2,958
Views
95
CrossRef citations to date
0
Altmetric
Reviews

Milk Preservatives and Adulterants: Processing, Regulatory and Safety Issues

&

References

  • Codex Stan. Codex general standard for the use of dairy terms, 1999, 206: 1–5. http://www.codexalimentarius.org ( accessed May 2014).
  • Krushna, N.S.A.; Kowsalya, A.; Radha, S.; Narayanan, R.B. Honey as a natural preservative of milk. Indian J. Exp. Biol. 2007, 45, 459–464.
  • Kumar, A.; Ghai, D.L.; Seth, R.; Sharma, V. Apparent solidification time test for detection of foreign oils and fats adulterated in clarified milk fat, as affected by season and storage. Int. J. Dairy Technol. 2009, 62, 33–38.
  • Cerdan, J.F.; Peris-Tortajada, M.; Puchades, R.; Maquieira, A. Automation of the determination of hydrogen peroxide, dichromate, formaldehyde and bicarbonate in milk by flow injection analysis. Fresenius J. Anal. Chem. 1992, 344, 123–127.
  • Sharma, K.; Paradakar, M. The melamine adulteration scandal. Food Security 2010, 2, 97–107.
  • Finete, V.L.M.; Gouvea, M.M.; Marques, F.F.C.; Netto, A.D.P. Is it possible to screen for milk or whey protein adulteration with melamine, urea and ammonium sulphate, combining Kjeldahl and classical spectrophotometric methods? Food Chem. 2013, 141, 3649–3655.
  • Silva, R.A.; Montes, R.H.; Richter, E.M.; Munoz, R.A. Rapid and selective determination of hydrogen peroxide residues in milk by batch injection analysis with amperometric detection. Food Chem. 2012, 133, 200–204.
  • Juven, B.J.; Pierson, M.D. Antibacterial effects of hydrogen peroxide and methods for its detection and quantitation. J. Food Prot. 1996, 59, 1233–1241.
  • Abbas, M.E.; Luo, W.; Zhu, L.; Zou, J.; Tang, H. Fluorometric determination of hydrogen peroxide in milk by using a Fenton reaction system. Food Chem. 2010, 120, 327–331.
  • Kroger, M. Milk sample preservation. J. Dairy Sci. 1985, 68, 783–787.
  • Wendorff, B. In Adulteration of Milk with Hydrogen Peroxide, Proceedings of the Wisconsin Laboratory Association, Educational Conference, Brookfield, WI, 1990.
  • Taher, M.M.; Lashmaiah, N. Folic acid stability in hydrogen peroxide-potassium thiocyanate-treated milk. Food Chem. 1992, 44, 343–347.
  • Food Safety and Standards Authority of India (FSSAI). Manual of Methods of Analysis of Foods: Milk and Milk Products; Food Safety and Standards Authority of India, Ministry of Health and Family Welfare, Government of India: New Delhi, India, 2012; pp 1–31.
  • Watt, B.E.; Proudfoot, A.T.; Vale, J.A. Hydrogen peroxide poisoning. Toxicol. Rev. 2004, 23, 51–57.
  • Mansour, A.I.A.; El-Loly, M.M.; Ahmed, R.O. A preliminary detection of physical and chemical properties, inhibitory substances and preservatives in raw milk. Reading 2012, 4, 1–14.
  • Goodman, L.S.; Gilman A. The Pharmacological Basis of Therapeutics, 4th ed.; McMillan: New York, 1970.
  • SCCNFP. Opinion of the Scientific Committee on Cosmetic products and Non-Food Products (SCCNFP) intended for consumers concerning salicylic acid. Evaluation and opinion on: salicylic acid. 2002, 522, 1–36. http://ec.europa.eu/food/fs/sc/sccp/out170_en.pdf ( accessed April 2014).
  • Anonymous. Salicylic acid. http://en.wikipedia.org/wiki/Salicylic_acid ( accessed March 26, 2013).
  • Wang, Z.H.; Xia, J.F.; Zhao, F.Y.; Han, Q.; Guo, X.M.; Wang, H.; Ding, M.Y. Determination of benzoic acid in milk by solid-phase extraction and ion chromatography with conductivity detection. Chin. Chem. Lett. 2013, 24, 243–245.
