1,202
Views
26
CrossRef citations to date
0
Altmetric
Reviews

The Two Faces of Leuconostoc mesenteroides in Food Systems

, , &

References

  • Albesharat, R.; Ehrmann. M.A.; Korakli, M.; Yazaji, S.; Vogel, R.F. Phenotypic and genotypic analyses of lactic acid bacteria in local fermented food, breast milk and faeces of mothers and their babies. Syst. Appl. Microbiol. 2011, 34, 148–155.
  • Giraffa, G. Selection and design of lactic acid bacteria probiotic cultures. Eng. Life Sci. 2012, 12, 391–398.
  • Hemme, D.; Foucaud-Scheunemann, C. Leuconostoc, characteristics, use in dairy technology and prospects in functional foods. Int. Dairy J. 2004, 14, 467–494.
  • Mäki, M. Lactic acid bacteria in vegetable fermentations. In Lactic Acid Bacteria Microbiological and Functional Aspects; Salminen, S., Von Wright, A., Ouwehand, A. Eds.; Marcel Dekker: New York, 2004; pp 419–430.
  • Montersino, S.; Prieto, A.; Munoz, R.; de Las Rivas, B. Evaluation of exopolysaccharide production by Leuconostoc mesenteroides strains isolated from wine. J. Food Sci. 2008, 73, M196–M199.
  • Ray, B. Fundamental Food Microbiology; CRC Press: New York, 2004.
  • Stiles, M.E.; Holzapfel, W.H. Lactic acid bacteria of foods and their current taxonomy. Int. J. Food Microbiol. 1997, 36, 1–29.
  • Trias, R.; Badosa, E.; Montesinos, E.; Baneras, L. Bioprotective Leuconostoc strains against Listeria monocytogenes in fresh fruits and vegetables. Int. J. Food Microbiol. 2008, 127, 91–98.
  • Xiraphi, N.; Georgalaki, M.; Rantsiou, K.; Cocolin, L.; Tsakalidou, E.; Drosinos, E.H. Purification and characterization of a bacteriocin produced by Leuconostoc mesenteroides E131. Meat Sci. 2008, 80, 194–103.
  • Food and Agriculture Organization (FAO) of the United Nations World Health Organization (WHO). FAO/WHO Guidelines for the Evaluation of Probiotics in Food; Report of a joint Food and Agriculture Organization (FAO) of the United Nations/World Health Organization (WHO) working group on drafting guidelines for the evaluation for the probiotics in food; FAO/WHO: Rome, 2002.
  • Fontana, L.; Bermudez-Brito, M,; Plaza-Diaz, J.; Muñoz-Quezada, S.; Gil, A. Sources, isolation, characterization and evaluation of probiotics. Br. J. Nutr. 2013, 109, S35–S50.
  • Reis, J.A.; Casarotti, S.N.; Paula, A.T.; Penna, A.L.B. Probióticos e seus efeitos terapêuticos na saúde humana; Cultura Acadêmica: São José do Rio Preto, 2011; 96 pp.
  • Adams, C.A. The probiotic paradox: Live and dead cells are biological response modifiers. Nutr. Res. Rev. 2010, 23, 37–46.
  • Amara, A.A.; Shibl, A. Role of probiotics in health improvement, infection control and disease treatment and management. Saudi Pharm. J. 2014, doi:10.1016/j.jsps.2014.02.004.
  • De Azevedo, M.S.; Innocentin, S.; Dorella, F.A.; Rocha, C.S.; Mariat, D.; Pontes, D.S.; Miyoshi, A.; Azevedo, V.; Langella, P.; Chatel, J.M. Immunotherapy of allergic diseases using probiotics or recombinant probiotics. J. Appl. Microbiol. 2013, 115, 319–333.
  • Singh, K.; Kallali, B.; Kumar, A.; Thaker, V. Probiotics: A review. Asian Pac. J. Trop. Biomed. 2011, 1, S287–S290.
  • Reis, J.A.; Paula, A.T.; Casarotti, S.N.; Penna, A.L.B. Lactic acid bacteria antimicrobial compounds: Characteristics and applications. Food Eng. Rev. 2012, 4, 124–140.
  • Dobson, A.; Cotter, P.D.; Ross, R.P.; Hill, C. Bacteriocin production: A probiotic trait? Appl. Environ. Microbiol. 2012, 78, 1–6.
  • Cotter, P.D.; Hill, C.; Ross, R.P. Bacteriocins: Developing innate immunity for food. Nat. Rev. Microbiol. 2005, 3, 777–788.
  • Masuda, Y.; Ono, H.; Kitagawa, H.; Ito, H.; Mu, F.; Sawa, N.; Zendo, T.; Sonomoto, K. Identification and characterization of leucocyclicin Q, a novel cyclic bacteriocin produced by Leuconostoc mesenteroides TK41401. Appl. Environ. Microbiol. 2011, 77, 8164–8170.
