699
Views
31
CrossRef citations to date
0
Altmetric
Reviews

Morphological Characterization, Chemical Components, and Biofunctional Activities of Panax ginseng, Panax quinquefolium, and Panax notoginseng Roots: A Comparative Study

, , , &

References

  • Choi, J.; Kim, T.H.; Choi, T.Y.; Lee, M.S. Ginseng for health care: A systematic review of randomized controlled trials in Korean literature. PLoS ONE 2013, 8, e59978.
  • Wen, J.; Zimmer, E.A. Phylogeny and biogeography of Panax L. (the Ginseng Genus, Araliaceae): Inferences from ITS sequences of nuclear ribosomal DNA. Mol. Phylogenet. 1996, 6, 167–177.
  • Zhang, C.; Liu, L.; Yu, Y.; Chen, B.; Tang, C. Antitumor effects of ginsenoside Rg3 on human hepatocellular carcinoma cells. Mol. Med. Rep. 2012, 5, 1295–1298.
  • Bu, Q.T.; Zhang, W.Y.; Chen, Q.C.; Zhang, C.Z.; Gong, X.J.; Liu, W.C.; Li, W.; Zheng, Y.N. Anti-diabetic effect of ginsenoside Rb(3) in alloxan-induced diabetic mice. Med. Chem. 2012, 8, 934–941.
  • Chung, S.H.; Choi, C.G.; Park, S.H. Comparisons between white ginseng radix and rootlet for antidiabetic activity and mechanism in KKAy mice. Arch. Pharm. Res. 2001, 24, 214–218.
  • Rai, D.; Bhatia, G.; Sen, T.; Palit, G. Anti-stress effects of Ginkgo biloba and Panax ginseng: A comparative study. J. Pharmacol. Sci. 2003, 4, 458–464.
  • Surh, Y.J.; Na, H.K.; Lee, J.Y.; Keum, Y.S. Molecular mechanisms underlying anti-tumor promoting activities of heat-processed Panax ginseng C.A. Meyer. J. Korean Med. Sci. 2001, 16(Suppl), S38–S41.
  • Lee, B.; Shim, I.; Lee, H.; Hahm, D.H. Effect of ginsenoside Re on depression- and anxiety-like behaviors and cognition memory deficit induced by repeated immobilization in rats. J. Microbiol. Biotechnol. 2012, 22, 708–720.
  • Koo, H.J.; Park, S.H.; Jo, J.S.; Kim, B.Y.; Baik, M.Y. Gelatinization and retrogradation of 6-year-old Korean ginseng starches studied by DSC. LWT Food Sci. Technol. 2005, 38, 59–65.
  • Lee, H.M.; Lee, O.H.; Lee, B.Y. Effect of ginsenoside Rg3 and Rh2 on glucose uptake in insulin-resistant muscle cells. J. Korean Soc. Appl. Biol. Chem. 2010, 53, 106–109.
  • Lee, B.H.; Nah, S.Y. Ginsentololy II: Chemical structure-biological activity relationship of ginsenoside. J. Ginseng Res. 2007, 31, 69–73.
  • Lee, Y.K.; Im, Y.J.; Kim, Y.L.; Sacket, S.J.; Lim, S.M.; Kim, K.O.; Kim, H.L.; Ko, S.R.; Im, D.S. Increase of membrane potential by ginsenosides in prostate cancer and glioma cells. J. Ginseng Res. 2006, 10, 70–77.
  • Lee, H.G.; Lim, D.B.; Lee, Y.J. A study on morphological characteristics of ginseng radix. Korean J. Herbol. 2004, 19, 181–189.
  • Chung, Y.Y.; Chung, C.M.; Jo, J.S. Agronomic characteristics and chemical component of hybrid between Panax ginseng C.A. Meyer and Panax quinquefolium L. J. Ginseng Res. 2003, 27, 183–187.