  • European Council. European Parliament and Council Directive, 1995, No. 95/2/EC. https://www.fsai.ie/uploadedFiles/95_2_EC.pdf ( accessed May 2014).
  • Chipley, J.R. Sodium benzoate and benzoic acid. In Antimicrobials in Food; Davidson, P.M., Sofos, J.N., Branen, A.L., Eds.; CRC Press Taylor and Francis: Boca Raton, FL, 2010; pp 11–48.
  • Codex Stan. Codex general standard for food additives, 1995, 192:85–185. http://www.codexalimentarius.org/standards/gsfa/ ( accessed May 2014).
  • Pollard, J.A. Legislative aspects. In Food Preservatives; Russell, N.J., Gould, G.W., Eds.; Van Nostrand Reinhold: New York, 1990; pp 235–255.
  • Urbienen, S.; Leskauskaite, D. Formation of some organic acids during fermentation of milk. Pol. J. Food Nutr. Sci. 2006, 15, 277–281.
  • Sieber, R.; Butikofer, U.; Bosset, J.O. Benzoic acid as a natural compound in cultured dairy products and cheese. Int. Dairy J. 1995, 5, 227–246.
  • Mihyar, G.F.; Yousif, A.K.; Yamani, M.I. Determination of benzoic and sorbic acids in labaneh by high-performance liquid chromatography. J. Food Compos. Anal. 1999, 12, 53–61.
  • Yilmaz, S.; Unal, F.; Yuzbasioglu, D. The in vitro genotoxicity of benzoic acid in human peripheral blood lymphocytes. Cytotechnology 2009, 60, 55–61.
  • Tfouni, S.A.V.; Toledo, M.C.F. Estimates of the mean per capita daily intake of benzoic and sorbic acids in Brazil. Food Addit. Contam. 2002, 19, 647–654.
  • Tuormaa, T.E. The adverse effects of food additives on health: A review of the literature with a special emphasis on childhood hyperactivity. J. Orthomol. Med. 1994, 9, 225–243.
  • Sofos, J.N. Sorbic acid. In Natural Food Antimicrobial Systems; Naidu, A.S., Ed.; CRC Press: Boca Raton, FL, 2000; pp 637–660.
  • Sofos, J.N. Sorbate Food Preservatives; CRC Press: Boca Raton, FL, 1989.
  • Food and Agriculture Organization (FAO). Toxicological Evaluation of Some Food Additives; Food and Agriculture Organization: Rome, Italy, 1974.
  • Abedi, A.S.; Mohammadi, A.; Azadniya, E.; Mortazavian, A.M.; Khaksar, R. Simultaneous determination of sorbic and benzoic acids in milk products using an optimised microextraction technique followed by gas chromatography. Food Addit. Contam. A 2014, 31, 21–28.
  • Banerjee, M.; Sarkar, P.K. Antibiotic resistance and susceptibility to some food preservative measures of spoilage and pathogenic micro-organisms from spices. Food Microbiol. 2004, 21, 335–342.
  • Fox, P.F.; Guinee, T.P.; Cogan, T.M.; McSweeney, P.L.H. Fundamentals of Cheese Science; Aspen Publishers: Gaithersburg, MD, 2000; p 1–589.
  • Sensidoni, A.; Rondinini, G.; Peressini, D.; Maifreni, M.; Bortolomeazzi, R. Presence of an off-flavour associated with the use of sorbates in cheese and margarine. Ital. J. Food Sci. 1994, 6, 237–242.
  • Horwood, J.F.; Lloyd, G.T.; Ramshaw, E.H.; Stark, W. An off-flavour associated with the use of sorbic acid during Feta cheese maturation. Aust. J. Dairy Technol. 1981, 36, 38–39.
  • Walker, R. Toxicology of sorbic acid and sorbates. Food Addit. Contam. 1990, 7, 671–676.
  • Winkler, C.; Frick, B.; Schroecksnadel, K.; Schennach, H.; Fuchs, D. Food preservatives sodium sulfite and sorbic acid suppress mitogen-stimulated peripheral blood mononuclear cells. Food Chem. Toxicol. 2006, 44, 2003–2007.
  • Wen, Y.; Wang, Y.; Feng, Y.Q. A simple and rapid method for simultaneous determination of benzoic and sorbic acids in food using in-tube solid-phase micro-extraction coupled with high-performance liquid chromatography. Anal. Bioanal. Chem. 2007, 388, 1779–1787.