  • Zouhir, A.; Hammami, R.; Fliss, I.; Hamida, J.B. A new structure-based classification of gram-positive bacteriocins. Protein J. 2010, 29, 432–439.
  • European Economic Community. European Economic Community Commission Directive 83/463/EEC. Official Journal of the European Union, Vol. 255. European Economic Community: Brussels, 1983, 1–6.
  • Heng, N.C.K.; Wescombe, P.A.; Burton, J.P.; Jack, R.W.; Tagg, J.R. The diversity of bacteriocins in gram-positive bacteria. In Bacteriocins Ecology and Evolution;Riley, M.A., Chavan, M.A., Eds.; Springer: Berlin, 2007; pp 45–83.
  • Riley, M.A.; Chavan, M.A. (Eds.). Bacteriocins Ecology and Evolution; Springer: Berlin, 2007; 147 pp.
  • Heng, N.C.K.; Tagg, J.R. What’s in a name? Class distinction for bacteriocins. Nat. Rev. Microbiol. 2006, 4, 160. doi:10.1038/nrmicro1273-c2
  • Klaenhammer, T.R. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev. 1993, 12, 39–85.
  • Kjos, M.; Borrero, J.; Opsata, M.; Birri, D.J.; Holo, H.; Cintas, L.M.; Snipen, L.; Hernandez, P.E.; Nes, I.F.; Diep, D.B. Target recognition, resistance, immunity and genome mining of class II bacteriocins from Gram-positive bacteria. Microbiology 2011, 157, 3256–3267.
  • Jasniewski, J.; Cailliez-Grimal, C.; Younsi, M.; Milliere, J.B.; Revol-Junelles, A.M. Fluorescence anisotropy analysis of the mechanism of action of mesenterocin 52A: Speculations on antimicrobial mechanism. Appl. Microbiol. Biotechnol. 2008, 81, 339–347.
  • Limonet, M.; Revol-Junelles, A.M.; Cailliez-Grimal, C.; Milliere, J.B. Synergistic mode of action of mesenterocins 52A and 52B produced by Leuconostoc mesenteroides subsp. mesenteroides FR 52. Curr. Microbiol. 2004, 48, 204–207.
  • Allameh, S.K.; Daud, H.; Yusoff, F.M.; Saad, C.R.; Ideris, A. Isolation, identification and characterization of Leuconostoc mesenteroides as a new probiotic from intestine of snakehead fish (Channa striatus). Afr. J. Biotechnol. 2012, 11, 3810–3816.
  • Chang, J.Y.; Lee, H.J.; Chang, H.C. Identification of the agent from Lactobacillus plantarum KFRI464 that enhances bacteriocin production by Leuconostoc citreum GJ7. J. Appl. Microbiol. 2007, 103, 2504–2515.
  • Cho, G.S.; Do, H.K. Isolation and identification of lactic acid bacteria isolated from a traditional jeotgal product in Korea. Ocean Sci. J. 2006, 41, 113–119.
  • Perea Velez, M.; Hermans, K.; Verhoeven, T.L.; Lebeer, S.E.; Vanderleyden, J.; De Keersmaecker S.C. Identification and characterization of starter lactic acid bacteria and probiotics from Columbian dairy products. J. Appl. Microbiol. 2007, 103, 666–674.
  • Rani, P.S.; Agrawal, R. Effect on cellular membrane fatty acids in the stressed cells of Leuconostoc mesenteroides: A native probiotic lactic acid bacteria. Food Biotechnol. 2008, 22, 47–63.
  • Chang, J.H.; Shim, Y.Y.; Cha, S.K.; Chee, K.M. Probiotic characteristics of lactic acid bacteria isolated from kimchi. J. Appl. Microbiol. 2010, 109, 220–230.
  • Ryu, E.H.; Chang, H.C. In vitro study of potentially probiotic lactic acid bacteria strains isolated from kimchi. Ann. Microbiol. 2013, 63, 1387–1395.
  • Seo, B.J.; Rather, I.A.; Kumar, V.J.; Choi, U.H.; Moon, M.R.; Lim, J.H.; Park, Y.H. Evaluation of Leuconostoc mesenteroides YML003 as a probiotic against low-pathogenic avian influenza (H9N2) virus in chickens. J. Appl. Microbiol. 2012, 113, 163–171.
  • Pérez-Sanchez, T.; Balcázar, J.L.; Merrifield, D.L.; Carnevali, O.; Gioacchini, G.; de Blas, I.; Ruiz-Zarzuela, I. Expression of immune-related genes in rainbow trout (Oncorhynchus mykiss) induced by probiotic bacteria during Lactococcus garvieae infection. Fish Shellfish Immunol. 2011, 31, 196–201.