  • Xu, J.D.; Mao, Q.; Shen, H.; Zhu, L.Y.; Li, S.L.; Yan, R. Ultra-high performance liquid chromatography coupled with photo-diode array and quadrupole/time-of-flight mass spectrometry based chemical profiling approach to evaluate the influence of preparation methods on the holistic quality of Qiong-Yu-Gao, a traditional complex herbal medicine. J. Chromatogr. A 2013, 1304, 154–168.
  • An, Y.N.; Lee, S.Y.; Chung, M.G.; Choi, K.J.; Kang, K.H. Ginsenoside concentration and chemical component as affected by harvest in times of four-year ginseng root. Korean J. Crop Sci. 2002, 47, 216–220.
  • Ko, S.R.; Choi, K.J.; Han, K.W. Comparison of proximate composition, mineral nutrient, amino acid and free sugar contents of several Panax species. J. Ginseng Res. 1996, 20, 36–41.
  • Sohn, K.M.; Sung, T.S.; Cho, Y.J.; Lee, K.S.; Choi, C. Lipids and free sugar composition in ginseng classified by years. J. Korean Agric. Chem. Soc. 1988, 31, 169–176.
  • Kim H.J.; Jo, J.S. Studies on the physicochemical properties of Korean ginseng (Panax ginseng, C. A. Meyer) root starch 1. Starch content and general features. J. Ginseng Res. 1984, 8, 114–123.
  • Jung, W.T.; Shin, J.Y.; Park, H.J.; Lim, S.C. Quantitative comparison of ginsenosides and nitrogen compounds in Korean ginsengs and related origin. Korean J. Pharmacogn. 1996, 27, 6–14.
  • Lee, J.W; Do, J.H. Current studies on browning reaction products and acidic polysaccharide in Korean red ginseng. J. Ginseng Res. 2006, 30, 41–48.
  • Chung, Y.Y.; Chung, C.M.; Ko, S.R.; Choi, K.T. Comparison of agronomic characteristics and chemical component of Panax ginseng C.A. Meyer and Panax quinquefolium L. J. Ginseng Res. 1995, 19, 160–164.
  • Kim, M.W.; Lee, J.S.; Choi, K.J. Comparative studies on the chemical components in ginseng. J. Ginseng Res. 1982, 6, 138–142.
  • Lee, B.Y.; Kim, E.J.; Park, D.J.; Hong, S.I.; Chun, H.S. Composition of saponin and free sugar of some white ginsengs with processing conditions. Korean J. Food Sci. Technol. 1996, 28, 922–927.
  • Shibata, S.; Tanaka, O.; Ando, T.; Sado, M.; Tsushimo, S.; Ohsawa, T. Chemical studies on oriental plant drugs. XlV. Protopanaxadiol, a genuine sapogenin of ginseng saponins. Chem. Pharm. Bull. 1966, 14, 596–600.
  • Kim, Y.A.; Akoev, V.R.; Elemesov, R.E. Hyperosmotic hemolysis and antihemolytic activity of the saponin fraction and triterpene glycosides from Panax ginseng C. A. Meyer. Membr. Cell Biol. 2000, 14, 237–51.
  • Attele, A.S.; Wu, J.A.; Yuan, C.S. Ginseng pharmacology: Multiple constituents and multiple actions. Biochem. Pharmacol. 1999, 38, 1683–1693.
  • Hwang, J.B.; Ha, J.H.; Hawer, W.D.; Bae, N.G.; Lee, B.Y. Ginsenoside contents of Korean white ginseng and tageuk ginseng with various sizes and cultivation years. Korean J. Food Sci. Technol. 2005, 37, 508–512.
  • Court, W.A.; Hendel, J.G.; Elmi, J. Reversed-phase high-performance liquid chromatography determination of ginsenosides of Panax quinquefolium. J. Chromatogr. A 1996, 755, 11–17.
  • Sengupta, S.; Toh, S.A.; Sellers, L.A.; Skepper, J.N.; Koolwijk, P.; Leung, H.W.; Yeung, H.W.; Wong, R.N. Sasisekharan, R.; Fan, T.P. Modulating angiogenesis; the yin and yang in ginseng. Circulation 2004, 110, 1219–1225.
