cortical blood flow. J Clin Invest 1971; 50: 1429–38.
  • McGiff JC, Itskovitz HD, Terragno NA. The actions of bradykinin and eldoisin in the canine isolated kidney: Relation to prostaglandins. Clin Sci Mol Med 1975; 49: 125–31.
  • Wang C, Chen Y-P, Chao L, et al. Human tissue kallikrein induces hypotension in transgenic mice. Hypertension 1994; 23: 236–43.
  • Chao J, Chao L. Functional analysis of human tissue kallikrein in transgenic mouse model. II. Hypertension 1996; 27: 491–4.
  • Wolf W, Yoshida H, Agata J, et al. Human kallikrein gene delivery attenuates hypertension, renal injury, and cardiac remodeling in chronic renal failure. Kidney Int 2000; 58: 730–9.
  • Nasjletti A, Colina-Choourio J. Interaction of mineral corticoids, renal prostaglandins, and the renal kallikrein-kinin system. Fed Proc 1976; 35: 59–65.
  • Roman RJ, Kaldunski ML, Scicli AG, et al. Influence of kinins and angiotensin II on the regulation of papillary blood flow. Am J Physiol 1988; 255: F690–8.
  • Zimmerman BG, Raich PC, Vavrek RJ, et al. Bradykinin contribution to renal blood flow effect of angiotensin converting enzyme inhibitor in the conscious sodium-restricted dog. Clin Res 1990; 25.
  • Kon V, Fogo A, Ichikawa I. Bradykinin causes selective efferent arteriolar dilatation during angiotensin I converting enzyme inhibition. Kidney Int 1993; 66: 545–50.
  • Heller J, Kramer HJ, Horacek V. The effect of kinin and prostaglandin inhibitors on the renal response to angiotensin-converting enzyme inhibition: a micropuncture study in the dog. Pflugers Archiv 1994; 427: 219–24.
  • Mattson DL, Roman RJ. Role of kinins and angiotensin in the renal hemodynamic response to captopril. Am J Physiol 1991; 260: F670–F9.
  • Hajj-ali AF, Zimmerman BG. Kinin contribution to renal vasodilator effect of captopril in rabbit. Hypertension 1991; 17: 504–9.
  • Hajj-ali AF, Zimmerman BG. Enhanced blood pressure and renal hemodynamic effect of chronic versus acute lisinopril administration in the rabbit. J Pharmacol Exp Ther 1992; 263: 158–62.
  • Komers R, Cooper ME. Acute renal hemodynamic effect of ACE inhibition in diabetic hyperfiltration: role of kinins. Am J Physiol 1995; 268: F588–F94.
  • Chen K, Zimmerman BG. Comparison of renal hemodynamic effect of captopril: possible role of kinins. J Pharmacol Exp Ther 1994; 270: 491–7.
  • Madeddu P, Parpaglia PP, Demontis MP, et al. Effects of kinin blockade on the blood pressure of salt-loaded pregnant rats. Hypertension 1995; 25: 823–7.
  • Dworkin LD, Brenner BM. The Renal Circulations. 5th edition. Brenner and Rector’s The Kidney. ed. Vol.1. Pp. 247–85. Philadelphia: W.B. Saunders Company. 1996.
  • Bailie MD, Barbour JA. Effect of inhibition of peptidase activity on the distribution of intrarenal blood flow. Am J Physiol 1975; 228: 850–3.
  • Clappison BH, Anderson WP, Johnston CI. Role of kallikrein-kinin system in the renal effects of angiotensin-converting enzyme inhibition in anesthetized dogs. Clin Exp Pharamcol P 1981; 8: 509–13.
  • Stein JH, Congbalay RC, Karsh DL, et al. The effect of bradykinin on proximal tubular sodium reabsorption in the dog: evidence for functional nephron heterogeneity. J Clin Invest 1972; 51: 1709–21.
  • Cowley AW, Mattson DL, Lu HS, et al. The renal medulla and hypertension. Hypertension 1995; 25: 663–73.
  • Mattson DL, Cowley AW. Kinin actions on renal papillary blood flow and sodium excretion. Hypertension 1993; 21: 961–5.
  • Fenoy FJ, Scicli AG, Carretero OA, et al. Effect of an angiotensin II and a kinin receptor antagonist on the renal hemodynamic response to captopril. Hypertension 1991; 17: 1038–44.
  • Garcia-Perez A, Smith WL. Apical-basolateral membrane asymmetry in canine cortical collecting tubule cells. Bradykinin, arginine vasopressin, prostaglandin E2 interrelationships. J Clin Invest 1984; 74: 63–74.
  • Lu HS, Roman RJ, Mattson DL, et al. Renal medullary interstitial infusion of diltiazem alters sodium and water excretion. Am J Physiol 1992; 263: R1064–R70.
  • Mattson DL, Roman RJ, Cowley AW. Role of nitric oxide in renal papillary blood flow and sodium excretion. Hypertension 1992; 19: 766–9.
