1,066
Views
31
CrossRef citations to date
0
Altmetric
Reviews

Alicyclobacillus in the Fruit Juice Industry: Spoilage, Detection, and Prevention/Control

, , , &

References

  • Cerny, G.; Hennlich, W. Spoilage of fruit juice by bacilli: Isolation and characterization of the spoilage organism. Z. Lebensm. Unters. Forsch. 1984, 179, 224–227.
  • Smit, Y.; Cameron, M.; Venter, P.; Witthuhn, R.C. Alicyclobacillus spoilage and isolation—A review. Food Microbiol. 2011, 28, 331–349.
  • Matsubara, H.; Goto, K.; Matsumura, T.; Mochida, K.; Iwaki, M.; Niwa, M.; Yamasato, K. Alicyclobacillus acidiphilus sp. nov., a novel thermo-acidophilic, omega-alicyclic fatty acid-containing bacterium isolated from acidic beverages. Int. J. Syst. Evol. Microbiol. 2002, 52, 1681–1685.
  • Uchino, F.; Doi, S. Acido-thermophilic bacteria from thermal waters. Agric. Biol. Chem. 1967, 31, 817–822.
  • Darland, G.; Brock, T. Bacillus acidocaldarius sp. nov., an acidophilic thermophilic spore-forming bacterium. J. Gen. Microbiol. 1971, 67, 9–15.
  • Wisotzkey, J.D.; Jurtshuk, P.; Fox, G.E.; Deinhard, G.; Poralla, K. Comparative sequence analyses on the 16S rRNA (rDNA) of Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus and proposal for creation of a new genus, Alicyclobacillus gen. nov. Int. J. Syst. Bacteriol. 1992, 42, 263–269.
  • Nicolaus, B.; Improta, R.; Manca, M.C.; Lama, L.; Esposito, E.; Gambacorta, A. Alicyclobacilli from an unexplored geothermal soil in Antarctica: Mount Rittmann. Polar Biol. 1998, 19, 133–141.
  • Deinhard, G.; Blanz, P.; Poralla, K.; Altan, E. Bacillus acidoterrestris sp. nov., a new thermotolerant acidophile isolated from different soils. Syst. Appl. Microbiol. 1987, 10, 47–53.
  • Guo, X.; You, X.Y.; Liu, L.J.; Zhang, J.Y.; Liu, S.J.; Jiang, C.Y. Alicyclobacillus aeris sp. nov., a novel ferrous-and sulfur-oxidizing bacterium isolated from a copper mine. Int. J. Syst. Evol. Microbiol. 2009, 59, 2415–2420.
  • Glaeser, S.P.; Falsen, E.; Martin, K.; Kämpfer, P. Alicyclobacillus consociatus sp. nov., isolated from a human clinical specimen. Int J Syst Evol Microbiol. 2013, 63, 3623–3627.
  • Goto, K.; Mochida, K.; Kato, Y.; Asahara, M.; Fujita, R.; An, S.-Y.; Kasai, H.; Yokota, A. Proposal of six species of moderately thermophilic, acidophilic, endospore-forming bacteria: Alicyclobacillus contaminans sp. nov., Alicyclobacillus fastidiosus sp. nov., Alicyclobacillus kakegawensis sp. nov., Alicyclobacillus macrosporangiidus sp. nov., Alicyclobacillus sacchari sp. nov. and Alicyclobacillus shizuokensis sp. nov. Int. J. Syst. Evol. Microbiol. 2007, 57, 1276–1285.
  • Dufresne, S.; Bousquet, J.; Boissinot, M.; Guay, R. Sulfobacillus disulfidooxidans sp. nov., a new acidophilic, disulfide-oxidizing, gram-positive, spore-forming bacterium. Int. J. Syst. Bacteriol. 1996, 46, 1056–1064.
  • Karavaiko, G.I.; Kondrat’eva, T.F.; Tsaplina, I.A.; Egorova, M.A.; Krasil’nikova, E.N.; Zakharchuk, L.M. Reclassification of ‘Sulfobacillus thermosulfidooxidans subsp. thermotolerans’ strain K1 as Alicyclobacillus tolerans sp. nov. and Sulfobacillus disulfidooxidans Dufresne et al. 1996 as Alicyclobacillus disulfidooxidans comb. nov., and emended description of the genus Alicyclobacillus. Int. J. Syst. Evol. Microbiol. 2005, 55, 941–947.
  • Jiang, C.Y.; Liu, Y.; Liu, Y.Y.; You, X.Y.; Guo, X.; Liu, S.J. Alicyclobacillus ferrooxydans sp. nov., a ferrous-oxidizing bacterium from solfataric soil. Int. J. Syst. Evol. Microbiol. 2008, 58, 2898–2903.
  • Goto, K.; Matsubara, H.; Mochida, K.; Matsumura, T.; Hara, Y.; Niwa, M.; Yamasato, K. Alicyclobacillus herbarius sp. nov., a novel bacterium containing omega-cycloheptane fatty acids, isolated from herbal tea. Int. J. Syst. Evol. Microbiol. 2002, 52, 109–113.
  • Albuquerque, L.; Rainey, F.; Chung, A.; Sunna, A.; Nobre, M.; Grote, R.; Antranikian, G.; Da Costa, M. Alicyclobacillus hesperidum sp. nov. and a related genomic species from solfataric soils of São Miguel in the Azores. Int. J. Syst. Evol. Microbiol. 2000, 50, 451–457.
  • Imperio, T.; Viti, C.; Marri, L. Alicyclobacillus pohliae sp. nov., a thermophilic, endospore-forming bacterium isolated from geothermal soil of the north-west slope of Mount Melbourne (Antarctica). Int. J. Syst. Evol. Microbiol. 2008, 58, 221–225.