  • Nam, K.Y. The comparative understanding between red ginseng and white ginsengs, processed ginsengs (Panax ginseng C. A. Meyer). J. Ginseng Res. 2005, 29, 1–18.
  • Cho, E.J.; Piao, X.L.; Jang, M.H.; Baek, S.H.; Kim, H.Y.; Kang, K.S.; Kwon, S.W.; Park, J.H. The effect of steaming on the free amino acid contents and antioxidant activity of Panax ginseng. Food Chem. 2008, 107, 876–882.
  • Yoshikawa, M.; Murakami, T.; Ueno, T.; Yashino, K.; Hirokawa, N.; Murakami, N.; Yamahara, J.; Mastuda, H.; Saijoh, R.; Tanaka, O. Bioactive saponin ansglycosides. VIII. Notoginseng (I): New dammarane type triterpene oligoglycosides, notoginsenosides A, B, C, D from the dried root of Panax notoginseng F. H. Chen. Chem. Pharm. Bull. 1997, 45, 1039–1045.
  • Yoshikawa, M.; Murakami, T.; Ueno, T.; Yashino, K.; Yamahara, J.; Mastuda, H.; Saijoh, R.; Tanaka, O. Bioactive saponin and glycosides. XI. Bioactive saponins and glycosides. XI. Structures of new dammarane-type triterpene oligoglycosides, quinquenosides I, II, III, IV, and V, from American ginseng, the roots of Panax quinquefolium L. Chem. Pharm. Bull. 1998, 46, 647–654.
  • Park, J.D. Recent studies on the chemical constituents of Korean ginseng (Panax ginseng C.A. Meyer). J. Ginseng Res. 1996, 20, 389–415.
  • Ko, S.R.; Choi, K.J.; Kim, S.C.; Han, K.W. Content and composition of saponin compounds of Panax species. J. Ginseng Res. 1995, 19, 254–259.
  • Kwan, C. Vascular effects of selected antihypertensive drugs derived from traditional medicinal herbs. Clin. Exp. Pharmacol. Physiol. 1995, 22, S297–S299.
  • Tsang, D.; Yeung, H.W.; Tso, W.W.; Peck, H. Ginseng saponins: Influence on neurotransmitter uptake in rat brain synaptosomes. Planta Med. 1985, 3, 221–224.
  • Fang, F.; Chen, X.; Huang, T.; Lue, L.F.; Luddy, J.S.; Yan, S.S. Multi-faced neuroprotective effects of Ginsenoside Rg1 in an Alzheimer mouse model. Biochim. Biophys. Acta 2011, 1822, 286–292.
  • Zhu, J.; Jiang, Y.; Wu, L.; Lu, T.; Xu, G.; Liu, X. Suppression of local inflammation contributes to the neuroprotective effect of ginsenoside Rb1 in rats with cerebral ischemia. Neuroscience 2012, 202, 342–351.
  • Yamaguchi, Y.; Haruta, K.; Kobayashi, H. Effects of ginsenosides on impaired performance induced in the rat by scopolamine in a radial-arm maze Psychoneuroendocrinology 1995, 20, 645–653.
  • Yamaguchi, Y.; Higashi, M.; Kobayashi, H. Effects of oral and intraventricular administration of ginsenosides Rg1 on the performance impaired by scopolamine in rats. Biomed. Res. 1995, 17, 487–490.
  • Leung, K.W.; Yung, K.K.L.; Mak, N.K.; Chen, Y.S.; Fan, T.P.; Wong, R.N.S. Neuroprotective effects of ginsenoside-Rg1 in primary nigral neurons against rotenone toxicity. Neutropharmacology 2007, 52, 827–835.