  • Tomita K, Pisano JJ, Brug MB, et al. Effects of vasopressin and bradykinin on anion transport by rat cortical collecting duct. Evidence for an electroneutral sodium chloride transport pathway. J Clin Invest 1986; 77: 136–41.
  • Borkowski JA, Ransom RW, Seabrook GR, et al. Targeted disruption of a B2 bradykinin receptor gene in mice eliminated bradykinin action in smooth muscle and neurons. J Biol Chem 1995; 270: 13706–10.
  • Emanueli C, Angioni GR, Anaia V, et al. Blood pressure response to acute or chronic captopril in mice with disruption of bradykinin B2-receptor gene. J Hypertens 1997; 15: 1701–6.
  • Madeddu P, Varoni M, Palomba D, et al. Cardiovascular phenotype of a mouse strain with disruption of bradykinin B2-receptor gene. Circulation 1997; 96: 3570–8.
  • Emanueli C, Maestri R, Corradi D, et al. Dilated and failing cardiomyopathy in bradykinin B(2) receptor knockout mice. Circulation 1997; 100: 2359–65.
  • Madeddu P, Emanueli C, Gaspa L, et al. Role of the bradykinin B2 receptor in the maturation of blood pressure phenotype: lesson from transgenic and knockout mice. Immunopharmacology 1999; 44: 9–13.
  • Duka I, Kintsurashvili E, Gavaras I, et al. Vasoactive potential of the B(1) bradykinin receptor in normotension and hypertension. Circ Res 2001; 88: 275–81.
  • Milia A, Gross V, Plehm R, et al. Normal blood pressure and renal function in mice lacking the bradykinin B2 receptor. Hypertension 2001; 37: 1473–9.
  • Yang XP, Liu YH, Mehta D, et al. Diminished cardioprotective response to inhibition of angiotensin-converting enzyme and angiotensin II type 1 receptor in B(2) kinin receptor gene knockout mice. Circ Res 2001; 88: 1072–9.
  • Cervenka L, Maly J, Karasova L, et al. Angiotensin II-induced hypertension in bradykinin B2 receptor knockout mice. Hypertension 2001; 37: 967–73.
  • Majima M, Katori M, Madeddu P, et al. Letters to the Editor: Effect of chronic blockade of the kallikrein-kinin system on the development of hypertension in rats, and Role of kinins in blood pressure regulation: Reality or fiction. Hypertension 2001; 38: 21e-3e.
  • Alfie ME, Alim S, Mehta D, et al. An enhanced effect of arginine vasopressin in bradykinin B2 receptor null mutant mice. Hypertension 1999; 33: 1436–40.
  • Madeddu P, Salis MB, Emanueli C. Altered baroreflex control of heart rate in bradykinin B2-receptor knockout mice. Immunopharmacology 1999; 45: 21–7.
  • Alfie ME, Yang XP, Hess F, et al. Salt-sensitive hypertension in bradykinin B2 receptor knockout mice. Biochem Biophys Res Commun 1996; 224: 625–30.
  • Alfie ME, Sigmon DH, Pomposiello SI, et al. Effect of high salt intake in mutant mice lacking bradykinin-B2 receptors. Hypertension 1997; 29: 483–7.
  • Madeddu P, Mila FM, Salis MB, et al. Renovascular hypertension in bradykinin B2-receptor knockout mice. Hypertension 1998; 32: 503–9.
  • Rhaleb N-E, Peng H, Alfie ME, et al. Effect of ACE inhibitor on DOCA-salt- and aortic coarctation-induced hypertension in mice: does kinin B2 receptor play a role? Hypertension 1999; 33: 329–34.
  • Katori M, Majima M. Cyclooxygenase-2: its rich diversity of roles and possible application of its selective inhibitors. Inflamm Res 2000; 49: 367–92.
  • Damas J, Adams A. Congenital deficiency in plasma kallikrein and kininogen in the Brown Norway rat. Experientia 1980; 36: 586–7.
  • Oh-ishi S, Satou K, Hayashi I, et al. Differences in prekallikrein and high molecular weight kininogen levels in two strains of Brown Norway rat (Kitasato strain and Katholiek strain). Thromb Res 1982; 28: 143–7.
  • Oh-ishi S, Hayashi I, Satou K, et al. Prolonged activated thromboplastin time and deficiency of high molecular weight kininogen in Brown Norway rat mutant (Katholiek strain). Thromb Res 1984; 33: 371–7.
  • Oh-ishi S, Hayashi I, Yamaki K, et al. Evidence for a role of the plasma kallikrein-kinin system in acute inflammation: Reduced exudation during carrageenin- and kaolin-pleurisies in kini-nogen-deficient rats. Agents Actions 1986; 18: 450–4.
  • Majima M, Katori M, Hanazuka M, et al. Suppression of rat deoxycorticosterone-salt hypertension by kallikrein-kinin system. Hypertension 1991; 17: 806–13.
  • Yamasu A, Oh-ishi S, Hayashi I, et al. Differentiation of kinin fractions in ureter urine and bladder urine of normal and kininogen-deficient rats. J Pharmacobiodyn 1989; 12: 287–92.