  • Nakamura, S.; Kuda, T.; An, C.; Kanno, T.; Takahashi, H.; Kimura, B. Inhibitory effects of Leuconostoc mesenteroides 1RM3 isolated from narezushi, a fermented fish with rice, on Listeria monocytogenes infection to Caco-2 cells and A/J mice. Anaerobe 2012, 18, 19–24.
  • Mainville, I.; Arcand, Y.; Farnworth, E.R. A dynamic model that simulates the human upper gastrointestinal tract for the study of probiotics. Int. J. Food Microbiol. 2005, 99, 287–296.
  • Van Reenen, C.A.; Dicks, L.M.T. Horizontal gene transfer amongst probiotic lactic acid bacteria and other intestinal microbiota: What are the possibilities? A review. Arch. Microbiol. 2011, 193, 157–168.
  • Divya, J.B.; Varsha, K.K.; Nampoothiri, K.M. Newly isolated lactic acid bacteria with probiotic features for potential application in food industry. Appl. Biochem. Biotechnol. 2012, 167, 1314–1324.
  • Todorov, S.D.; Botes, M.; Guigas, C.; Schillinger, U.; Wiid, I.; Wachsman, M.B.; Holzapfel, W.H.; Dicks, L.M. Boza, a natural source of probiotic lactic acid bacteria. J. Appl. Microbiol. 2008, 104, 465–477.
  • Begley, M.; Hill, C.; Gahan, C.G. Bile salt hydrolase activity in probiotics. Appl. Environ. Microbiol. 2006, 72, 1729–1738.
  • Kumar, A.; Kumar, M.; Ghosh, M.; Ganguli, A. Modeling in vitro cholesterol reduction in relation to growth of probiotic Lactobacillus casei. Microbiol. Immunol. 2013, 57, 100–110.
  • de Paula, T.A.; Jeronymo-Ceneviva, A.B.; Silva, L.F.; Todorov, S.D.; Franco, B.D.G.M; Penna, A.L.B. Leuconostoc mesenteroides SJRP55: A potential probiotic strain isolated from Brazilian water buffalo mozzarella cheese. Ann. Microl. 2014. doi:10.1007/s13213-014-0933-9.
  • Xu, H.; Jeong, H.S.; Lee, H.Y.; Ahn, J. Assessment of cell surface properties and adhesion potential of selected probiotic strains. Lett. Appl. Microbiol. 2009, 49, 434–442.
  • Ljungh, A.; Wadström, T. Lactic acid bacteria as probiotics. Curr. Issues Intest. Microbiol. 2006, 7, 73–90.
  • Deepika, G.; Rastall, R.A.; Charalampopoulos, D. Effect of food models and low-temperature storage on the adhesion of Lactobacillus rhamnosus GG to Caco-2 cells. J. Agric. Food Chem. 2011, 59, 8661–8666.
  • Ouwehand, A.C.; Kirjavainen, P.V.; Grönlund, M-.M.; Isolauri, E.; Salminen, S.J. Adhesion of probiotic micro-organisms to intestinal mucus. Int. Dairy J. 1999, 9, 623–630.
  • Saarela, M.; Mogensen, G.; Fonden, R.; Matto, J.; Mattila-Sandholm, T. Probiotic bacteria: Safety, functional and technological properties. J. Biotechnol. 2000, 84, 197–115.
  • Russo, P.; Lopez, P.; Capozzi, V.; de Palencia P.F.; Duenas, M.T.; Spano, G.; Fiocco, D. Beta-glucans improve growth, viability and colonization of probiotic microorganisms. Int. J. Mol. Sci. 2012, 13, 6026–6039.
  • Bendimerad, N.; Kihal, M.; Berthier, F. Isolation, identification, and technological characterization of wild leuconostocs and lactococci for traditional Raib type milk fermentation. Dairy Sci. Technol. 2012, 92, 249–264.
  • Nieto-Arribas, P.; Sesena, S.; Poveda, J.M.; Palop, L.; Cabezas, L. Genotypic and technological characterization of Leuconostoc isolates to be used as adjunct starters in Manchego cheese manufacture. Food Microbiol. 2010, 27, 85–93.
  • Shobharani, P.; Agrawal, R. A potent probiotic strain from cheddar cheese. Indian J. Microbiol. 2011, 51, 251–258.
  • Van Der Mei, H.C.; Bos, R.; Busscher, H.J. A reference guide to microbial cell surface hydrophobicity based on contact angles. Colloids Surf. B Biointerfaces 1998, 11, 213–221.
  • Ouwehand, A.C.; Vesterlund, S. Antimicrobial components from lactic acid bacteria. In Lactic Acid Bacteria Microbiological and Functional Aspects; Salminen, S., von Wright, A., Ouwehand, A., Eds.; Marcel Dekker: New York, 2004; pp 375–396.
  • Raghavendra, P.; Halami, P.M. Screening, selection and characterization of phytic acid degrading lactic acid bacteria from chicken intestine. Int. J. Food Microbiol. 2009, 133, 129–134.