  • Xu, Y.X.; Shi, J.S.; Jiang, Z.L. Inhibitory influence of ginsenoside Rb3 on activation of strychnine-sensitive glycine receptors in hippocampal neurons of rat. Brain Res. 2005, 1037, 99–106.
  • Endale, M.; Lee, W.M.; Kamruzzaman, S.M.; Kim, S.D.; Park, J.Y.; Park, M.H.; Park, T.Y.; Park, H.J.; Cho, J.Y.; Rhee, M.H. Ginsenoside-Rp1 inhibits platelet activation and thrombus formation via impaired glycoprotein VI signaling pathway, tyrosine phosphorylation and MAPK activation. Br. J. Pharm. 2012, 167, 109–127.
  • Wang, W.; Zhang, X.; Qin, J.J.; Voruganti, S.; Nag, S.A.; Wang, M.H.; Wang, H.; Zhang, R. Natural product ginsenoside 25-OCH3-PPD inhibits breast cancer growth and metastasis through down-regulating MDM2. PLoS ONE 2012, 7, e41586.
  • Kim, J.; Han, B.J.; Kim, H.; Lee, J. Y.; Joo, I.; Omer, S.; Kim, Y.S.; Han, Y. Th1 immunity induction by ginsenoside Re involves in protection of mice against disseminated candidiasis due to Candida albicans. Int. Immunopharmacol. 2012, 14, 481–486.
  • Lee, C.K.; Park, K.K.; Chung, A.S.; Chung, W.Y.; Ginsenoside Rg3 enhances the chemosensitivity of tumors to cisplatin by reducing the basal level of nuclear factor erythroid 2-related factor 2-mediated heme oxygenase-1/NAD(P)H quinone oxidoreductase-1 and prevents normal tissue damage by scavenging cisplatin-induced intracellular reactive oxygen species. Food Chem. Toxicol. 2012, 50, 2565–2574.
  • Shinkai, K.; Akedo, H.; Mukai M.; Imamura, F.; Isoai, A.; Kobayashi, M.; Kitagawa, I. Inhibition of in vitro tumor cell invasion by ginsenoside Rg3. Jpn. J. Cancer Res. 1996, 87, 357–362.
  • Mochizuki, M.; Yoo, Y.C.; Matsuzawa, K. Inhibitory effect of tumor metastasis in mice by saponins, ginsenoside Rb2, 20 (R)- and 20 (S)-ginsenoside Rg3, of red ginseng. Biol. Pharm. Bull. 1995, 18, 1197–1202.
  • Li, X.; Guan, Y.S.; Zhou, X.P.; Sun, I.; Liu, Y.; He, Q.; Fu, L.; Mao, Y.Q. Anticarcinogenic effect of 20 (R)–ginsenoside Rg3 on induced hepatocellular carcinoma in rats. Sichuan Da Xue Bao Yi Xue Ban 2005, 36, 217–220.
  • Tian, J.W.; Fu, F.H.; Geng, M.Y.; Jiang, Y.T.; Yang, J.X.; Jiang, W.L.; Wang, C.Y.; Liu, K. Neuroprotective effect of 20(S)-ginsenoside Rg3 on cerebral ischemia in rats. Neurosci. Lett. 2005, 374, 92–97.
  • Kim, N.D.; Kim, E.M.; Kang, K.W.; Cho, M.K.; Choi, S.Y.; Kim S.G. Ginsenoside Rg3 inhibits phenylephrine–induced vascular contraction through induction of nitric oxide synthase. Br. J. Pharmacol. 2003, 140, 661–670.
  • Kim, Y.S.; Jin, S.H.; Lee, Y.H.; Kim, S.I.; Park, J.D. Ginsenoside Rh2 induces apoptosis independently of Bcl-xL, or Bax in C6Bu-1 cells. Arch. Pharm. Res. 1999, 22, 448–453.
  • Kim, H.E.; Oh, S.K.; Lee, S.K.; Oh, Y.J. Ginsenoside Rh2 induces apoptotic cell death in rat C6 glioma via a reactive oxygen-and caspase-dependent but Bcl-xL-independent pathway. Life Sci. 1999, 65, 33–40.