  • Hayashi I, Hoshiko S, Manabe O, et al. A point mutation of alanine163 to threonine is responsible for the defective secretion of high molecular weight kininogen by the liver of Brown-Norway Katholiek rats. J Biol Chem 1993; 268: 17219–24.
  • Rhaleb N-E, Yang XP, Nanba M, et al. Effect of chronic blockade of the kallikrein-kinin system on the development of hypertension in rats. Hypertension 2001; 37: 121–8.
  • Lattion A-L, Baussant T, Alhenc-Gelas F, et al. The high-molecular-mass kininogen deficient rat expresses all kininogen mRNA species, but does not export the high-molecular-mass kininogen synthetized. FEBS Lett 1988; 239: 59–64.
  • Majima M, Adachi K, Kuribayashi Y, et al. Increase in vascular sensitivity to angiotensin II and epinephrine after four-day infusion of 0.3 M sodium chloride in conscious kininogen-deficient Brown-Norway Katholiek rats. Jpn J Pharmacol 1995; 69: 149–58.
  • Coleman RW, Bagdasarian A, Talamo R, et al. Williams trait: Human kininogen deficiency with diminished levels of plasminogen proactivator and prekallikrein associated with abnormalities of the Hagemen factor-dependent pathways. J Clin Invest 1975; 56: 1650–62.
  • Lacombe MJ, Varet B, Levey J-P. A hitherto undescribed plasma factor acting at the contact phase of blood coagulation (Flaujeac factor): case report and coagulation studies. Blood 1975; 46: 761–8.
  • Wuepper KD, Miller RD, Lacombe MJ. Flaujeac trait: Deficiency of human plasma kininogen. J Clin Invest 1975; 56: 1663–72.
  • Donaldson VH, Glueck HI, Millar MA, et al. Kininogen deficiency in Fitzgerald trait: Role of high molecular weight kininogen in clotting and fibrinolysis. J Lab Clin Med 1976; 87: 327–37.
  • Hayashi H, Koya H, Kitajima K, et al. Coagulation factor deficiency apparently related to the Fitzgerald trait: the first case in Japan. Acta Med Okayama 1978; 32: 81–3.
  • Oh-ishi S, Ueno A, Uchida Y, et al. Abnormalities in the contact activation through factor XII in Fujiwara trait: a deficiency in both high and low molecular weight kininogens with low level of prekallikrein. Tohoku J Exp Med 1981; 133: 67–80.
  • Nakamura K, Iijima K, Fukuda C, et al. Tachibana Trait: human high molecular weight kininogen deficiency with diminished levels of prekallikrein and low molecular weight kini-nogen. Acta Haematol Japon 1983; 48: 1473–9.
  • Oh-ishi S, Hayashi I, Utsunomiya I, et al. Roles of kallikrein-kinin system in acute inflammation: Studies on high- and low-molecular weight kininogen-deficient rats (B/N-Katholiek strain). Agents Actions 1987; 21: 384–6.
  • Majima M, Katori M. Approaches to the development of novel antihypertensive drugs: Crucial role of the renal kallikrein-kinin system. Trends Pharmacol Sci 1995; 16: 239–46.
  • Katori M, Majima M. Pivotal role of renal kallikrein-kinin system in the development of hypertension and approaches to new drugs based on this relationship. Jpn J Pharmacol 1996; 70: 95–128.
  • Katori M, Majima M. Preventive role of renal kallikrein-kinin system in the early phase of hypertension and development of new antihypertensive drugs. In: August JT, Anders M, Murad F, Coyle J, eds. Adv Pharmacol. Pp. 147–224. San Diego: Academic Press, 1998.
  • Majima M, Yoshida O, Mihara H, et al. High sensitivity to salt in kininogen-deficient Brown-Norway Katholiek rats. Hypertension 1993; 22: 705–14.
  • Majima M, Mizogami S, Kuribayashi Y, et al. Hypertension induced by a nonpressor dose of angiotensin II in kininogen-deficient rats. Hypertension 1994; 24: 111–9.
  • Obika L, Marin-Grez M. Urinary kallikrein response to repeated furosemide injections in rats: effect of adrenalectomy and deoxycorticosterone acetate treatment. Clin Sci 1986; 71: 497–503.
  • Fujita T, Kumagai Y, Ikeda Y, et al. Involvement of the renal kallikrein-kinin system in furosemide-induced natriuresis in rats. Jpn J Pharmacol 2000; 84: 133–9.
  • Bönner G, Beck D, Deeg M, et al.: Interrelation between renal kallikrein and diuresis in rats. In: Fritz H, Back N, Dietze G, Haberland G, eds. Adv Exp Med Biol. Pp. 949–60. New York: Plenum Press, 1983.
  • Mukai H, Fitzgibbon WR, Bozeman G, et al. Bradykinin B2 receptor antagonist increases chloride and water absorption in rat medullary collecting duct. Am J Physiol 1996; 271: R352–60.
  • Cervenka L, Harrison-Bernard LM, Dipp G, et al. Early onset salt-sensitive hypertension in bradykinin B2 receptor null mice. Hypertension 1999; 34: 176–80.