  • Goto, K.; Mochida, K.; Asahara, M.; Suzuki, M.; Kasai, H.; Yokota, A. Alicyclobacillus pomorum sp. nov., a novel thermo-acidophilic, endospore-forming bacterium that does not possess ω-alicyclic fatty acids, and emended description of the genus Alicyclobacillus. Int. J. Syst. Evol. Microbiol. 2003, 53, 1537–1544.
  • Tsuruoka, N.; Isono, Y.; Shida, O.; Hemmi, H.; Nakayama, T.; Nishino, T. Alicyclobacillus sendaiensis sp. nov., a novel acidophilic, slightly thermophilic species isolated from soil in Sendai, Japan. Int. J. Syst. Evol. Microbiol. 2003, 53, 1081–1084.
  • Simbahan, J.; Drijber, R.; Blum, P. Alicyclobacillus vulcanalis sp. nov., a thermophilic, acidophilic bacterium isolated from Coso Hot Springs, California, USA. Int. J. Syst. Evol. Microbiol. 2004, 54, 1703–1707.
  • Hippchen, B.; Röll, A.; Poralla, K. Occurrence in soil of thermo-acidophilic bacilli possessing ω-cyclohexane fatty acids and hopanoids. Arch. Microbiol. 1981, 129, 53–55.
  • Groenewald, W.H.; Gouws, P.A.; Witthuhn, R.C. Isolation and identification of species of Alicyclobacillus from orchard soil in the Western Cape, South Africa. Extremophiles 2008, 12, 159–163.
  • Brown, K.L. New microbiological spoilage challenges in aseptics: Alicyclobacillus acidoterrestris spoilage in aseptically packed fruit juices. In Proceedings of the International Symposium Advances in Aseptic Processing and Packaging Technologies, Copenhagen, Denmark, September 11–12, 1995; Ohlsson, T., Ed.; The Swedish Institute for Food Research: Goteborg, Sweden, 1995; pp 1–14.
  • Parish, M.E.; Goodrich, R.M. Recovery of presumptive Alicyclobacillus strains from orange fruit surfaces. J. Food Prot. 2005, 68, 2196–2200.
  • Zhang, J.B.; Yue, T.L.; Yuan, Y.H. Alicyclobacillus Contamination in the production line of kiwi products in China. PLoS ONE 2013, 8, e67704.
  • Chen, S.; Tang, Q.; Zhang, X.; Zhao, G.; Hu, X.; Liao, X.; Chen, F.; Wu, J.; Xiang, H. Isolation and characterization of thermo-acidophilic endospore-forming bacteria from the concentrated apple juice-processing environment. Food Microbiol. 2006, 23, 439–445.
  • Groenewald, W.H.; Gouws, P.A.; Witthuhn, R.C. Isolation, identification and typification of Alicyclobacillus acidoterrestris and Alicyclobacillus acidocaldarius strains from orchard soil and the fruit processing environment in South Africa. Food Microbiol. 2009, 26, 71–76.
  • Steyn, C.E.; Cameron, M.; Witthuhn, R.C. Occurrence of Alicyclobacillus in the fruit processing environment—A review. Int. J. Food Microbiol. 2011, 147, 1–11.
  • Pettipher, G.L.; Osmundson, M.; Murphy, J. Methods for the detection and enumeration of Alicyclobacillus acidoterrestris and investigation of growth and production of taint in fruit juice and fruit juice-containing drinks. Lett. Appl. Microbiol. 1997, 24, 185–189.
  • Yamazaki, K.; Teduka, H.; Shinano, H. Isolation and identification of Alicyclobacillus acidoterrestris from acidic beverages. Biosci. Biotechnol. Biochem. 1996, 60, 543–545.
  • Lottici, C.; Previdi, M.; Bolzoni, L. Characterization and study of alicyclobacilli isolated from tomato products [vegetable and fruit products; biological contamination]. Ind. Conserv. 2006, 81, 251–268.
  • Chambers, D.; Chambers, E., IV; Seitz, L.; Sauer, D.; Robinson, K.; Allison, A. Sensory characteristics of chemical compounds potentially associated with smoky aroma in foods. Dev. Food Sci. 1998, 40, 187–194.
  • Mayer, F.; Czerny, M.; Grosch, W. Influence of provenance and roast degree on the composition of potent odorants in Arabica coffees. Eur. Food Res. Technol. 1999, 209, 242–250.
  • Fickert, B.; Schieberle, P. Identification of the key odorants in barley malt (caramalt) using GC/MS techniques and odour dilution analyses. Food/Nahrung 1998, 42, 371–375.
  • Varlet, V.; Knockaert, C.; Prost, C.; Serot, T. Comparison of odor-active volatile compounds of fresh and smoked salmon. J. Agric. Food Chem. 2006, 54, 3391–3401.
  • Smit, Y. Growth and Guaiacol Production of Species of Alicyclobacillus Isolated from the South African Fruit Processing Environment; University of Stellenbosch: Stellenbosch, South Africa, 2009. http://scholar.sun.ac.za/handle/10019.1/2245 (accessed July 15, 2010).
  • Crawford, R.L.; Olson, P.P. Microbial catabolism of vanillate: Decarboxylation to guaiacol. Appl. Environ. Microbiol. 1978, 36, 539–543.
  • Álvarez-Rodríguez, M.L.; Belloch, C.; Villa, M.; Uruburu, F.; Larriba, G.; Coque, J.J.R. Degradation of vanillic acid and production of guaiacol by microorganisms isolated from cork samples. FEMS Microbiol. Lett. 2003, 220, 49–55.
  • Rahouti, M.; Seigle-Murandi, F.; Steiman, R.; Eriksson, K.-E. Metabolism of ferulic acid by Paecilomyces variotii and Pestalotia palmarum. Appl. Environ. Microbiol. 1989, 55, 2391–2398.