  • Chen, Y.P.; Meng, Q.; Song, C. Preparation of 20(S)-protopanaxadiol saponins and 20(S)-ginsenoside-Rh2 from 20(S)-protopanaxadiol saponins. Chin. Pharm. J. 1997, 32, 273–275.
  • Quan, L.H.; Jin, Y.; Wang, C.; Min, J.W.; Kim, Y.J.; Yang, D.C. Enzymatic transformation of the major ginsenoside Rb2 to minor compound Y and compound K by a ginsenoside-hydrolyzing beta-glycosidase from Microbacterium esteraromaticum. J. Ind. Microbiol. Biotechnol. 2012, 39, 1557–1562.
  • Choi, Y.S.; Han, G.C.; Han, E.J.; Park, K.J. Effects of compound K on insulin secretion and carbohydrate metabolism. J. Ginseng Res. 2007, 31, 79–85.
  • Hasegawa, H.; Sung, J.H.; Matsumiya, S.; Uchiyama, M.; Inouye, Y.; Kasai, R.; Yamasaki, K. Reversal of daunomycin and vinblastine resistance in multidrug-resistant P388 leukemia in vitro through enhanced cytotoxicity by triterpenoids. Planta Med. 1995, 61, 409–413.
  • Byeon, S.E.; Lee, J.; Kim, J.H.; Yang, W.S.; Kwak, Y.S.; Kim, S.Y.; Choung, E.S.; Rhee, M.H.; Cho, J.Y. Molecular mechanism of macrophage activation by red ginseng acidic polysaccharide from Korean red ginseng. Mediat. Inflamm. 2012, 2012, ID 732860.
  • Do, J.H.; Lee, H.O.; Lee, S.K.; Noh, K.B.; Lee, S.D.; Lee, K.S. Comparisons of acidic polysaccharide content in various ginseng species and parts. J. Ginseng Res. 1993, 17, 145–147.
  • Kim, H.Y.; Lee, Y.H.; Kim, S.I. Antihepatotoxic components of Korean ginseng: Effect on lipid peroxidation. Korean Biochem. J. 1989, 22, 12–18.
  • Tomoda, M.; Hirabayashi, K.; Shimizu, N.; Gonda, R.; Ohara, N. The core structure of ginseng a PA, a phagocytosis-activating polysaccharide from the root of Panax ginseng. Biol. Pharm. Bull. 1994, 17, 1287–1291.
  • Scaglione, F.; Cogo, R.; Cocuzza, C.; Arcidiacono, M.; Beretta, A. Immunomodulatory effects of Panax ginseng C.A. Meyer(G115) on alveolar macrophages from patients suffering with chronic bronchitis. Int. J. Immunother. 1994, 10, 21–24.
  • Kim, K.H.; Lee, Y.S.; Jung, I.S.; Park, S.Y.; Chung, H.Y.; Lee, I.R.; Yun, Y.S. Acidic polysaccharide from Panax ginseng, Ginsan, induces Th1 cell and macrophage cytokines and generates LAK cells in synergy with IL-2. Planta Med. 1998, 64, 110–115.
  • Sonoda, Y.; Kasahara, T.; Mukaida, N.; Shimizu, N.; Tomoda, M.; Takeda T. Stimulation of interleukin-8 production by acidic polysaccharides from the root of Panax ginseng. Immunopharmacology 1998, 38, 287–294.
  • Wang, Z.T.; Du, Q.; Xu, G.J.; Wang, R.J.; Fu, D.Z.; Ng, T.B. Investigations on the protective action of Condonopsis pilosula (Dangshen) extract on experimentally-induced gastric ulcer in rats. Gen. Pharmacol. 1997, 28, 469–473.
  • Xu, X.; Wang, S.R.; Lin, Q. Clinical and experimental study on Codonopsis pilosula oral liquor in treating coronary heart disease with blood stasis. Zhongguo Zhong Xi Yi Jie He Za Zhi 1995, 15, 398–400.