  • Berk BC, Vallega G, Muslin AJ, et al. Spontaneously hypertensive rat vascular smooth muscle cells in culture exhibit increased growth and Na+/H+ exchange. J Clin Invest 1989; 83: 822–9.
  • Sasaki S, Takeda K, Okajima H, et al. Pressor responses to intracisternal injection of hyper-tonic NaCl in rats. J Cardiovasc Pharmacol 1984; 6: 349–64.
  • DiBonna GF, Jones SY. Sodium intake influences hemodynamic and neutral responses to angiotensin receptor blockade in rostral ventrolateral medulla. Hypertension 2001; 37: 1114–23.
  • Eagan BM. Neurogenic mechanisms of initiating essential hypertension. Am J Hypertens 1989; 2: 357S-62S.
  • Gelpi RJ, Hittinger L, Fujii AM, et al. Sympathetic augmentation of cardiac function early in developing hypertension in conscious dogs. Am J Physiol 1988; 255: H1525–34.
  • Shannon RP, Gelpi RJ, Hittinger L, et al. The inotropic response to norepinephrine is augmented early and maintained later in conscious dogs with perinephritic hypertension. Circ Res 1991; 68: 543–54.
  • Umehara N, Vatner DE, Shen Y-T, et al. Increased ?1-adrenergic vascular sensitivity during development of hypertension in conscious dogs. Am J Physiol 1993; 264: H1259–H68.
  • Falloon BJ, Bunds SJ, Tulip JR, et al. In vitro perfusion studies of resistance artery function in genetic hypertension. Hypertension 1993; 22: 486–95.
  • Windgren BR, Herlitz H, Aurell M, et al. Increased systemic and renal vascular sensitivity to angiotensin II in normotensive men with positive family histories of hypertension. Am J Hypertens 1992; 5: 167–74.
  • Weidemann P. Pathogenic and therapeutic relevance of cardiovascular pressor reactivity to norepinephrine in human hypertension. Clin Exp Hypertens 1989; 11(Suppl.1): 257–73.
  • Katori M, Majima M, Mohsin SSJ, et al. Essential role of kallikrein-kinin system in suppression of blood pressure rise during the developmental stage of hypertension induced by doxycorticosterone acetate-salt in rats. Agents Actions 1992; 38 (Suppl.): 235–42.
  • Ito H, Majima M, Nakajima S, et al. Effect of prolonged administration of a urinary kininase inhibtor, ebelactone B on the development of doxycorticosterone acetate-salt hypertension in rats. Br J Pharmacol 1999; 126: 613–20.
  • Majima M, Hayashi H, Fujita T, et al. Facilitation of renal kallikrein-kinin system prevents the development of hypertension by inhibition of sodium retention. Immunopharmacology 1999; 44: 145–52.
  • Hayashi I, Majima M, Fujita T, et al. In vivo transfer of antisense oligonucleotide against urinary kininase blunts deoxycorticosterone acetate-salt hypertension in rats. Br J Pharmacol 2000; 131: 820–6.
  • Madeddu P, Parpaglia PP, Demontis MP, et al. Chronic kinin receptor blockade induces hypertension in deoxycorticosterone-treated rats. Br J Pharmacol 1993; 108: 651–7.
  • Madeddu P, Parpaglia PP, Demontis MP, et al. Bradykinin B2-receptor blockade facilitates deoxycorticosterone-salt hypertension. Hypertension 1993; 21: 980–4.
  • Madeddu P, Parpaglia PP, Demontis MP, et al. Early blockade of bradykinin B2-receptor alters the adult cardiovascular phenotype in rats. Hypertension 1995; 25: 453–9.
  • Okamoto K, Aoki K. Development of a strain of spontaneously hypertensive rats. Jpn Circ J 1963; 27: 282–93.
  • Keiser HR, Geller RG, Margolius HS, et al. Urinary kallikrein in hypertensive animal models. Fed Proc 1976; 35: 199–202.
  • Ader J-L, Pollock DM, Butterfield MI, et al. Abnormalities in kallikrein excretion in spontaneously hypertensive rats. Am J Physiol 1985; 248: F396–403.
  • Arbeit LA, Serra SR. Decreased total and active urinary kallikrein in normotensive Dahl salt susceptible rats. Kidney Int 1985; 28: 440–6.
  • Praddaude F, Tran-Van T, Ader J-L. Renal kallikrein activity in rats developing spontaneous hypertension. Clin Sci 1989; 76: 311–5.
  • Ader J-L, Tran-Van T, Praddaude F. Reduced urinary kallikrein activity in rats developing spontaneous hypertension. Am J Physiol 1987; 252: F964–9.
  • Mohsin SSJ, Majima M, Katori M, et al. Important suppressive roles of the kallikrein-kinin system during the developmental stage of hypertension in spontaneously hypertensive rats. Asia Pac J Pharmacol 1992; 7: 73–82.
  • Dilley JR, Stier CT, Ardendshorst WJ. Abnormalities in glomerular function in rats developing spontaneous hypertension. Am J Physiol 1984; 246: F12–F20.