  • Topakas, E.; Kalogeris, E.; Kekos, D.; Macris, B.; Christakopoulos, P. Bioconversion of ferulic acid into vanillic acid by the thermophilic fungus Sporotrichum thermophile. LWT Food Sci. Technol. 2003, 36, 561–565.
  • Pometto, A.L., III; Sutherland, J.B.; Crawford, D.L. Streptomyces setonii: Catabolism of vanillic acid via guaiacol and catechol. Can. J. Microbiol. 1981, 27, 636–638.
  • Huang Z.; Dostal L.; Rosazza J.P. Mechanisms of ferulic acid conversions to vanillic acid and guaiacol by Rhodotorula rubra. J. Biol. Chem. 1993, 268, 23954–23958.
  • Witthuhn, R.C.; Van der Merwe, E.; Venter, P.; Cameron, M. Guaiacol production from ferulic acid, vanillin and vanillic acid by Alicyclobacillus acidoterrestris. Int. J. Food Microbiol. 2012, 157, 113–117.
  • Peleg, H.; Naim, M.; Zehavi, U.; Rouseff, R.L.; Nagy, S. Pathways of 4-vinylguaiacol formation from ferulic acid in model solutions of orange juice. J. Agric. Food Chem. 1992, 40, 764–767.
  • Tatum, J.H.; Nagy, S.; Berry, R.E. Degradation products formed in canned single-strength orange juice during storage. J. Food Sci. 1975, 40, 707–709.
  • Naim, M.; Striem, B.J.; Kanner, J.; Peleg, H. Potentiall of ferulic acid as a precursor to off-flavors in stored orange juice. J. Food Sci. 1988, 53, 500–503.
  • Rouseff, R.L.; Dettweiler, G.R.; Swaine, R.M.; Naim, M.; Zehavi, U. Solid-phase extraction and HPLC determination of 4-vinyl guaiacol and its precursor, ferulic acid, in orange juice. J. Chromatogr. Sci. 1992, 30, 383–387.
  • Ander, P.; Hatakka, A.; Eriksson, K.E. Vanillic acid metabolism by the white-rot fungus Sporotrichum pulverulentum. Arch. Microbiol. 1980, 125, 189–202.
  • Cerrutti, P.; Alzamora, S.; Vidales, S. Vanillin as an antimicrobial for producing shelf-stable strawberry puree. J. Food Sci. 1997, 62, 608–610.
  • Alzamora, S.; Guerrero, S.; López-Malo, A.; Palou, E.; Roller, S. Plant antimicrobials combined with conventional preservatives for fruit products. In Natural Antimicrobials for the Minimal Processing of Foods; Roller S. Ed.; Woodhead Publishing: Cambridge, UK, 2003; pp 235–249.
  • Char, C.; Guerrero, S.; Alzamora, S.M. Survival of Listeria innocua in thermally processed orange juice as affected by vanillin addition. Food Control 2009, 20, 67–74.
  • Jensen, N. Alicyclobacillus: A new challenge for the food industry. Food Aust. 1999, 51, 33–36.
  • Flodin, C.; Whitfield, F.B. 4-Hydroxybenzoic acid: A likely precursor of 2,4,6-tribromophenol in Ulva lactuca. Phytochemistry 1999, 51, 249–255.
  • Chang, S.S.; Kang, D.H. Alicyclobacillus spp. in the fruit juice industry: History, characteristics, and current isolation/detection procedures. Crit. Rev. Microbiol. 2004, 30, 55–74.
  • Gocmen, D.; Elston, A.; Williams, T.; Parish, M.; Rouseff, R. Identification of medicinal off-flavours generated by Alicyclobacillus species in orange juice using GC-olfactometry and GC-MS. Lett. Appl. Microbiol. 2005, 40, 172–177.
  • Baumgart, J. The impact of Alicyclobacillus acidoterrestris on the quality of juices and soft drinks. Fruit Process. 2000, 10, 251–254.
  • Jensen, N. Alicyclobacillus in Australia. Food Aust. 2000, 52, 282–285.
  • Bahçeci, K.S.; Gökmen, V.; Acar, J. Formation of guaiacol from vanillin by Alicyclobacillus acidoterrestris in apple juice: A model study. Eur. Food Res. Technol. 2005, 220, 196–199.
  • Siegmund, B.; Pöllinger-Zierler, B. Growth behavior of off-flavor-forming microorganisms in apple juice. J. Agric. Food Chem. 2007, 55, 6692–6699.
  • Jensen, N.; Whitfield, F.B. Role of Alicyclobacillus acidoterrestris in the development of a disinfectant taint in shelf-stable fruit juice. Lett. Appl. Microbiol. 2003, 36, 9–14.
  • Splittstoesser, D.; Churey, J.; Lee, C. Growth characteristics of aciduric sporeforming bacilli isolated from fruit juices. J. Food Prot. 1994, 57, 1080–1083.
  • Splittstoesser, D.; Churey, J. Unique spoilage organisms of musts and wines. In Wine Spoilage Microbiology Conference, Fresno, California, March 8, 1996; Toland, T., Fugelsang, K.C., Eds.; California State University, Fresno: Fresno, CA, 1996; pp 36–41.
  • Wisse, C.A.; Parish, M.E. Isolation and enumeration of sporeforming, thermo-acidophilic, rod-shaped bacteria from citrus processing environments. Dairy Food Environ. Sanit. 1998, 18, 504–509.
  • Silva, F.V.M.; Gibbs, P.; Vieira, M.C.; Silva, C.L. Thermal inactivation of Alicyclobacillus acidoterrestris spores under different temperature, soluble solids and pH conditions for the design of fruit processes. Int. J. Food Microbiol. 1999, 51, 95–103.
  • International Federation of Fruit Juice Producers (IFU). Method on the Detection Of Taint Producing Alicyclobacillus in Fruit Juices: IFU Method No. 12; IFU: Paris, 2007; pp 1–11.