  • Harding, F. Adulteration of milk. In Milk Quality; Harding, F., Ed.; Aspen Publishers: New York, 1995; pp 60–73.
  • Litovitz, T.L.; Klein-Schwartz, W.; Oderda, G.M.; Schmitz, B.F. Clinical manifestations of toxicity in a series of 784 boric acid ingestions. Am. J. Emerg. Med. 1988, 6, 209–213.
  • See, A.S.; Salleh, A.B.; Bakar, F.A.; Yusof, N.A.; Abdulamir, A.S.; Heng, L.Y. Risk and health effect of boric acid. Am. J. Appl. Sci. 2010, 7, 620–627.
  • Malame, P.R.; Bhuiya, T.K.; Gupta, R.K. Microwave reflectometry based electrical characterization of milk for adulteration detection. Adv. Electronic Electric Eng. 2014, 4, 487–492.
  • Code of Federal Regulations, Title 21. Food and Drugs, Parts 170–199; Office of Federal Regulations, National Archives Records Services, General Service Administration: Washington, DC, 1990.
  • Singh, P.; Sahoo, J.; Chatli, M.K.; Biswas, A.K. Effect of different levels of baking powder on the physico-chemical and sensory attributes of chicken meat caruncles. Haryana Vet. 2013, 52, 17–21.
  • Barham, G.S.; Khaskheli, M.; Soomro, A.H.; Nizamani, Z.A. Extent of extraneous water and detection of various adulterants in market milk at Mirpurkhas, Pakistan. Pak. J. Agric. Vet. Sci. 2014, 7, 83–89.
  • Hotchkiss, J.H.; Werner, B.G.; Lee, E.Y. Addition of carbon dioxide to dairy products to improve quality: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2006, 5, 158–168.
  • Hendricks, M.T.; Hotchkiss, J.H. Effect of carbon dioxide on Pseudomonas fluorescens and Listeria monocytogenes growth in aerobic atmospheres. J. Food Prot. 1997, 60, 1548–1552.
  • Martin, J.D.; Werner, B.G.; Hotchkiss, J.H. Effects of carbon dioxide on bacterial growth parameters in milk as measured by conductivity. J. Dairy Sci. 2003, 86, 1932–1940.
  • Rajagopal, M.; Werner, B.G.; Hotchkiss, J.H. Low pressure CO2 storage of raw milk: Microbiological effects. J. Dairy Sci. 2005, 88, 3130–3138.
  • King, J.S.; Mabbitt, L.A. Preservation of raw milk by the addition of carbon dioxide. J. Dairy Res. 1982, 49, 439–447.
  • Glass, K.A.; Kaufman, K.M.; Smith, A.L.; Johnson, E.A.; Chen, J.H.; Hotchkiss, J. Toxin production by Clostridium botulinum in pasteurized milk treated with carbon dioxide. J. Food Prot. 1999, 62, 872–876.
  • Werner, B.G.; Hotchkiss, J.H. Effect of carbon dioxide on the growth of Bacillus cereus spores in milk during storage. J. Dairy Sci. 2002, 85, 15–18.
  • Hotchkiss, J.H.; Chen, J.H.; Lawless, H.T. Combined effects of carbon dioxide addition and barrier films on microbial and sensory changes in pasteurized milk. J. Dairy Sci. 1999, 82, 690–695.
  • Martin, J.D. Effects of carbon dioxide on common raw milk bacteria using predictive modeling measured by conductivity. MS thesis, Cornell University, Ithaca, New York, 2002.
  • Loss, C.R. Effect of dissolved carbon dioxide on the thermal resistance of micro-organisms in milk. MS thesis, Cornell University, Ithaca, New York, 2001.
  • Ruas-Madiedo, P.; Bascaran, V.; Brana, A.F.; Bada-Gancedo, J.C.; de los Reyes-Gavilan, C.G. Influence of carbon dioxide addition to raw milk on microbial levels and some fat-soluble vitamin contents of raw and pasteurized milk. J. Agric. Food Chem. 1998, 46, 1552–1555.
  • Calvo, M.M.; De Rafale, D. Deposition formation in a heat exchanger during pasteurization of CO2 acidified milk. J. Dairy Res. 1995, 62, 641–644.