  • Pasteris, S.E.; Roig Babot, G.; Otero, M.C.; Bühler, M.I.; Nader-Macías, M.E. Beneficial properties of lactic acid bacteria isolated from a Rana catesbeiana hatchery. Aquacult. Res. 2009, 40, 1605–1615.
  • Grzéskowiak, L.; Collado, M.C.; Salminen, S. Evaluation of aggregation abilities between commensal fish bacteria and pathogens. Aquaculture 2012, 356–357, 412– 414.
  • Collado, M.C.; Surono, I.; Meriluoto, J.; Salminen, S. Indigenous dadih lactic acid bacteria: Cell-surface properties and interactions with pathogens. J. Food Sci. 2007, 72, M89–M93.
  • Abd El-Salam, M.H.; El-Shafei, K.; Sharaf, O.M.; Effat, B.A.; Asem, F.M.; El-Aasar, M. Screening of some potentially probiotic lactic acid bacteria for their ability to synthesis conjugated linoleic acid. Int. J. Dairy Technol. 2010, 63, 62–69.
  • VidyaLaxme, B.; Rovetto, A.; Grau, R.; Agrawal, R. Synergistic effects of probiotic Leuconostoc mesenteroides and Bacillus subtilis in malted ragi (Eleucine corocana) food for antagonistic activity against V. cholerae and other beneficial properties. J. Food Sci. Technol. 2012, 51, 3072–3082. doi:10.1007/s13197-012-0834-5.
  • Holt, S.M.; Ricciardi, E.C. Occurrence and expression of β-galactosidase in dextran-producing Leuconostoc species. Biotechnol. Lett. 2001, 23, 1147–1149.
  • Monteagudo-Mera, A.; Caro, I.; Rodriguez-Aparicio, L.B.; Rua, J.; Ferrero, M.A.; Garcia-Armesto, M.R. Characterization of certain bacterial strains for potential use as starter or probiotic cultures in dairy products. J. Food Prot. 2011, 74, 1379–1386.
  • Agarwal, K.N.; Bhasin, S.K. Feasibility studies to control acute diarrhoea in children by feeding fermented milk preparations Actimel and Indian Dahi. Eur. J. Clin. Nutr. 2002, 56, S56–S59.
  • Kotzampassi, K.; Giamarellos-Bourboulis, E.J.; Voudouris, A.; Kazamias, P.; Eleftheriadis, E. Benefits of a synbiotic formula (Synbiotic 2000Forte) in critically Ill trauma patients: Early results of a randomized controlled trial. World J. Surg. 2006, 30, 1848–1855.
  • Rayes, N.; Seehofer, D.; Neuhaus, P. Prebiotics, probiotics, synbiotics in surgery—Are they only trendy, truly effective or even dangerous? Langenbecks Arch. Surg. 2009, 394, 547–555.
  • Rayes, N.; Seehofer, D.; Theruvath, T.; Mogl, M.; Langrehr, J.M.; Nussler, N.C.; Bengmark, S.; Neuhaus, P. Effect of enteral nutrition and synbiotics on bacterial infection rates after pylorus-preserving pancreatoduodenectomy: A randomized, double-blind trial. Ann. Surg. 2007, 246, 36–41.
  • Rayes, N.; Seehofer, D.; Theruvath, T.; Schiller, R.A.; Langrehr, J.M.; Jonas, S.; Bengmark, S.; Neuhaus, P. Supply of pre- and probiotics reduces bacterial infection rates after liver transplantation—A randomized, double-blind trial. Am. J. Transplant. 2005, 5, 125–130.
  • Vendrell, D.; Balcazar, J.L.; de Blas, I.; Ruiz-Zarzuela, I.; Girones, O.; Luis Muzquiz, J. Protection of rainbow trout (Oncorhynchus mykiss) from lactococcosis by probiotic bacteria. Comp. Immunol. Microbiol. Infect. Dis. 2008, 31, 337–345.
  • Askarian, F.; Kousha, A.; Salma, W.; Ringø, E. The effect of lactic acid bacteria administration on growth, digestive enzyme activity and gut microbiota in Persian sturgeon (Acipenser persicus) and beluga (Huso huso) fry. Aquacult. Nutr. 2011, 17, 488–497.
  • Rani, S. Isolation and Characterization of a Native Isolate of Leuconostoc for Functional Attributes; University of Mysore: Mysore, India, 2008.
  • Tok, D.; Ilkgul, O.; Bengmark, S.; Aydede, H.; Erhan, Y.; Taneli, F.; Ulman, C.; Vatansever, S.; Kose, C.; Ok, G. Pretreatment with pro- and synbiotics reduces peritonitis-induced acute lung injury in rats. J. Trauma 2007, 62, 880–885.
  • Kekkonen, R.A.; Kajasto, E.; Miettinen, M.; Veckman, V.; Korpela, R.; Julkunen, I. Probiotic Leuconostoc mesenteroides ssp. cremoris and Streptococcus thermophilus induce IL-12 and IFN-gamma production. World J. Gastroenterol. 2008, 14, 1192–1203.