  • Hiraishi, A.; Inagaki, K.; Tanimoto, Y.; Iwasaki, M.; Kishimoto, N.; Tanaka, H. Phylogenetic characterization of a new thermoacidophilic bacterium isolated from hot springs in Japan. J. Gen. Appl. Microbiol. 1997, 43, 295–304.
  • Chang, S.; Kang, D.H. Development of novel Alicyclobacillus spp. isolation medium. J. Appl. Microbiol. 2005, 99, 1051–1060.
  • Walls, I.; Chuyate, R. Alicyclobacillus: History perspective and preliminary characterization study. Dairy Food Environ. Sanit. 1998, 18, 499–503.
  • Bevilacqua, A.; Sinigaglia, M.; Corbo, M.R. Alicyclobacillus acidoterrestris: New methods for inhibiting spore germination. Int. J. Food Microbiol. 2008, 125, 103–110.
  • Yokota, A.; Fujii, T.; Goto, K. Parameters for detection of Alicyclobacillus and test methods. In Alicyclobacillus: Thermophillic Acidophilic Bacilli; Springer Science + Business Media, Shinano Inc.: Tokyo, Japan, 2007; pp 49–69.
  • Eguchi, S. Detection of acidothermophilic bacilli in industrialized fruit juices. Fruit Process. 1997, 7, 350–353.
  • Walker, M.; Phillips, C.A. Alicyclobacillus acidoterrestris: An increasing threat to the fruit juice industry? Int J. Food Sci Technol. 2007, 43, 250–260.
  • Lee, S.Y.; Chang, S.S.; Shin, J.H.; Kang, D.H. Membrane filtration method for enumeration and isolation of Alicyclobacillus spp. from apple juice. Lett. Appl. Microbiol. 2007, 45, 540–546.
  • European Fruit Juice Association (AIJN). A guideline for the reduction and control of thermophylic, sporeforming bacteria (Alicyclobacillus species, ACB) in the production, packing and distribution of fruit juices, juice concentrates purees and nectars. http://www.unipektin.ch/docus/public/AIJN_Alicyclobacillus_Best_Practice_Guideline_July_2008.pdf (accessed December 11, 2010).
  • Witthuhn, R.C.; Smit, Y.; Cameron, M.; Venter, P. Isolation of Alicyclobacillus and the influence of different growth parameters. Int. J. Food Microbiol. 2011, 146, 63–68.
  • Yamazaki, K.; Teduka, H.; Inoue, N.; Shinano, H. Specific primers for detection of Alicyclobacillus acidoterrestris by RT-PCR. Lett. Appl. Microbiol. 1996, 23, 350–354.
  • Luo, H.; Yousef, A.; Wang, H. A real-time polymerase chain reaction-based method for rapid and specific detection of spoilage Alicyclobacillus spp. in apple juice. Lett. Appl. Microbiol. 2004, 39, 376–382.
  • Connor, C.J.; Luo, H.; McSpadden Gardener, B.B.; Wang, H.H. Development of a real-time PCR-based system targeting the 16S rRNA gene sequence for rapid detection of Alicyclobacillus spp. in juice products. Int. J. Food Microbiol. 2005, 99, 229–235.
  • Yamazaki, K.; Okubo, T.; Inoue, N.; Shinano, H. Randomly amplified polymorphic DNA (RAPD) for rapid identification of the spoilage bacterium Alicyclobacillus acidoterrestris. Biosci. Biotechnol. Biochem. 1997, 61, 1016–1018.
  • Thelen, K.; Snaidr, J.; Beimfohr, C. Specific rapid detection of Alicyclobacilus by fluorescently-labeled gene probes in fruit juices. Fruit Process. 2003, 13, 416–418.
  • Lin, M.; Al-Holy, M.; Chang, S.; Huang, Y.; Cavinato, A.G.; Kang, D.; Rasco, B.A. Rapid discrimination of Alicyclobacillus strains in apple juice by Fourier transform infrared spectroscopy. Int. J. Food Microbiol. 2005, 105, 369–376.
  • Al-Qadiri, H.M.; Lin, M.; Cavinato, A.G.; Rasco, B.A. Fourier transform infrared spectroscopy, detection and identification of Escherichia coli O157: H7 and Alicyclobacillus strains in apple juice. Int. J. Food Microbiol. 2006, 111, 73–80.
  • Wang, J.; Yue, T.L.; Yuan, Y.H.; Lu, X.N.; Shin, J.H.; Rasco, B. Discrimination of Alicyclobacillus strains using nitrocellulose membrane filter and attenuated total reflectance Fourier transform infrared spectroscopy. J. Food Sci. 2011, 76, M137–M142.
  • Wang, Z.L.; Yue, T.L.; Yuan, Y.H.; Cai, R.; Guo, C.X.; Wang, X.; Niu, C. Development of polyclonal antibody-based indirect enzyme-linked immunosorbent assay for the detection of Alicyclobacillus strains in apple juice. J. Food Sci. 2012, 77, M643–M649.
  • Wang, Z.L.; Yue, T.L.; Yuan, Y.H.; Cai, R.; Niu, C.; Guo, C.X. Development and evaluation of an immunomagnetic separation-ELISA for the detection of Alicyclobacillus spp. in apple juice. Int. J. Food Microbiol. 2013, 166, 28–33.
  • Li, J.K.; Xia, K.; Yu, C.Z. Detection of Alicyclobacillus acidoterrestris in apple juice concentrate by enzyme-linked immunosorbent assay. Food Control 2012, 30, 251–254.
  • Borlinghaus, A.; Engel, R. Alicyclobacillus incidence in commercial apple juice concentrate (AJC) supplies-method development and validation. Fruit Process. 1997, 7, 262–266.