  • McGartland, C.; Robson, P.J.; Murray, L.; Cran, G.; Savage, M.J.; Watkins, D.; Rooney, M.; Boreham, C. Carbonated soft drink consumption and bone mineral density in adolescence: The Northern Ireland Young Hearts project. J. Bone Miner. Res. 2003, 18, 1563–1569.
  • World Health Organization. Environmental health criteria 89. Formaldehyde. 1989. http://www.inchem.org/documents/ehc/ehc/ehc89.htm ( accessed 27 October 2012).
  • Sandhu, J.S.; Nasir, N.; Narayanaswamy, M.; Kapur, O.P. Study on the effect of formalin as a preservative on different constituents of raw milk samples during storage. J. Food Sci. Technol. 1984, 21, 424–425.
  • Singh, H.; Fox, P.F. Heat stability of milk: The mechanism of stabilization by formaldehyde. J. Dairy Res. 1985, 52, 65–76.
  • Sharma, R.; Seth, R.; Bauri, A.K. Rapid methods for detection of adulterants in milk. In Chemical Analysis of Value Added Dairy Products and Their Quality Assurance, Winter School Training Programme Manual, National Dairy Research Institute, Karnal, Haryana, January, 11–31, 2011; NDRI Publication: Haryana, 2011, pp 184–185.
  • International Agency for Research on Cancer. Monographs on the Evaluation Of Carcinogenic Risks to Humans, Volume 88, Formaldehyde, 2-Butoxyethanol and 1-tert-Butoxy-2- propanol; International Agency for Research on Cancer: Lyon, France, 2004.
  • US Environmental Protection Agency. Integrated Risk Information System (IRIS) on Formaldehyde; National Center for Environmental Assessment, Office of Research and Development, US Environmental Protection Agency: Washington, DC, 1999.
  • Afzal, A.; Mahmood, M.S.; Hussain, L.; Akhtar, M. Adulteration and microbiological quality of milk (a review). Pak. J. Nutr. 2011, 10, 1195–1202.
  • Llopis, M.B.; Marugon, M.R.; Althaus, R.L.; Pons, M.P.M. Effect of storage and preservation of milk samples on the response of microbial inhibitor tests. J. Dairy Res. 2013, 80, 475–484.
  • Andueza, D.; Valenti, B.; Labonne, C.; Ferlay, A. Effect of the use of bronopol as milk preservative on the prediction of milk fatty acid composition by near-infrared reflectance spectroscopy. In Proceedings of the 16th International Conference on Near Infrared Spectroscopy, la Grande-Motte, France, June 2–7, 2013; Maurel, V.B., Williams, P., Downey, G., Eds.; Veronique Bellon-Maurel: France, 2013; pp 57–63.
  • Barbano, D.M.; Wojciechowski, K.L.; Lynch, J.M. Effect of preservatives on the accuracy of mid-infrared milk component testing. J. Dairy Sci. 2010, 93, 6000–6011.
  • Williams, P.; Garry, E.; Ouattara, G. The effect of bronopol on the freezing point and impedance of milk samples 2007, 1–6; Advanced Instruments, Inc., Institute of Food Technology: Norwood, MA, July 2007.
  • Chalermsan, N.; Vijchullata, P.; Chirattanayuth, P.; Surapat, S.; Sintuwanit, S.; Engkagul, A. Influence of preservatives on raw milk components and somatic cell counts analysis. In Proceedings of 41st Kasetsart University Annual Conference, Subject: Animals and Veterinary Medicine, Kasetsart University, 3–7 February 2003; Kasetsart University: Bangkok, 2003; pp 127–135.
  • Smolinske, S.C. Bronopol. In Handbook of Food, Drug and Cosmetic Excipients; Smolinske, S.C., Ed.; CRC Press: Boca Raton, FL, 1992; p 1–435.
  • Johnson, E.A.; Larson, A.E. Lysozyme. In Antimicrobials in Food; Davidson, P.M.; Sofos, J.N.; Branen, A.L., Eds.; Taylor and Francis Group: Boca Raton, FL, 2005; p 1–681.
  • Bertrand, J.A. Influence of shipping container, preservative, and breed on analysis of milk components of shipped samples. J. Dairy Sci. 1996, 79, 145–148.