  • Carey, C.M.; Kostrzynska, M. Lactic acid bacteria and bifidobacteria attenuate the proinflammatory response in intestinal epithelial cells induced by Salmonella enterica serovar Typhimurium. Can. J. Microbiol. 2013, 59, 9–17.
  • Balcázar, J.L.; de Blas, I.; Ruiz-Zarzuela, I.; Vendrell, D.; Calvo, A.C.; Marquez, I.; Girones, O.; Muzquiz, J.L. Changes in intestinal microbiota and humoral immune response following probiotic administration in brown trout (Salmo trutta). Br. J. Nutr. 2007, 97, 522–527.
  • Larsen, N.; Vogensen, F.K.; Gobel, R.; Michaelsen, K.F.; Abu Al-Soud, W.; Sorensen, S.J.; Hansen, L.H.; Jakobsen, M. Predominant genera of fecal microbiota in children with atopic dermatitis are not altered by intake of probiotic bacteria Lactobacillus acidophilus NCFM and Bifidobacterium animalis subsp. lactis Bi-07. FEMS Microbiol. Ecol. 2011, 75, 482–496.
  • Correia, M.I.; Liboredo, J.C.; Consoli, M.L. The role of probiotics in gastrointestinal surgery. Nutrition 2012, 28, 230–234.
  • Beganovic, J.; Pavunc, A.L.; Gjuracic, K.; Spoljarec, M.; Suskovic, J.; Kos, B. Improved sauerkraut production with probiotic strain Lactobacillus plantarum L4 and Leuconostoc mesenteroides LMG 7954. J. Food Sci. 2011, 76, M124–M129.
  • Aymerich, T.; Martin, B.; Garriga, M.; Vidal-Carou, M.C.; Bover-Cid, S.; Hugas, M. Safety properties and molecular strain typing of lactic acid bacteria from slightly fermented sausages. J. Appl. Microbiol. 2006, 100, 40–49.
  • Daba, H.; Pandian, S.; Gosselin, J.F.; Simard, R.E.; Huang, J.; Lacroix, C. Detection and activity of a bacteriocin produced by Leuconostoc mesenteroides. Appl. Environ. Microbiol. 1991, 57, 3450–3455.
  • Guyonnet, D.; Fremaux, C.; Cenatiempo, Y.; Berjeaud, J.M. Method for rapid purification of class IIa bacteriocins and comparison of their activities. Appl. Environ. Microbiol. 2000, 66, 1744–1748.
  • Hastings, J.W.; Stiles, M.E.; von Holy, A. Bacteriocins of leuconostocs isolated from meat. Int. J. Food Microbiol. 1994, 24, 75–81.
  • Héchard, Y.; Derijard, B.; Letellier, F.; Cenatiempo, Y. Characterization and purification of mesentericin Y105, an anti-Listeria bacteriocin from Leuconostoc mesenteroides. J. Gen. Microbiol. 1992, 138, 2725–2731.
  • Osmanagaoglu, O.; Kiran, F. Evidence for a chromosomally determined mesenterocin, a bacteriocin produced by Leuconostoc mesenteroides subsp. mesenteroides OZ. J. Basic Microbiol. 2011, 51, 279–288.
  • Papathanasopoulos, M.A.; Revol-Junelles, A-.M.; Lefebvre, G.; Le Caer, J.P.; Von Holy, A.; Hastings, J.W. Multiple bacteriocin production by Leuconostoc mesenteroides TA33a, and other Leuconostoc/Weisella strains. Curr. Microbiol. 1997, 6, 331–335.
  • Ratti, R.P.; Gomes, B.R.; Martinez, R.C.R; Souza, V.M.; De Martinis, E.C.P. Elongated cells of Listeria monocytogenes in biofilms in the presence of sucrose and bacteriocin-producing Leuconostoc mesenteroides A11. Ciên. Tecnol. Alim. 2010, 30, 1011–1016.
  • Revol-Junelles, A.M.; Mathis, R.; Krier, F.; Fleury, Y.; Delfour, A.; Lefebvre, G. Leuconostoc mesenteroides subsp. mesenteroides FR52 synthesizes two distinct bacteriocins. Lett. Appl. Microbiol. 1996, 23, 120–124.
  • Sip, A.; Więckowicz, M.; Olejnik-Schmidt, A.; Grajek, W. Anti-Listeria activity of lactic acid bacteria isolated from golka, a regional cheese produced in Poland. Food Control 2012, 26, 117–124.
  • Todorov, S.D.; Dicks, L.M. Characterization of mesentericin ST99, a bacteriocin produced by Leuconostoc mesenteroides subsp. dextranicum ST99 isolated from boza. J. Ind. Microbiol. Biotechnol. 2004, 31, 323–329.