  • Wasserman, A. Organoleptic evaluation of three phenols present in wood smoke. J. Food Sci. 1966, 31, 1005–1010.
  • American Society for Testing and Materials (ASTM). 2003. Standard practice for determination of odor and taste thresholds by a forced-choice ascending concentration series method of limits. In Annual Book of ASTM Standards, Vol. 15. 08; ASTM International: West Conshohocken, PA, 2003; E679-91, pp 42–46.
  • Eisele, T.A.; Semon, M.J. Best estimated aroma and taste detection threshold for guaiacol in water and apple juice. J. Food Sci. 2005, 70, 267–269.
  • Siegmund, B.; Pöllinger-Zierler, B. Odor thresholds of microbially induced off-flavor compounds in apple juice. J. Agric. Food Chem. 2006, 54, 5984–5989.
  • Orr, R.V.; Shewfelt, R.L.; Huang, C.; Tefera, S.; Beuchat, L.R. Detection of guaiacol produced by Alicyclobacillus acidoterrestris in apple juice by sensory and chromatographic analyses, and comparison with spore and vegetative cell populations. J. Food Prot. 2000, 63, 1517–1522.
  • Pérez-Cacho, P.R.; Danyluk, M.D.; Rouseff, R. GC–MS quantification and sensory thresholds of guaiacol in orange juice and its correlation with Alicyclobacillus spp. Food Chem. 2011, 129, 45–50.
  • Dietz, F.; Traud, J. Geruchs-und geschmacks-schwellen-konzentrationen von phenolkörpern. Gas Wasser Abwasser 1978, 119, 318–325.
  • Ewender, J.; Lindner-Steinert, A.; Ruter, M.; Piringer, O. Sensory problems caused by food and packaging interactions: Overview and treatment of recent case studies. In Foods and Packaging Materials—Chemical Interactions; Ackermann, P., Jägerstad, M., Ohlsson, T., Eds.; The Royal Society of Chemistry: Cambridge, UK, 1995; 162, pp 33–44.
  • Bahçeci, K.S.; Acar, J. Determination of guaiacol produced by Alicyclobacillus acidoterrestris in apple juice by using HPLC and spectrophotometric methods and mathematical modeling of guaiacol production. Eur. Food Res. Technol. 2007, 225, 873–878.
  • Doerge, D.R.; Divi, R.L.; Churchwell, M.I. Identification of the colored guaiacol oxidation product produced by peroxidases. Anal. Biochem. 1997, 250, 10–17.
  • Bahçeci, K.S.; Serpen, A.; Gökmen, V.; Acar, J. Study of lipoxygenase and peroxidase as indicator enzymes in green beans: Change of enzyme activity, ascorbic acid and chlorophylls during frozen storage. J. Food Eng. 2005, 66, 187–192.
  • Niwa, M.; Kuriyama, A. A. acidoterrestris rapid detection kit. Fruit Process. 2003, 13, 328–331.
  • Niwa, M. Control of hazardous bacteria in acidic beverages by using a guaiacol detection kit (peroxidase method). Fruit Process. 2005, 15, 388–392.
  • Witthuhn, R.C.; Smit, Y.; Cameron, M.; Venter, P. Guaiacol production by Alicyclobacillus and comparison of two guaiacol detection methods. Food Control 2013, 30, 700–704.
  • McDonald, P.; Bouvier, E. A Sample Preparation Primer and Guide to Solid Phase Extraction Methods Development; Waters Corporation: Milford, MA, 2001. https://www.waters.com/webassets/cms/library/docs/wa20300.pdf (accessed May 8, 2011).
  • Bieniek, G. Simultaneous determination of 2-methoxyphenol, 2-methoxy-4-methylphenol, 2,6-dimethoxyphenol and 4ʹ-hydroxy-3ʹ-methoxyacetophenone in urine by capillary gas chromatography. J. Chromatogr. B 2003, 795, 389–394.
  • López, R.; Aznar, M.; Cacho, J.; Ferreira, V. Determination of minor and trace volatile compounds in wine by solid-phase extraction and gas chromatography with mass spectrometric detection. J. Chromatogr. A 2002, 966, 167–177.
  • Zierler, B.; Siegmund, B.; Pfannhauser, W. Determination of off-flavour compounds in apple juice caused by microorganisms using headspace solid phase microextraction-gas chromatography-mass spectrometry. Anal. Chim. Acta 2004, 520, 3–11.
  • Haugen, J.E. Electronic noses in food analysis. In Headspace Analysis of Foods and Flavors; Rouseff R.L. and Cadwallader K.R. Eds; Springer: New York, 2001; pp 43–57.
  • Karlshøj, K.; Nielsen, P.V.; Larsen, T.O. Differentiation of closely related fungi by electronic nose analysis. J. Food Sci. 2007, 72, 187–192.
  • Peris, M.; Escuder-Gilabert, L. A 21st century technique for food control: Electronic noses. Anal. Chim. Acta 2009, 638, 1–15.
  • Gobbi, E.; Falasconi, M.; Concina, I.; Mantero, G.; Bianchi, F.; Mattarozzi, M.; Musci, M.; Sberveglieri, G. Electronic nose and Alicyclobacillus spp. spoilage of fruit juices: An emerging diagnostic tool. Food Control 2010, 21, 1374–1382.
  • Concina, I.; Bornšek, M.; Baccelliere, S.; Falasconi, M.; Gobbi, E.; Sberveglieri, G. Alicyclobacillus spp.: Detection in soft drinks by electronic nose. Food Res. Int. 2010, 43, 2108–2114.
  • Concina, I.; Falasconi, M.; Sberveglieri, G. Electronic noses as flexible tools for evaluating food quality and safety: Can we trust them? In Proceedings of AIP Conference, New York, May 2–5, 2011; Gouma, P., Ed.; AIP Publishing: New York, 2011; 1362, p 109.