  • Warshaw, E.M.; Botto, N.C.; Zug, K.A.; Belsito, D.V.; Maibach, H.I.; Sasseville, D.; Fowler, J.F.; Storrs, F.J.; Taylor, J.S.; De Leo, V.A.; Marks, J.G.; Toby Mathias, C.G.; Pratt, M.D.; Rietschel, R.L. Contact dermatitis associated with food: Retrospective cross‐sectional analysis of North American contact dermatitis group data, 2001–2004. Dermatitis 2008, 19, 252–260.
  • Das, C.O.; Misra, B.N.; Srivastava, K.C. Effect of addition of mercuric chloride preservative to milk on its fat, total solids, and solids-not-fat contents. Allahabad Farmer 1960, 34, 94–97.
  • Vigil A.L.M.; Palou, E.; Parish, M.E.; Davidson, P.M. Methods for activity assay and evaluation of results. In Antimicrobials in Food; Davidson P.M.; Sofos, J.N.; Branen, A.L., Eds.; Taylor and Francis Group: Boca Raton, FL, 2005; pp 659–680.
  • Ehrlich, H.L. Inorganic hazardous waste amenable to biological transformation. In Biotechnology for the Treatment of Hazardous Waste; Stoner, D.L., Ed.; CRC Press: Boca Raton, FL, 1994; pp 27–44.
  • Kazantzis, G. Mercury exposure and early effects: An overview. Med. Lav. 2002, 93, 139–147.
  • Zahir, F.; Rizwi, S.J.; Haq, S.K.; Khan, R.H. Low dose mercury toxicity and human health. Environ. Toxicol. Pharmacol. 2005, 20, 351–360.
  • Martinez, J.R.; Gonzalo, C.; Carriedo, J.A.; San Primitivo, F. Effect of freezing on Fossomatic cell counting in ewe milk. J. Dairy Sci. 2003, 86, 2583–2587.
  • Martins, M.E.P.; Nicolau, E.S.; Mesquita, A.J.; Neves, R.B.; Oliveira, J. P. Bronopol and azidiol chemicals: Time and temperature influence in the total bacterial count of raw milk. Cienc. Anim. Bras. 2009, 10, 627–633.
  • Albright, J.L.; Tuckey, S.L.; Woods, G.T. Antibiotics in milk—A review. J. Dairy Sci. 1961, 44, 779–807.
  • Goldberg, H.S. Nonmedical uses of antibiotics. In Advances in Applied Microbiology; Umbreit, W.W., Ed.; Elsevier Academic Press: London, 1964; pp 101–102.
  • Hassabo, A.A.; Mo, E.; Ishag, I.A.; Osman, S.E.; Bushara, I. Usage of antibiotic as milk preservative in the slums of Khartoum state. J. Anim. Prod. Adv. 2012, 2, 138–141.
  • Allison, J.R.D. Antibiotic residues in milk. Br. Vet. J. 1985, 141, 9–16.
  • Nirwal, S.; Pant, R.; Rai, N. Analysis of milk quality, adulteration and mastitis in milk samples collected from different regions of Dehradun. Int. J. PharmTech Res. 2013, 5, 359–364.
  • Lakshmi, V. Food adulteration. Int. J. Sci. Invent. Today 2012, 1, 106–113.
  • Min, W.; Jie, Z.; Li, Z.; Fanjun, Z.; Hailing, P. Research of a test paper for quick checking of starch adulterated in milk. J. Dairy Sci. Technol. 2008, 1, 9.
  • Singuluri, H.; Sukumaran, M.K. Milk adulteration in Hyderabad, India—A comparative study on the levels of different adulterants present in milk. J. Chromatogr. Sep. Tech. 2014, 5, 1–3.
  • Mullins, R.J.; James, H.; Platts-Mills, T.A.; Commins, S. Relationship between red meat allergy and sensitization to gelatin and galactose-α-1,3-galactose. J. Allergy Clin. Immunol. 2012, 129, 1334–1342.
  • Divya, K.B.; Sathish Kumar, M.H.; Thompkinson, D.K.; Sabikhi, L. Selection of levels of maltodextrin to improve the sensory and textural properties of omega-3 and fiber-enriched low fat buffalo milk. Indian J. Dairy Sci. 2012, 65, 262–263.