  • Wulijideligen, A.T.; Hara, K.; Arakawa, K.; Nakano, H.; Miyamoto, T. Production of bacteriocin by Leuconostoc mesenteroides 406 isolated from Mongolian fermented mare’s milk, airag. Anim. Sci. J. 2012, 83, 704–711.
  • de Paula, A.T; Jeronymo-Ceneviva, A.B.; Silva, L.F.; Todorov, S.D.; Franco, B.D.G.M.; Choiset, Y.; Haertlé, T.; Chobert, J-M; Dousset, X.; Penna, A.L.B. Leuconostoc mesenteroides SJRP55: A bacteriocinogenic strain isolated from Brazilian water buffalo mozzarella cheese. Probiot. Antimicrob. Proteins 2014, 6, 186–197. doi:10.1007/s12602-014-9163-5.
  • Abriouel, H.; Martin-Platero, A.; Maqueda, M.; Valdivia, E.; Martinez-Bueno, M. Biodiversity of the microbial community in a Spanish farmhouse cheese as revealed by culture-dependent and culture-independent methods. Int. J. Food Microbiol. 2008, 127, 200–208.
  • Hastings, J.W.; Sailer, M.; Johnson, K.; Roy, K.L.; Vederas, J.C.; Stiles, M.E. Characterization of leucocin A-UAL 187 and cloning of the bacteriocin gene from Leuconostoc gelidum. J. Bacteriol. 1991, 173, 7491–500.
  • Fimland, G.; Sletten, K.; Nissen-Meyer, J. The complete amino acid sequence of the pediocin-like antimicrobial peptide leucocin C. Biochem. Biophys. Res. Commun. 2002, 295, 826–827.
  • Todorov, S.D.; Dicks, L.M. Characterization of bacteriocins produced by lactic acid bacteria isolated from spoiled black olives. J. Basic Microbiol. 2005, 45, 312–322.
  • Balciunas, E.M.; Castillo Martinez, F.A.; Todorov, S.D.; Franco, B.D.G.M.; Converti, A.; Oliveira, R.P.S. Novel biotechnological applications of bacteriocins: A review. Food Control 2013, 32, 134–142.
  • Metaxopoulos, J.; Mataragas, M.; Drosinos, E.H. Microbial interaction in cooked cured meat products under vacuum or modified atmosphere at 4°C. J. Appl. Microbiol. 2002, 93, 363–373.
  • Yurdugül, S.; Bozoglu, F. Studies on an inhibitor produced by lactic acid bacteria of wines on the control of malolactic fermentation. Eur. Food Res. Technol. 2002, 215, 38–41.
  • Acuña, L.; Morero, R.D.; Bellomio, A. Development of wide-spectrum hybrid bacteriocins for food biopreservation. Food Bioprocess Technol. 2010, 4, 1029–1049.
  • Acuna, L.; Picariello, G.; Sesma, F.; Morero, R.D.; Bellomio, A. A new hybrid bacteriocin, Ent35-MccV, displays antimicrobial activity against pathogenic Gram-positive and Gram-negative bacteria. FEBS Open Bio 2012, 2, 12–19.
  • Leistner, L.; Gorris, L.G.M. Food preservation by hurdle technology. Food Sci. Technol. 1995, 6, 41–46.
  • Leistner, L. Basic aspects of food preservation by hurdle technology. Int. J. Food Microbiol. 2000, 55, 181–186.
  • Sanz, Y.; Sanchez, E.; Marzotto, M.; Calabuig, M.; Torriani, S.; Dellaglio, F. Differences in faecal bacterial communities in coeliac and healthy children as detected by PCR and denaturing gradient gel electrophoresis. FEMS Immunol. Med. Microbiol. 2007, 51, 562–568.
  • Lee, M.R.; Huang, Y.T.; Lee, P.I.; Liao, C.H.; Lai, C.C.; Lee, L.N.; Hsueh, P.R. Healthcare-associated bacteraemia caused by Leuconostoc species at a university hospital in Taiwan between 1995 and 2008. J. Hosp. Infect. 2011, 78, 45–49.
  • Bou, G.; Luis Saleta, J.; Saez Nieto, J.A.; Tomas, M.; Valdezate, S.; Sousa, D.; Lueiro, F.; Villanueva R.; Jose Pereira, M.; Llinares, P. Nosocomial outbreaks caused by Leuconostoc mesenteroides subsp. mesenteroides. Emerg. Infect. Dis. 2008, 14, 968–971.
  • Florescu, D.; Hill, L.; Sudan, D.; Iwen, P.C. Leuconostoc bacteremia in pediatric patients with short bowel syndrome: Case series and review. Pediatr. Infect. Dis. J. 2008, 27, 1013–1019.
  • Albanese, A.; Spanu, T.; Sali, M.; Novegno, F.; D’inzeo, T.; Santangelo, R.; Annunziato, M.; Carmelo, A.; Giovanni, F. Molecular identification of Leuconostoc mesenteroides as a cause of brain abscess in an immunocompromised patient. J. Clin. Microbiol. 2006, 44, 3044–3045.