  • Figueroa CD, Bhoola KD, Maclver AG, et al. An ontogenic study of renal kallikrein in Okamoto spontaneously hypertensive rats: Comparison with human hypertensive nephropa-thy. Nephrol Dial Transplant 1992; 7: 516–25.
  • Geller RG, Margolius HS, Pisano JJ, et al. Urinary kallikrein excretion in spontaneously hypertensive rats. Circ Res 1975; 36 (Suppl.): I-103-I-6.
  • Reckelhoff JF, Zhang H, Granger JP. Decline in renal hemodynamic function in aging SHR. Role of androgen. Hypertension 1997; 30: 677–81.
  • Dahl LK, Heine M, Tassinari L. Effects of chronic excess salt ingestion. Evidence that genetic factors play an important role in susceptibility to experimental hypertension. J Exp Med 1962; 115: 1173–90.
  • Dahl LK, Knudsen KD, Heine M, et al. Effects of chronic salt ingestion. Genetic influence of the development of salt hypertension in parabiotic rats: Evidence for humoral factor. J Exp Med 1967; 126: 687–99.
  • Iwai J, Knudsen KD, Dahl LK, et al. Genetic influence on the development of renal hypertension in parabiotic rats. J Exp Med 1969; 129: 507–22.
  • Knudsen KD, Iwai J, Heine M, et al. Genetic influence on the development of renoprivial hypertension in parabiotic rats. J Exp Med 1969; 130: 1353–65.
  • Dahl LK, Heine M, Tassinari L. Effects of chronic excess salt ingestion. Role of genetic factors in both DOCA-salt and renal hypertension. J Exp Med 1963; 118: 605–17.
  • Dahl LK, Heine M, Tassinari L. Effects of chronic excess salt ingestion. Further demonstration that genetic factors influence that development of hypertension: Evidence from experimental hypertension due to cortisone and to adrenal regeneration. J Exp Med 1965; 122: 533–45.
  • Churchill PC, Churchill MC, Bidani AK, et al. Kallikrein excretion in Dahl salt-sensitive and salt-resistant rats with native and transplanted kidneys. Am J Physiol 1995; 269: F710–F7.
  • Rapp JP, Tan SY, Margolius HS. Plasma mineral corticoids, plasma renin, and urinary kallikrein in salt-sensitive and salt-resistant rats. Endocr Res Commun 1978; 5: 35–41.
  • Sustarsic DL, McPartland RP, Rapp JP. Developmental patterns of blood pressure and urinary protein, kallikrein, and prostaglandin E2 in Dahl salt-hypertension-susceptible rats. J Lab Clin Med 1981; 98: 599–606.
  • Rapp JP, Joseph MK, McPartland RP. Proteins binding to kallikrein and esterase A2 in the urine of salt-sensitive and salt-resistant rats. Hypertension 1982; 4: 545–55.
  • McPartland RP, Rapp JP, Sustarsic DL. Effects of dexamethasone on excretion of urinary kallikrein and urinary protein in Dahl salt-sensitive and salt-resistant rats. Endocr Res Commun 1981; 8: 145–53.
  • Rapp JP, McPartland RP, Sustarsic DL. Anomalous response of urinary kallikrein to doxycorticosterone in Dahl salt-sensitive rats. Hypertension 1982; 4: 20–6.
  • Ideishi M, Miura S, Sakai T, et al. Taurine amplified renal kallikrein and prevents salt-induced hypertension in Dahl rats. J Hypertens 1994; 12: 653–61.
  • Uehara Y, Hirawa N, Kawabata Y, et al. Long-term infusion of kallikrein attenuates renal injury in Dahl salt-sensitive rats. Hypertension 1994; 24: 770–8.
  • Carretero OA, Scicli AG. The kallikrein-kinin system in human and in experimental hypertension. Klin Wochenschr 1978; 56 (Suppl. 1): 113–25.
  • Rapp JP, McPartland RP, Batten CL. Isoelectric focusing patterns of urinary kallikrein in Dahl salt-hypertension susceptible and resistant rats. Hypertension 1984; 6: 519–25.
  • Carretero OA, Polomski C, Hampton A, et al. Urinary kallikrein, plasma renin and aldosterone in New Zealand genetically hypertensive (GH) rats. Clin Exp Pharmacol Physiol 1976; 3 (Suppl.): 55–9.
  • Gilboa N, Rudofsky U, Margo A. Urinary and renal kallikrein in hypertensive fawn-hooded (FH/Wjd) rats. Lab Invest 1984; 50: 72–8.
  • Bianchi GP, Fox U, Imbasciati E. The development of a new strain of spontaneously hypertensive rats. Life Sci 1974; 14: 339–47.
  • Porcelli G, Bianchi G, Croxatto HR. Urinary kallikrein excretion in a spontaneously hypertensive strain of rats. Proc Natl Acad Sci USA 1975; 149: 983–6.
  • Carretero OA, Oza NB, Schork A. Renal kallikrein, plasma renin, and plasma aldosterone in renal hypertension. Acta Physiol Latin America 1974; 24: 448–52.