  • Technology Updates. Investigation of stickiness of milk powder for the purpose of improved process control in milk powder manufacture. 2011. http://www.teagasc.ie/publications/2010/1103/investigation_of_stickiness_of_milk_powder_to_improve_process_control_in_milk_powder_manufacture_5632.pdf. (accessed May 2014).
  • Goswami, T.K.; Gupta, S.K. Detection of dilution of milk with the help of glass transition temperature by differential scanning calorimetry (DSC). Afr. J. Food Sci. 2008, 2, 7–10.
  • Omaye, S.T. Food additives, colors and flavours. In Food and Nutritional Toxicology; CRC Press: Boca Raton, FL, 2004; pp 1–336.
  • Asimakopoulos, A.G.; Nikoleli, G.P.; Thomaidis, N.S.; Nikolelis, D.P. Methods of analysis of saccharin. In Handbook of Analysis of Active Compounds in Functional Foods; Nollet, L.M.L.; Toldra, F., Eds.; CRC Press: Boca Raton, FL, 2012; pp 863–876.
  • Arnold, D.L. Toxicology of saccharin. Fundam. Appl. Toxicol. 1984, 4, 674–685.
  • McClain, R.M. Mechanistic considerations in the regulation and classification of chemical carcinogens. In Nutritional Toxicology; Kotsonis, F.N.; Mackey, M.A., Ed.; Taylor and Francis: New York, 2002; pp 377–410.
  • Weihrauch, M.R.; Diehl, V. Artificial sweeteners—Do they bear a carcinogenic risk? Ann. Oncol. 2004, 15, 1460–1465.
  • Bruce, E.M. Detection of the Common Food Adulterants; Plimpton Press: Norwood, MA, 1907; pp 1–7.
  • Minifie, B.W. Chocolate, Cocoa, and Confectionery: Science and Technology, 3rd ed.; AVI Publications: New York, 1989; p 1–885.
  • European Food Science Authority (EFSA). EFSA Panel on Food Addit. Nutrient sources added to food. European Food Science Authority Journal 2011, 9, 103.
  • Nishie, K.; Waiss, A.C.; Keyl, A.C. Toxicity of methylimidazoles. Toxicol. Appl. Pharmacol. 1969, 14, 301–307.
  • Miller, M.; Millstone, E. Food Additives Campaign Team: Report on Colour Additives; FACT: London, 1987.
  • Szyfter, K.C.; Gawecki, J. Food and cancer: Development of an association. In Carcinogenic and Anticarcinogenic Food Components; Baer-Dubowska, W.; Bartoszek, A.; Malejka-Giganti, D., Eds.; Taylor and Francis Group, CRC Press: Boca Raton, FL, 2006; pp 1–12.
  • Kamthania, M.; Saxena, J.; Saxena, K.; Sharma, D.K. 2014. Milk adulteration: Methods of detection and remedial measures. Int. J. Eng. Tech. Res. 2014, Special Issue, 15–20.
  • Nish, W.A.; Whisman, B.A.; Goetz, D.W.; Ramirez, D.A. Anaphylaxis to annatto dye: A case report. Ann. Allergy 1991, 66, 129–131.
  • Kobylewski, S.; Jacobson, M.F. Toxicology of food dyes. Int. J. Occup. Environ. Health 2012, 18, 220–246.
  • Patnaik, P. Alkalies. In A Comprehensive Guide to the Hazardous Properties of Chemical Substances; John Wiley & Sons Publication: Hoboken, NJ, 2007; pp 1–1059.
  • Ntakatsane, M.P.; Liu, X.M.; Zhou, P. Rapid detection of milk fat adulteration with vegetable oil by fluorescence spectroscopy. J. Dairy Sci. 2013, 96, 2130–2136.
  • Rohr-Udilova, N.V.; Stolze, K.; Sagmeister, S.; Nohl, H.; Schulte-Hermann, R.; Grasl-Kraupp, B. Lipid hydroperoxides from processed dietary oils enhance growth of hepatocarcinoma cells. Mol. Nutr. Food Res. 2008, 52, 352–359.
  • Kohn, R. Caution needed when interpreting MUNs. Hoard’s Dairyman 2000, 145, 58.
  • Trivedi, U.B.; Lakshminarayana, D.; Kothari, I.L.; Patel, N.G.; Kapse, H.N.; Makhija, K.K.; Patel, P.B.; Panchal, C.J. Potentiometric biosensor for urea determination in milk. Sensors Actuators B 2009, 140, 260–266.