  • Jófre, M.L.; Sakurada, Z.A.; Ulloa, F.T.M.; Hormázabal, O.J.C.; Godoy, M.V.; Fernández, O.J. Infección por Leuconostoc en pacientes com síndrome de intestino corto, nutrición parenteral y alimentación enteral continua. Rev. Chilena Infectol. 2006, 23, 340–345.
  • Vázquez, E.; Carazo, I.; Martin, A.; Lozano, C.; Cuesta, I.; Pagola, C. Infective endocarditis due to Leuconostoc mesenteroides. Enferm. Infecc. Microbiol. Clin. 1998, 16, 237–238.
  • Kikuchi, K.; Totsuka, K.; Shimizu, K.; Yoshida, K.; Kobayashi, M.; Tomonaga, O.; Oomori, Y.; Okada, S. Microbiological and clinical studies of vancomycin resistant Leuconostoc spp. and Pediococcus spp. isolated from septicemia patients. J. Jpn. Assoc. Infect. Dis. 1994, 68, 1084–1092.
  • Friedland, I.R.; Snipelisky, M.; Khoosal, M. Meningitis in a neonate caused by Leuconostoc sp. J. Clin. Microbiol. 1990, 28, 2125–2126.
  • Wenocur, H.S.; Smith, M.A.; Vellozzi, E.M.; Shapiro, J.; Isenberg, H.D. Odontogenic infection secondary to Leuconostoc species. J. Clin. Microbiol. 1988, 26, 1893–1894.
  • Devirgiliis, C.; Barile, S.; Perozzi, G. Antibiotic resistance determinants in the interplay between food and gut microbiota. Genes Nutr. 2011, 6, 275–284.
  • Ammor, M.S.; Mayo, B. Selection criteria for lactic acid bacteria to be used as functional starter cultures in dry sausage production: An update. Meat Sci. 2007, 76, 138–146.
  • Argyri, A.A.; Zoumpopoulou, G.; Karatzas, K.A.; Tsakalidou, E.; Nychas, G.J.; Panagou, E.Z.; Tassou, C.C. Selection of potential probiotic lactic acid bacteria from fermented olives by in vitro tests. Food Microbiol. 2013, 33, 282–291.
  • Muñoz-Atienza, E.; Gómez-Sala, B.; Araújo, C.; Campanero, C.; Del Campo, R.; Hernández, P.E.; Carmen, H.; Luis, M.C. Antimicrobial activity, antibiotic susceptibility and virulence factors of lactic acid bacteria of aquatic origin intended for use as probiotics in aquaculture. BMC Microbiol. 2013, 13, 1–22.
  • Aswathy, R.G.; Ismail, B.; John, R.P.; Nampoothiri, K.M. Evaluation of the probiotic characteristics of newly isolated lactic acid bacteria. Appl. Biochem. Biotechnol. 2008, 151, 244–255.
  • Cardamone, L.; Quiberoni, A.; Mercanti, D.J.; Fornasari, M.E.; Reinheimer, J.A.; Guglielmotti, D.M. Adventitious dairy Leuconostoc strains with interesting technological and biological properties useful for adjunct starters. Dairy Sci. Technol. 2011, 91, 457–470.
  • Rojo-Bezares, B.; Saenz, Y.; Poeta, P.; Zarazaga, M.; Ruiz-Larrea, F.; Torres, C. Assessment of antibiotic susceptibility within lactic acid bacteria strains isolated from wine. Int. J. Food Microbiol. 2006, 111, 234–240.
  • Vay, C.; Cittadini, R.; Barberis, C.; Hernan Rodriguez, C.; Perez Martinez, H.; Genero, F.; Famiglietti, A. Antimicrobial susceptibility of non-enterococcal intrinsic glycopeptide-resistant Gram-positive organisms. Diagn. Microbiol. Infect. Dis. 2007, 57, 183–188.
  • Dicks, L.M.T.; Todorov, S.D.; Franco, B.D.G.M. Current status of antibiotic resistance in lactic acid bacteria In Antibiotic Resistance: Causes and Risk Factors; Bonilla, A.R., Muniz, K.P., Eds.; Nova Publisher: New York, 2009; pp 1–46.
  • Herreros, M.A.; Sandoval, H.; González, L.; Castro, J.M.; Fresno, J.M.; Tornadijo, M.E. Antimicrobial activity and antibiotic resistance of lactic acid bacteria isolated from Armada cheese (a Spanish goats’ milk cheese). Food Microbiol. 2005, 22, 455–459.
  • Vermeiren, L.; Devlieghere, F.; Debevere, J. Co-culture experiments demonstrate the usefulness of Lactobacillus sakei 10A to prolong the shelf-life of a model cooked ham. Int. J. Food Microbiol. 2006, 108, 68–77.