  • Cagnasso, S.; Falasconi, M.; Previdi, M.P.; Franceschini, B.; Cavalieri, C.; Sberveglieri, V.; Rovere, P. Rapid screening of Alicyclobacillus acidoterrestris spoilage of fruit juices by electronic nose: A confirmation study. J Sens. 2010, 2010, 143173. doi:10.1155/2010/143173.
  • Hartyáni, P.; Dalmadi, I.; Knorr, D. Electronic nose investigation of Alicyclobacillus acidoterrestris inoculated apple and orange juice treated by high hydrostatic pressure. Food Control 2013, 32, 262–269.
  • Orr, R.V.; Beuchat, L.R. Efficacy of disinfectants in killing spores of Alicyclobacillus acidoterrestris and performance of media for supporting colony development by survivors. J. Food Prot. 2000, 63, 1117–1122.
  • Lee, S.Y.; Gray, P.M.; Dougherty, R.H.; Kang, D.H. The use of chlorine dioxide to control Alicyclobacillus acidoterrestris spores in aqueous suspension and on apples. Int. J. Food Microbiol. 2004, 92, 121–127.
  • Lee, S.Y.; Ryu, S.R.; Kang, D.H. Treatment with chlorous acid to inhibit spores of Alicyclobacillus acidoterrestris in aqueous suspension and on apples. Lett. Appl. Microbiol. 2010, 51, 164–169.
  • Lee, S.Y.; Dancer, G.I.; Chang, S.; Rhee, M.S.; Kang, D.H. Efficacy of chlorine dioxide gas against Alicyclobacillus acidoterrestris spores on apple surfaces. Int. J. Food Microbiol. 2006, 108, 364–368.
  • Hsiao, C.P.; Siebert, K.J. Modeling the inhibitory effects of organic acids on bacteria. Int. J. Food Microbiol. 1999, 47, 189–201.
  • Bevilacqua, A.; Corbo, M.; Sinigaglia, M. Inhibition of Alicyclobacillus acidoterrestris spores by natural compounds. Int. J. Food Sci. Technol. 2008, 43, 1271–1275.
  • Walker, M.; Phillips, C.A. The effect of preservatives on Alicyclobacillus acidoterrestris and Propionibacterium cyclohexanicum in fruit juice. Food Control 2008, 19, 974–981.
  • Bevilacqua, A.; Corbo, M.R.; Sinigaglia, M. High-pressure homogenisation and benzoate to control Alicyclobacillus acidoterrestris: A possible way?. Int. J. Food Sci. Technol. 2012, 47, 879–883.
  • Bevilacqua, A.; Corbo, M.; Sinigaglia, M. Use of high-pressure homogenization, sodium benzoate and eugenol for the inhibition of Alicyclobacillus acidoterrestris spores. In Spore-Forming Bacteria in Food; Sohier, D., Leguerinel, I., Eds.; ADRIA Développement: Quimper, France, 2009; pp 144–146.
  • Cleveland, J.; Montville, T.J.; Nes, I.F.; Chikindas, M.L. Bacteriocins: Safe, natural antimicrobials for food preservation. Int. J. Food Microbiol. 2001, 71, 1–20.
  • Delves-Broughton, J.; Blackburn, P.; Evans, R.; Hugenholtz, J. Applications of the bacteriocin, nisin. Antonie Van Leeuwenhoek 1996, 69, 193–202.
  • Komitopoulou, E.; Boziaris, I.S.; Davies, E.A.; Delves-Broughton, J.; Adams, M.R. Alicyclobacillus acidoterrestris in fruit juices and its control by nisin. Int. J. Food Sci. Technol. 1999, 34, 81–85.
  • Davies, E.; Bevis, H.; Potter, R.; Harris, J.; Williams, G.; Delves-Broughton, J. Research note: The effect of pH on the stability of nisin solution during autoclaving. Lett. Appl. Microbiol. 1998, 27, 186–187.
  • Yamazaki, K.; Murakami, M.; Kawai, Y.; Inoue, N.; Matsuda, T. Use of nisin for inhibition of Alicyclobacillus acidoterrestris in acidic drinks. Food Microbiol. 2000, 17, 315–320.
  • Grande, M.J.; Lucas, R.; Abriouel, H.; Omar, N.B.; Maqueda, M.; Martínez-Bueno, M.; Martínez-Cañamero, M.; Valdivia, E.; Gálvez, A. Control of Alicyclobacillus acidoterrestris in fruit juices by enterocin AS-48. Int. J. Food Microbiol. 2005, 104, 289–297.
  • Minakawa, M.; Kawai, Y.; Inoue, N.; Yamazaki, K. Purification and characterization of wanericin RB4, anti-Alicyclobacillus bacteriocin, produced by Staphylococcus warneri RB4. Curr. Microbiol. 2005, 51, 2–26.
  • De Carvalho, A.; Vanetti, M.; Mantovani, H. Bovicin HC5 reduces thermal resistance of Alicyclobacillus acidoterrestris in acidic mango pulp. J. Appl. Microbiol. 2008, 104, 1685–1691.
  • Pei, J.J.; Yuan, Y.H.; Yue, T.L. Characterization of bacteriocin bificin C6165: A novel bacteriocin. J. Appl. Microbiol. 2013, 114, 1273–1284.
  • Pei, J.J.; Yuan, Y.H.; Yue, T.L. Primary Characterization of bacteriocin paracin C—A novel bacteriocin produced by L. paracasei. Food Control 2013, 34, 168–176.
  • Liu, H.; Du, Y.; Wang, X.; Sun, L. Chitosan kills bacteria through cell membrane damage. Int. J. Food Microbiol. 2004, 95, 147–155.