  • Girolami J-P, Praddasude F, Ader JL, et al. Bilateral urinary kallikrein excretion in the Goldblatt hypertensive rats. Eur Heart J 1983; 4: 67–72.
  • Elliot AH, Nuzum FR. The urinary excretion of a depressor substance (kallikrein of Frey and Kraut) in arterial hypertension. Endocrinology 1934; 18: 462.
  • Horwitz D, Margolius HS, Keiser HR. Effects of dietary potassium and race on urinary excretion of kallikrein and aldosterone in man. J Clin Endocrinol Metab 1978; 47: 296–9.
  • Abe K, Yasujima M, Irokawa N, et al. The role of intrarenal vasoactive substances in the pathogenesis of essential hypertension. Clin Sci Mol Med Suppl 1978; 55: 363s-6s.
  • Lechi A, Covi G, Lechi C, et al. Urinary kallikrein excretion and plasma renin activity in patients with essential hypertension and primary aldosteronism. Clin Sci Mol Med 1978; 55: 51–5.
  • Keiser HR. The kallikrein-kinin system in essential hypertension. Clin Exp Hypertens 1979; 2: 675–91.
  • Mersey JH, Williams GH, Emanuel R, et al. Plasma bradykinin levels and urinary kallikrein excretion in normal renin essential hypertension. J Clin Endocrinol Metab 1979; 48: 642–7.
  • Shimamoto K, Ura N, Tanaka S, et al. Excretion of human urinary kallikrein quantity measured by a direct radioimmunoassay of human urinary kallikrein in patients with essential hypertension and secondary hypertensive disease. Jpn Circ J 1981; 45: 1092–7.
  • Favre L, Jornot L, Riodel A, et al. Urinary excretion of renal prostaglandins, kallikrein, vasopressin and aldosterone in essential hypertension. Clin Exp Hypertens 1985; 7: 1663–79.
  • Ura N, Shimamoto K, Nakao T, et al. The excretion of human urinary kallikrein quantity and activity in normal and low renin subgroups of essential hypertension. Clin Exp Hypertens 1985; 5: 329–37.
  • Hilme E, Herlitz H, Gyzander E, et al. Urinary kallikrein excretion is low in malignant essential hypertension. J Hypertens 1992; 10: 869–74.
  • Lawton WT, Fitz AE. Urinary kallikrein in normal renin essential hypertension. Circulation 1977; 56: 856–9.
  • Koolen ML, Daha MR, Frolich M, et al. Direct and indirect measurement of urinary kallikrein excretion in patients with essential hypertension and normotensives: Relation to age and plasma renin and aldosterone levels. Eur J Clin Invest 1984; 14: 171–4.
  • Zschiederich H, Fleckenstein P, Fink E, et al. Urinary kallikrein excretion in normoten-sive subjects and in patients with essential hypertension. Clin Exp Hypertens 1980; 2: 693–708.
  • Holland B, Chud JM, Braunstein H. Urinary kallikrein excretion in essential and mineralocor-ticoid hypertension. J Clin Invest 1980; 65: 347–56.
  • Shimamoto K, Masuda A, Ando T, et al. Mechanisms of suppression of renal kallikrein activity in low renin essential hypertension and renoparenchymal hypertension. Hypertension 1989; 14: 375–8.
  • Nakahashi Y, Shimamoto K, Ura N, et al.: Comprehensive studies on the renal kallikrein-kinin system in essential hypertension., In: Greenbaum L, Margolius H, eds. Kinins. Pp. 351–7. New York: Plenum Press, 1983.
  • Pratt JH, Rebhun JF, Zhou L, et al. Levels of mineralocorticoids in whites and blacks. Hypertension 1999; 34: 315–9.
  • Zinner SH, Levy PS, Kass EH. Familial aggregation of blood pressure in childhood. Am J Epidemiol 1971; 104: 124–32.
  • Zinner SH, Margolius HS, Rosner B, et al. Stability of blood pressure rank and urinary kallikrein concentration in childhood: an eight-year follow-up. Circulation 1978; 58: 908–15.
  • Mitas JA, Levy SB, Holle R, et al. Urinary kallikrein activity in the hypertension of renal parenchymal disease. N Engl J Med 1978; 299: 162–5.
  • Bönner G, Thieven B, Rütten H, et al. Renal kallikrein is a determinant of salt sensitivity. J Hypertens 1993; 11 (Suppl. 5): S210-1.
  • Ferri C, Bellini C, Carlomagno A, et al. Urinary kallikrein and salt sensitivity in essential hypertensive males. Kidney Int 1994; 46: 780–8.
  • Williams RR, Hunt SC, Hoplins P, et al. Genetic basis of familial dyslipidemia and hypertension: 15-year results from Utah. Am J Hypertens 1993; 6: 319S-27S.
  • Berry TD, Hasstedt SJ, Hunt SC, et al. A gene for high urinary kallikrein may protect against hypertension in Utah kindred. Hypertension 1989; 3: 3–8.