  • Grattepanche, F.; Miescher-Schwenninger, S.; Meile, L.; Lacroix, C. Recent developments in cheese cultures with protective and probiotic functionalities. Dairy Sci. Technol. 2008, 88, 421–444.
  • de Las Rivas, B.; Marcobal, A.; Munoz, R. Improved multiplex-PCR method for the simultaneous detection of food bacteria producing biogenic amines. FEMS Microbiol. Letters 2005, 244, 367–372.
  • Pircher, A.; Bauer, F.; Paulsen, P. Formation of cadaverine, histamine, putrescine and tyramine by bacteria isolated from meat, fermented sausages and cheeses. Eur. Food Res. Technol. 2006, 226, 225–231.
  • Linares, D.M.; Martin, M.C.; Ladero, V.; Alvarez, M.A.; Fernandez, M. Biogenic amines in dairy products. Crit. Rev. Food Sci. Nutr. 2011, 51, 691–703.
  • Thapa, N.; Pal, J.; Tamang, J.P. Phenotypic identification and technological properties of lactic acid bacteria isolated from traditionally processed fish products of the Eastern Himalayas. Int. J. Food Microbiol. 2006, 107, 33–38.
  • Rai, A.K.; Tamang, J.P.; Palni, U. Microbiological studies of ethnic meat products of the Eastern Himalayas. Meat Sci. 2010, 85, 560–507.
  • Mesas, J.M.; Rodriguez, M.C.; Alegre, M.T. Characterization of lactic acid bacteria from musts and wines of three consecutive vintages of Ribeira Sacra. Lett. Appl. Microbiol. 2011, 52, 258–268.
  • Alegría, A.; Delgado, S.; Flórez, A.B.; Mayo, B. Identification, typing, and functional characterization of Leuconostoc spp. strains from traditional, starter-free cheeses. Dairy Sci. Technol. 2013, 93, 657–673.
  • Lei, V.; Amoa-Awua, W.K.A.; Brimer, L. Degradation of cyanogenic glycosides by Lactobacillus plantarum strains from spontaneous cassava fermentation and other microorganisms. Int. J. Food Microbiol. 1999, 53, 169–184.
  • Obilie, E.M.; Tano-Debrah, K.; Amoa-Awua, W.K. Souring and breakdown of cyanogenic glucosides during the processing of cassava into akyeke. Int. J. Food Microbiol. 2004, 93, 115–121.
  • Zotta, T.; Ricciardi, A.; Parente, E. Enzymatic activities of lactic acid bacteria isolated from Cornetto di Matera sourdoughs. Int. J. Food Microbiol. 2007, 115, 165–172.
  • Hutkins, R.W. Wine fermentation. In Microbiology and Technology of Fermented Foods; Hutkins, R.W., Ed.; Blackwell Publishing: Ames, Iowa, 2006; pp 349–396.
  • Bamforth, C.W. Distilled Alcoholic Beverages. In Food, Fermentation and Microorganisms; Bamforth, C.W., Ed.; Blackwell Science: Ames, Iowa, 2005; pp 122–132.
  • Strausbaugh, C.A.; Gillen, A.M. Bacteria and yeast associated with sugar beet root rot at harvest in the intermountain west. Plant Dis. 2008, 92, 357–363.
  • Oliva-Neto, P.; Yokoya, F. Effect of 3,4,4ʹ-trichlorocarbanilide on growth of lactic acid bacteria contaminants in alcoholic fermentation. Bioresour. Technol. 1998, 63, 17–21.
  • Meneghin, S.P.; Reis, F.C.; de Almeida, P.G.; Ceccato-Antonini, S.R. Chlorine dioxide against bacteria and yeasts from the alcoholic fermentation. Braz. J. Microbiol. 2008, 39, 337–343.
  • Corbo, M.R.; Altieri, C.; D’Amato, D.; Campaniello, D.; Del Nobile, M.A.; Sinigaglia, M. Effect of temperature on shelf life and microbial population of lightly processed cactus pear fruit. Postharvest Biol. Technol. 2004, 31, 93–104.
  • Diez, A.M.; Bjorkroth, J.; Jaime, I.; Rovira, J. Microbial, sensory and volatile changes during the anaerobic cold storage of morcilla de Burgos previously inoculated with Weissella viridescens and Leuconostoc mesenteroides. Int. J. Food Microbiol. 2009, 131, 168–177.
  • Diez, A.M.; Jaime, I.; Rovira, J. The influence of different preservation methods on spoilage bacteria populations inoculated in morcilla de Burgos during anaerobic cold storage. Int. J. Food Microbiol. 2009, 132, 91–99.
  • Samelis, J.; Georgiadou, K.G. The microbial association of Greek taverna sausage stored at 4 and 10°C in air, vacuum or 100% carbon dioxide, and its spoilage potential. J. Appl. Microbiol. 2000, 88, 58–68.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.