  • Sen, S.; Chen, S.; Feng, B.; Wu, Y.; Lui, E.; Chakrabarti, S. Preventive effects of North American ginseng (Panax quinquefolium) on diabetic nephropathy. Phytomedicine 2012, 19, 494–505.
  • Wang, C.; Li, Y.Z.; Wang, X.R.; Lu, Z.R.; Shi, D.Z.; Liu X.H. Panax quinquefolium saponins reduce myocardial hypoxia-reoxygenation injury by inhibiting excessive endoplasmic reticulum stress. Shock 2012, 37, 228–233.
  • Duda, R.B.; Taback, B.; Kessel, B.; Dooley, D.D.; Yang, H.; Marchiori, J.; Slomovic, B.M.; Alvarez, J.G. pS2 expression induced by American ginseng in MCF-7 breast cancer cells. Ann. Surg. Oncol. 1996, 3, 515–520.
  • Yuan, C.S.; Attele, A.S.; Wu, J.A.; Liu, D. Modulation of American ginseng on brainstem GABAergic effects in rats. J. Ethnopharmacol. 1998, 62, 215–222.
  • Yuan, C.S.; Wang, X.; Wu, J.A.; Attlele, A.S.; Xie, J.T.; Gu, M. Effects of Panax quinquefolius L. on brainstem neuronal activities: Comparison between Wisconsin-cultivated and Illinois-cultivated roots. Phytomedicine 2001, 8, 178–183.
  • Niu, Y.; Luo, H.; Sun, C.; Yang, T.J.; Dong, L.; Huang, L.; Chen, S. Expression profiling of the triterpene saponin biosynthesis genes FPS, SS, SE, and DS in the medicinal plant Panax notoginseng. Gene 2014, 533, 295–303.
  • Li, C.T.; Wang, H.B.; Xu, B.J. A comparative study on anticoagulant activities of three Chinese herbal medicines from the genus Panax and anticoagulant activities of ginsenosides Rg1 and Rg2. Pharm. Biol. 2013, 51, 1077–1080.
  • Kitts, D.D.; Wijewickreme, A.N.; Hu, C. Antioxidant properties of a North American ginseng extract. Mol. Cell. Biochem. 2000, 203, 1–10.
  • Lee, D.W.; Sohn, H.O.; Lim, H.B.; Lee, Y.; Aprikian, A.G.; Aprikian, G.V. Antioxidant action of ginseng: A hypothesis. J. Ginseng Res. 1995, 19, 31–38.
  • Lim, H.K.; Kim, Y.W.; Lee, D.H.; Cho, S.K.; Cho, M. The antifibrotic and antioxidant activities of hot water extract of adventitious root culture of Panax ginseng (ARCP). J. Appl. Biol. Chem. 2007, 50, 78–84.
  • Ng, T.B.; Liu, F.; Wang, H.X. The antioxidant effects of aqueous and organic extracts of Panax quinquefolium, Panax notoginseng, Codonopsis pilosula, Pseudostellaria heterophylla and Glehnia littoralis. J. Ethanopharmacol. 2004, 93, 285–288.
  • Yu, S.H.; Huang, H.Y.; Korivi, M.; Hsu, M.F.; Huang, C.Y.; Hou, C.W.; Chen, C.Y.; Kao, C.L.; Lee, R.P.; Lee, S.D.; Kuo, C.H. Oral Rg1 supplementation strengthens antioxidant defense system against exercise-induced oxidative stress in rat skeletal muscles. J. Int. Soc. Sport. Nutr. 2012, 9, 23. doi:10.1186/1550-2783-9-23.
  • Ko, S.R.; Lee, Y.H.; Choi, K.J.; Park, J.D. Comparative cytotoxic activities of various ginsengs on human cancer cell lines. J. Ginseng Sci. 1998, 22, 18–21.