  • Hasstedt ST, Hunt SC, Wu LL, et al. The inheritance of intraerythrocytic sodium level. Am J Med Genet 1988; 29: 193–203.
  • Hasstedt ST, Hunt SC, Wu LL, et al. Hypertension and sodium lithium countertransport in Utah pedigrees: evidence for major locus inheritance. Am J Hum Genet 1988; 43: 14–22.
  • Hunt SC, Hasstedt SJ, Wu LL, et al. A gene-enviromental interaction between inferred kallikrein genotype and potassium. Hypertension 1993; 22: 161–8.
  • Hunt SC, Slattery MA, Meikle AW, et al. Environmental determinants of urinary kallikrein excretion. Am J Hypertens 1993; 6: 226–33.
  • Wilson DK, Sica DA, Miller SB. Effects of potassium on blood pressure in salt-sensitive and salt-resistant black adolescents. Hypertension 1999; 34: 181–6.
  • Morris RCJ, Sebastian A, Forman A, et al. Normotensive salt sensitivity. Effects of race and dietary potassium. Hypertension 1999; 33: 18–23.
  • Smith SR, Klotman PE, Svetkey LP. Potassium chloride lowers blood pressure and causes natriuresis in older patients with hypertension. J Am Soc Nephrol 1992; 2: 1302–9.
  • Staessen JA, Birkheger W, Bulpitt CJ, et al. The relationship between blood pressure and sodium and potassium excretion during the day and night. J Hypertens 1993; 11: 443–7.
  • Beilin LJ, Rouse IL, Armstrong BK, et al. Vegetarian diet and blood pressure levels: incidental or causal association. Am J Clin Nutr 1988; 48: 806.
  • Schmidlin O, Forman A, Tanaka M, et al. NaCl-induced renal vasoconstriction in salt-sensitive African-Americans. Antipressor and hemodynamic effects of potassium bicarbonate. Hypertension 1999; 33: 633–9.
  • Jeunemaitre X, Soubrier F, Kotelevtsev YV, et al. Molecular basis of human hypertension: role of angiotensinogen. Cell 1992; 71: 169–80.
  • Caulfield M, Lavender P, Farrall M, et al. Linkage of the angiotensinogen gene to essential hypertension. N Engl J Med 1994; 330: 1629–33.
  • Caulfield M, Lavender P, Newell-Price J, et al. Linkage of the angiotensinogen gene locus to human essential hypertension in African Caribbeans. J Clin Invest 1995; 96: 687–92.
  • Jeunemaitre X, Rigat B, Charru A, et al. Sib pair linkage analysis of renin gene haplotypes in human essential hypertension. Human Genet 1992; 88: 301–6.
  • Jeunemaitre X, Lifton RP, Hunt SC, et al. Absence of linkage between the angiotensin converting enzyme locus and human essential hypertension. Nat Genet 1992; 1: 72–5.
  • Fornage M, Amos C, Kardia S, et al. Variation in the region of the angiotensin-converting enzyme gene influences interindividual difference in blood pressure levels in young white males. Circulation 1998; 97: 1773–9.
  • Bonnardeaux A, Davies E, Jeunemaitre X, et al. Angiotensin II type 1 receptor gene polymorphisms in human essential hypertension. Hypertension 1994; 24: 63–9.
  • Bentos A, Topouchian J, Richard S, et al. Influence of angiotensin II type 1 receptor polymorphism on aortic stiffness in never-treated hypertensive patients. Hypertension 1995; 26: 44–7.
  • Castellano M, Muiesan MI, Beschi M, et al. Angiotensin II type 1 receptor A/C1166 polymorphism: relationship with blood pressure and cardiovascular structure. Hypertension 1996; 28: 1076–80.
  • Wang WYS, Zee RYL, Morris BI. Association of angiotensin II type 1 receptor gene polymorphism with essential hypertension. Clin Genet 1996; 51: 31–4.
  • Rapp JP, Wang SM, Dene H. A genetic polymorphism in the renin gene of Dahl rats cosegregates with blood pressure. Science 1989; 243: 542–4.
  • Samani N, Brammer WJ, Swales JD. A major structural abnormality in the renin gene of the spontaneously hypertensive rat. J Hypertens 1989; 7: 249–54.
  • Kurtz T, Simoner K, Kabra P, et al. Cosegregation of the renin allele of the spontaneously hypertensive rat with an increase in blood pressure. J Clin Invest 1990; 85: 1328–32.
  • Kainulainen K, Perola M, Terwillinger J, et al. Evidence for involvement of the type 1 angiotensin II receptor locus in essential hypertension. Hypertension 1999; 33: 844–9.
  • Niu T, Yang J, Wang B, et al. Angiotensinogen gene polymorphisms M235T/T174M. No excess transmission to hypertensive Chinese. Hypertension 1999; 33: 698–702.
  • Lifton RP, Hunt SC, Williams GH, et al. Exclusion of the Na+-H+ antiporter as a candidate gene in human essential hypertension. Hypertension 1991; 17: 8–14.