  • Falcone, P.; Campaniello, D.; Altieri, C.; Sinigaglia, M.; Corbo, M.; Anese, M.; Del Nobile, M. Effectiveness of pasteurization on Alicyclobacillus acidoterrestris spores in the presence of low molecular weight chitosan. Ital. J. Food Sci. 2003, 15, 142–151.
  • Papineau, A.M.; Hoover, D.G.; Knorr, D.; Farkas, D.F. Antimicrobial effect of water-soluble chitosans with high hydrostatic pressure. Food Biotechnol. 1991, 5, 45–57.
  • Helander, I.M.; Nurmiaho-Lassila, E.L.; Ahvenainen, R.; Rhoades, J.; Roller, S. Chitosan disrupts the barrier properties of the outer membrane of gram-negative bacteria. Int. J. Food Microbiol. 2001, 71, 235–244.
  • Beuchat, L.R.; Golden, D.A. Antimicrobials occurring naturally in foods. Food Technol. 1989, 43, 134–142.
  • Bevilacqua, A.; Corbo, M.R.; Buonocore, G.G.; Del Nobile, M.A.; Sinigaglia, M. Antimicrobial effectiveness of lysoyme against Alicyclobacillus acidoterrestris. Adv. Food Sci. 2007, 29, 47–52.
  • Conte, A.; Sinigaglia, M.; Del Nobile, M.A. Antimicrobial effectiveness of lysozyme immobilized on polyvinylalcohol-based film against Alicyclobacillus acidoterrestris. J Food Prot. 2006, 69, 861–865.
  • Takahashi, K.; Goto, K.; Tanaka, T.; Tanada, S.; Sawaki, T.; Yamamoto, R. Factors of spoilage caused by Alicyclobacillus and prevention measures. In Alicyclobacillus,Yokota A., Fujii T. and Goto K. Eds; Springer: Japan, 2007; pp 117–148.
  • Bevilacqua, A.; Ciuffreda, E.; Sinigaglia, M.; Corbo, M.R. Effects of lysozyme on Alicyclobacillus acidoterrestris under laboratory conditions. Int. J. Food Sci. Technol. 2013, 49, 224–229.
  • Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253.
  • Takahashi, T.; Kokubo, R.; Sakaino, M. Antimicrobial activities of eucalyptus leaf extracts and flavonoids from Eucalyptus maculata. Lett. Appl. Microbiol. 2004, 39, 60–64.
  • Bevilacqua, A.; Corbo, M.R.; Sinigaglia, M. Combining eugenol and cinnamaldehyde to control the growth of Alicyclobacillus acidoterrestris. Food Control 2010, 21, 172–177.
  • Altieri, C.; Bevilacqua, A.; Cardillo, D.; Sinigaglia, M. Effectiveness of fatty acids and their monoglycerides against gram-negative pathogens. Int. J. Food Sci. Technol. 2009, 44, 359–366.
  • U.S. Food and Drug Administration. Food Additive Status List. Center for Food Safety and Applied Nutrition, Office of Food Additive Safety, July 2006. http://www.cfsan.fda.gov/dms/opa-appa (accessed June 20, 2013).
  • Altieri, C.; Bevilacqua, A.; Cardillo, D.; Sinigaglia, M. Modeling Alicyclobacillus acidoterrestris growth under monolaurin action. Adv. Food Sci. 2006, 28, 94–99.
  • Blaszyk, M.; Holley, R.A. Interaction of monolaurin, eugenol and sodium citrate on growth of common meat spoilage and pathogenic organisms. Int. J. Food Microbiol. 1998, 39, 175–183.
  • Shearer, A.E.; Dunne, C.P.; Sikes, A.; Hoover, D.G. Bacterial spore inhibition and inactivation in foods by pressure, chemical preservatives, and mild heat. J. Food Prot. 2000, 63, 1503–1510.
  • Alberice, J.V.; Funes-Huacca, M.E.; Guterres, S.B.; Carrilho, E. Inactivation of Alicyclobacillus acidoterrestris in orange juice by Saponin extracts combined with heat-treatment. Int. J. Food Microbiol. 2012, 159, 130–135.
  • Qin, B.L.; Pothakamury, U.R.; Barbosa-Cánovas, G.V.; Swanson, B.G.; Peleg, M. Nonthermal pasteurization of liquid foods using high-intensity pulsed electric fields. Crit. Rev. Food Sci. Nutr. 1996, 36, 603–627.
  • Lado, B.H.; Yousef, A.E. Alternative food-preservation technologies: Efficacy and mechanisms. Microbes Infect. 2002, 4, 433–440.
  • Manas, P.; Pagán, R. Microbial inactivation by new technologies of food preservation. J. Appl. Microbiol. 2005, 98, 1387–1399.
  • Alpas, H.; Alma, L.; Bozoglu, F. Inactivation of Alicyclobacillus acidoterrestris vegetative cells in model system, apple, orange and tomato juices by high hydrostatic pressure. World J. Microbiol. Biotechnol. 2003, 19, 619–623.
  • Lee, S.Y.; Chung, H.J.; Kang, D.H. Combined treatment of high pressure and heat on killing spores of Alicyclobacillus acidoterrestris in apple juice concentrate. J. Food Prot. 2006, 69, 1056–1060.
  • Sokołowska, B.; Skąpska, S.; Fonberg-Broczek, M.; Niezgoda, J.; Chotkiewicz, M.; Dekowska, A.; Rzoska, S. Factors influencing the inactivation of Alicyclobacillus acidoterrestris spores exposed to high hydrostatic pressure in apple juice. High Pressure Res. 2013, 33, 73–82.
  • Vercammen, A.; Vivijs, B.; Lurquin, I.; Michiels, C.W. Germination and inactivation of Bacillus coagulans and Alicyclobacillus acidoterrestris spores by high hydrostatic pressure treatment in buffer and tomato sauce. Int. J. Food Microbiol. 2012, 152, 162–167.