  • Calberry, J. Milk urea nitrogen testing to improve protein utilization in dairy cattle. Program Assistant/OMAFRA “Ministry of Agriculture, Food and Rural Affairs” 414/54, 2003.
  • Butler, W.R.; Calaman, J.J.; Beam, S.W. Plasma and milk urea nitrogen in relation to pregnancy rate in lactating dairy cattle. J. Anim. Sci. 1996, 74, 858–865.
  • Renny, E.; Daniel, D.; Krastanov, A.; Zachariah, C.; Elizabeth, R. Enzyme based sensor for detection of urea in milk. Biotechnol. Biotechnol. Equip. 2005, 19, 198–201.
  • Das, S.; Sivaramakrishna, M.; Biswas, K.; Goswami, B. Performance study of a constant phase angle based impedance sensor to detect milk adulteration. Sensors Actuators A 2011, 167, 273–278.
  • Lacks, S.A. Properties of urea. Anal. Biochem. 1979, 100, 357–363.
  • Rajput, Y.S.; Bhavadasan, M.K.; Ganguli, N.C. Effect of urea on heat-induced acidity and milk coagulation. New Zealand J. Dairy Sci. Technol. 1984, 19, 49–54.
  • Nikoleli, G.P.; Nikolelis, D.P.; Methenitis, C. Construction of a simple optical sensor based on air stable lipid film with incorporated urease for the rapid detection of urea in milk. Anal. Chim. Acta 2010, 675, 58–63.
  • Sadat, A.; Mustajab, P.; Khan, I.A. Determining the adulteration of natural milk with synthetic milk using ac conductance measurement. J. Food Eng. 2006, 77, 472–477.
  • Tariq, M.A. Subject: A close look at dietary patterns. 2001. http://www.dawn.com/2001/11/05/ebr13.htm (accessed on February 2011).
  • Prout, W. Preparation and analysis of urea. Clin. Chem. 2003, 49, 699–705.
  • Tyan, Y.C.; Yang, M.H.; Jong, S.B.; Wang, C.K.; Shiea, J. Melamine contamination. Anal. Bioanal. Chem. 2009, 395, 729–735.
  • Fu, X.; Kim, M.S.; Chao, K.; Qin, J.; Lim, J.; Lee, H.; Garrido-Varo, A.; Perez-Marin, D.; Ying, Y. Detection of melamine in milk powders based on NIR hyperspectral imaging and spectral similarity analyses. J. Food Eng. 2014, 124, 97–104.
  • Hau, A.K.C.; Kwan, T.H.; Li, P.K.T. Melamine toxicity and the kidney. J. Am. Soc. Nephrol. 2009, 20, 245–250.
  • Guo, H.; Zhou, X.; Zhang, Y.; Song, B.; Liu, L.; Zhang, J.; Shi, H. Highly sensitive and rapid detection of melamine in milk products by planar waveguide fluorescence immunosensor (PWFI). Sensors Actuators B 2014, 194, 114–119.
  • Lutter, P.; Savoy-Perroud, M.C.; Campos-Gimenez, E.; Meyer, L.; Goldmann, T.; Bertholet, M.C.; Mottier, P.; Desmarchelier, A.; Monard, F.; Perrin, C.; Robert, F.; Delatour, T. Screening and confirmatory methods for the determination of melamine in cow’s milk and milk-based powdered infant formula: Validation and proficiency-tests of ELISA, HPLC-UV, GC–MS and LC– MS/MS. Food Control 2011, 6, 903–913.
  • Mauer, L.J.; Chernyshova, A.A.; Hiatt, A.; Deering, A.; Davis, R. Melamine detection in infant formula powder using near- and mid-infrared spectroscopy. J. Agric. Food Chem. 2009, 57, 3974–3980.
  • Yin, W.; Liu, J.; Zhang, T.; Li, W.; Meng, M.; He, F.; Wan, Y.; Feng, C.; Wang, S.; Lu, X.; and Xi, R. Preparation of monoclonal antibody for melamine and development of an indirect competitive ELISA for melamine detection in raw milk, milk powder, and animal feeds. J. Agric. Food Chem. 2010, 58, 8152–8157.