  • Park, K.S.; Ko, S.K.; Chung, S.H. Comparisons of antidiabetic effect between Ginseng Radix Alba, Ginseng Radix Rubra and Panax quinquefoli Radix in MLD STZ-induced diabetic rats. J. Ginseng Res. 2003, 27, 56–61.
  • Su, C.F.; Cheng, J.T.; Liu, I.M. Increase of acetylcholine release by Panax ginseng root enhances insulin secretion in Wistar rats. Neurosci. Lett. 2007, 412, 101–104.
  • Vuksan, V.; Sung, M.K.; Sievenpiper, J.L.; Stavro, P.M.; Jenkins, A.L.; Buono, M.D.; Lee, K.S.; Leiter, L.A.; Nam, K.Y.; Arnason, J.T.; Choi, M.; Naeem, A. Korean red ginseng (Panax ginseng) improves glucose and insulin regulation in well-controlled, type 2 diabetes: Results of a randomized, double-blind, placebo-controlled study of efficacy and safety. Nutr. Metab. Cardiovasc. Dis. 2008, 18, 46–56.
  • Suh, S.O.; Boo, Y.J.; Park, J.M.; Kim J. Prospective study for Korean red ginseng extract as an immune modulator following a curative Surgery in patients with advanced colon cancer. J. Ginseng Res. 2007, 3, 54–59.
  • Choi, E.H.; Kee, H.J.; Kim, C.J.; Kim, J.T.; Kwun, I.S.; Kim, Y.H. Antistress effects of ginseng in Immobilization-stressed rats. J. Food Sci. Nutr. 2004, 9, 253–258.
  • Bae, E.A.; Han, M.J.; Shin, Y.W.; Kim, D.H. Antiallergic and antipsoriatic effects of Korean red ginseng. J. Ginseng Res. 2005, 29, 80–85.
  • Fox, N.C.; Warrington, E.K.Seiffer, A.L.; Agnew, S.K.; Rossor, M.N. Presymptomatic cognitive deficits in individuals at risk of familial Alzheimer’s disease. A longitudinal prospective study. Brain 1998, 121, 1631–1639.
  • Lee, S.T.; Chu, K.; Kim, J.M.; Park, H.J.; Kim, M.H. Cognitive improvement by ginseng in Alzheimer′s disease. J. Ginseng Res. 2007, 31, 51–53.
  • Lim, I.H.; Wen, T.C.; Masuda, S.; Tanaka, J.; Maeda, N.; Peng, H.; Aburaya, J.; Ishihsara, K.; Sakanaka, M. Protective of ischemic hippocampal neurons by ginsenoside Rb1 a main ingredient of ginseng root. Neurosci. Res. 1997, 28, 191–200.
  • He, B.; Chen, P.; Yang, J.; Yun, Y.; Zhang, X.; Yang, R.; Shen, Z. Neuroprotective effect of 20(R)-ginsenoside Rg(3) against transient focal cerebral ischemia in rats. Neurosci. Lett. 2012, 526, 106–111.
  • Liu, D.; Li, B.; Liu, Y.; Attele, A.S.; Kyle, J.W.; Yuan, C.S. Voltage-dependent inhibition of brain Na+ channels by American ginseng. Eur. J. Pharmacol. 2001, 413, 47–54.
  • Chang, S.H.; Choi, Y.N.; Park, J.A.; Jung, D.S.; Shin, J.U.; Yang, J.H.; Ko, S.Y.; Kim, S.W.; Kim, J.K. Anti-inflammatory effects of BT-201, an n-butanol extract of Panax notoginseng, observed in vitro and in a collagen-induced arthritis model. Clin. Nutr. 2007, 26, 785–791.
  • Jia, Y.; Li, Z.Y.; Zhanga, H.G.; Li, H.B.; Liua, Y.; Li, X.H. Panax notoginseng saponins decrease cholesterol ester via up-regulating ATP-binding cassette transporter A1 in foam cells. J. Ethnopharmacol. 2010, 132, 297–302.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.