  • Silva, F.V.M.; Tan, E.K.; Farid, M. Bacterial spore inactivation at 45–65°C using high pressure processing: Study of Alicyclobacillus acidoterrestris in orange juice. Food Microbiol. 2012, 32, 206–211.
  • Bevilacqua, A.; Cibelli, F.; Corbo, M.; Sinigaglia, M. Effects of high-pressure homogenization on the survival of Alicyclobacillus acidoterrestris in a laboratory medium. Lett. Appl. Microbiol. 2007, 45, 382–386.
  • Vannini, L.; Lanciotti, R.; Baldi, D.; Guerzoni, M. Interactions between high pressure homogenization and antimicrobial activity of lysozyme and lactoperoxidase. Int. J. Food Microbiol. 2004, 94, 123–135.
  • Lanciotti, R.; Patrignani, F.; Iucci, L.; Saracino, P.; Guerzoni, M.E. Potential of high pressure homogenization in the control and enhancement of proteolytic and fermentative activities of some Lactobacillus species. Food Chem. 2007, 102, 542–550.
  • Nakauma, M.; Saito, K.; Katayama, T.; Tada, M.; Todoriki, S. Radiation-heat synergism for inactivation of Alicyclobacillus acidoterrestris spores in citrus juice. J. Food Prot. 2004, 67, 2538–2543.
  • Baysal, A.H.; Molva, C.; Unluturk, S. UV-C light inactivation and modeling kinetics of Alicyclobacillus acidoterrestris spores in white grape and apple juices. Int. J. Food Microbiol. 2013, 166, 494–498.
  • Morris, C.; Brody, A.L.; Wicker, L. Non-thermal food processing/preservation technologies: A review with packaging implications. Packag. Technol. Sci. 2007, 20, 275–286.
  • Yuan, Y.H.; Hu, Y.C.; Yue, T.L.; Chen, T.J.; LO, Y. Effect of ultrasonic treatments on thermoacidophilic Alicyclobacillus acidoterrestris in apple juice. J. Food Process. Preserv. 2009, 33, 370–383.
  • Wang, J.; Hu, X.S.; Wang, Z.F. Kinetics models for the inactivation of Alicyclobacillus acidiphilus DSM14558T and Alicyclobacillus acidoterrestris DSM 3922T in apple juice by ultrasound. Int. J. Food Microbiol. 2010, 139, 177–181.
  • Wang, J.; Zhao, G.H.; Liao, X.J.; Hu, X.S. Effects of microwave and ultrasonic wave treatment on inactivation of Alicyclobacillus. Int. J. Food Sci. Technol. 2010, 45, 459–465.
  • Giuliani, R.; Bevilacqua, A.; Corbo, M.R.; Severini, C. Use of microwave processing to reduce the initial contamination by Alicyclobacillus acidoterrestris in a cream of asparagus and effect of the treatment on the lipid fraction. Innov. Food Sci. Emerg. Technol. 2010, 11, 328–334.
  • Celandroni, F.; Longo, I.; Tosoratti, N.; Giannessi, F.; Ghelardi, E.; Salvetti, S.; Baggiani, A.; Senesi, S. Effect of microwave radiation on Bacillus subtilis spores. J. Appl. Microbiol. 2004, 97, 1220–1227.
  • Uemura, K.; Kobayashi, I.; Inoue, T. Inactivation of Alicyclobacillus acidoterrestris in orange juice by high electric field alternating current. Food Sci. Technol. Res. 2009, 15, 211–216.
  • Bae, Y.; Lee, H.; Kim, S.; Rhee, M. Inactivation of Alicyclobacillus acidoterrestris spores in apple juice by supercritical carbon dioxide. Int. J. Food Microbiol. 2009, 136, 95–100.
  • Leistner, L. Basic aspects of food preservation by hurdle technology. Int. J. Food Microbiol. 2000, 55, 181–186.
  • Leistner, L. Principles and applications of hurdle technology. In New Methods of Food Preservation; Gould G.W. Ed; Springer: New York, 1995; pp 1–21.
  • Sinigaglia, M.; Corbo, M.R.; Altieri, C.; Campaniello, D.; DAmato, D.; Bevilacqua, A. Combined effects of temperature, water activity, and pH on Alicyclobacillus acidoterrestris spores. J. Food Prot. 2003, 66, 2216–2221.
  • Maldonado, M.C.; Belfiore, C.; Navarro, A.R. Temperature, soluble solids and pH effect on Alicyclobacillus acidoterrestris viability in lemon juice concentrate. J. Ind. Microbiol. Biotechnol. 2008, 35, 141–144.
  • Chmal-Fudali, E.; Papiewska, A. The possibility of thermal inactivation of Alicyclobacillus acidoterrestris spores in fruit and vegetable juices. Biotechnol. Food Sci. 2011, 75, 87–96.
  • Bevilacqua, A.; Corbo, M.; Sinigaglia, M. Combined effects of low pH and cinnamaldehyde on the inhibition of Alicyclobacillus acidoterrestris spores in a laboratory medium. J. Food Process. Preserv. 2008, 32, 839–852.
  • Sokołowska, B.; Skąpska, S.; Fonberg-Broczek, M.; Niezgoda, J.; Chotkiewicz, M.; Dekowska, A.; Rzoska, S. The combined effect of high pressure and nisin or lysozyme on the inactivation of Alicyclobacillus acidoterrestris spores in apple juice. High Pressure Res. 2012, 32, 119–127.
  • Nobile, M.d.; Cannarsi, M.; Altieri, C.; Sinigaglia, M.; Favia, P.; Iacoviello, G.; d’Agostino, R. Effect of Ag-containing nano-composite active packaging system on survival of Alicyclobacillus acidoterrestris. J. Food Sci. 2004, 69, E379–E383.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.