  • Baker EM, Portal AJ, A MT, et al. Epithelial sodium channel activity is not increased in hypertension in white. Hypertension 1999; 33: 1031–5.
  • Corvol P, Peru A, Gimenez-Roqueplo A-P, et al. Seven lessons from two candidate genes in human essential hypertension, angiotensinogen and epithelial sodium channel. Hypertension 1999; 33: 1324–31.
  • Ferrari P, Ferrandi M, Torielli L, et al. Relationship between erythrocyte volume and sodium transport in the Milan hypertensive rat and age-dependent changes. J Hypertens 1987; 5: 199–206.
  • Garay RP, Nazaret P, Price M. Abnormal Na+, K+ cotransport function in a group of patients with essential hypertension. Eur J Clin Invest 1983; 13: 311–20.
  • Ferrandi M, Salardi S, Parenti P, et al. Na+K+Cl–cotransporter mediated RB+ fluxes in membrane vesicles from kidney of normotensive and hypertensive rats. Biochim Biophys Acta 1990; 1021: 13–20.
  • Ferrari P, Torielli L, Salardi S, et al. Na+/K+/Cl-cotransport in resealed ghosts from erythro-cytes of the Milan hypertensive rats. Biochim Biophys Acta 1992; 1111: 111–9.
  • Manunta P, Burnier M, D’Amico M, et al. Adducin polymorphism affects renal proximal tubule reabsorption in hypertension. Hypertension 1999; 33: 694–7.
  • Glorioso N, Manunta P, Filigheddu F, et al. The role of ?-adducin polymorphism in blood pressure and sodium handling regulation may not be excluded by a negative association study. Hypertension 1999; 34: 649–54.
  • Grant FD, Romero JR, Jeunemaitre X, et al. Low-renin hypertension, altered sodium homeo-stasis, and ?-adducin polymorphism. Hypertension 2002; 39: 191–96.
  • Williams SM, Addy JH, Phillips III JA, et al. Combination of variations in multiple genes are associated with hypertension. Hypertension 2000; 36: 2–6.
  • Pravenec M, Kren V, Kunes J, et al. Cosegregation of blood pressure with a kallikrein gene family polymorphism. Hypertension 1991; 17: 242–246.
  • Slim R, Torremocha F, Moreau T, et al. Loss-of-function polymorphism of the human kallikrein gene with reduced urinary kallikrein activity. J Am Soc Nephrol 2002; 13: 968–76.
  • Yu H, Song Q, Freedman B, et al. Association of the tissue kallikrein gene promoter with ESRD and hypertension. Kidney Int 2002; 61: 1030–9.
  • Gainer J, Brown N, Bachvarova M, et al. Altered frequency of a promoter polymorphism of the kinin B2 receptor gene in hypertensive African-Americans. Am J Hypertens 2002; 13: 1268–73.
  • Rubattu S, Giliberti R, Russo R, et al. Analysis of the genetic basis of the endothelium-dependent impaired vasorelaxation in the stroke-prone spontaneously hypertensive rat: a candidate gene approach. J Hypertens 2000; 18: 161–5.
  • Dahl LK, Heine M, Thompson K. Genetic influence of the kidneys on blood pressure. Evidence from chronic renal homografts in rats with opposite predispositions to hypertension. Circ Res 1974; 34: 94–101.
  • Dahl LK, Heine M. Primary role of renal homografts in setting chronic blood pressure levels in rats. Circ Res 1975; 36: 692–6.
  • Bianchi GP, Fox U, Di Francesco GF, et al. Blood pressure changes produced by kidney transplantation between spontaneously hypertensive rats and normotensive rats. Clin Sci Mol Med 1974; 47: 435–48.
  • Kawabe K, Watanabe T, Shiono K, et al. Influence on blood pressure of renal isografts between spontaneously hypertensive and normotensive rats using F1 hybrid. Jpn Heart J 1978; 19: 886–94.
  • Curtis JJ, Luke RG, Dustan HP, et al. Remission of essential hypertension after renal transplantation. N Engl J Med 1983; 309: 1009–15.
  • Beierwalter WH, Arendshorst WJ, Klemmer PJ. Electrolyte and water balance in young spontaneously hypertensive rats. Hypertension 1982; 4: 908–15.
  • Bianchi GP, Baer G, Fox U, et al. Changes in renin, water balance, and sodium balance during development of high blood pressure in genetically hypertensive rats. Circ Res 1975; 36: I-143-I-61.
  • Dahl LK, Heine M, Thompson K. Genetic influence of renal homografts on blood pressure levels in rats. Proc Soc Exp Biol Med 1972; 140: 852–6.
  • Majima M, Adachi K, Ohno T, et al. Failure of the oxytocin-induced increase in secretion of urinary kallikrein in young spontaneously hypertensive rats. Jpn J Pharmacol 1996; 71: 11–9.
  • Yamanaka M, Hayashi I, Fujita T, et al. Potassium-induced increase in renal kallikrein secretion is attenuated in dissected renal connecting tubules of young spontaneously hypertensive rats. Int. Immunopharmacol. 2002; 2: 1957–64.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.