  • Li, L.; Li, B.; Cheng, D.; Mao, L. Visual detection of melamine in raw milk using gold nanoparticles as colorimetric probe. Food Chem. 2010, 122, 895–900.
  • Ota, Y.; Hasumura, M.; Okamura, M.; Takahashi, A.; Ueda, M.; Onodera, H.; Imai, T.; Mitsumori, K.; Hirose, M. Chronic toxicity and carcinogenicity of dietary administered ammonium sulfate in F344 rats. Food Chem. Toxicol. 2006, 44, 17–27.
  • Chandra, N. Tough law for contaminated food on cards. News Special Report, Mail Today, New Delhi, February, 6, 2014; 10.
  • Hoppe, C.; Andersen, G.S.; Jacobsen, S.; Molgaard, C.; Friis, H.; Sangild, P.T.; Michaelsen, K.F. The use of whey or skimmed milk powder in fortified blended foods for vulnerable groups. J. Nutr. 2008, 138, 145S–161S.
  • Jelen, P. Standardization of fat and protein content. In Encyclopedia of Dairy Sciences; Fuquay, J.W.; Fox, P.F.; McSweeney, P.L.H., Eds.; Elsevier Academic Press: London, 2011; pp 547–548.
  • Barros, R.M.; Ferreira, C.A.; Silva, S.V.; Malcata, F.X. Quantitative studies on the enzymatic hydrolysis of milk proteins brought about by cardosins precipitated by ammonium sulfate. Enzyme Microb. Technol. 2001, 29, 541–547.
  • Gonzalez Siso, M.I. The biotechnological utilization of cheese whey: A review. Bioresour. Technol. 1996, 57, 1–11.
  • Lasmar, M.M.; Leite, M.O.; Fonseca, L.M.; Souza, M.R.; Cerqueira, M.M.O.P.; Penna, C.F.A.M.; Couto, C.N.B.; Ferreira, J.M. Detection of cheese whey in raw milk preserved with bronopol through high performance liquid chromatography. Arq. Bras. Med. Vet. Zoo. 2011, 63, 1553–1558.
  • Abd El-Salam, M.H.; El-Shibiny, S.; Buchheim, W. Characteristics and potential uses of the casein macropeptide. Int. Dairy J. 1996, 6, 327–341.
  • Chavez, N.A.; Salinas, E.; Jauregui, J.; Palomares, L.A.; Macias, K. Detection of bovine milk adulterated with cheese whey by Western blot immunoassay. Food Agric. Immunol. 2008, 19, 265–272.
  • Valladao, M.; Sandine, W.E. Quaternary ammonium compounds in milk: detection by reverse-phase high performance liquid chromatography and their effect on starter growth. J. Dairy Sci. 1994, 77, 1509–1514.
  • Buffet-Bataillon, S.; Tattevin, P.; Bonnaure-Mallet, M.; Jolivet-Gougeon, A. Emergence of resistance to antibacterial agents: The role of quaternary ammonium compounds—A critical review. Int. J. Antimicrob. Agents 2012, 39, 381–389.
  • Cords, B.R.; Burnett, S.L.; Hilgren, J.; Finley, M.; Magnuson, J. Sanitizers: Halogens, surface-active agents and peroxides. In Antimicrobials in Food; Davidson, P.M.; Sofos, J.N.; Branen, A.L., Eds.:, Taylor and Francis Group: Boca Raton, FL, 2005; pp 507–572.
  • Danaher, M.; Jordan, K. Identification of existing and emerging chemical residue contamination concerns in milk. Irish J. Agric. Food Res. 2013, 52, 173–183.
  • Jepsen, A. Residues of disinfectants and antibiotics in milk: Milk hygiene. Nord. Vet. Med. 1962, 2, 449–455.
  • Anonymous. Health Assessment of Benzalkonium Chloride Residues in Food; Bundesinstitut für Risikobewertung: Berlin, 2012.
  • Friedle, A.; Nitsopoulos, A.; Lach, G.; Bruns, S. Determination of quaternary ammonium compounds (QAC) in food products. Presented at 9th European Pesticide Residue Workshop, Vienna, Austria, June 25–28, 2012; 2012.
  • Ellenhorn, M.J.; Schonwald, S.; Ordog, G.; Wasserberger, J. Ellenhorn’s Medical Toxicology: Diagnosis and Treatment of Human Poisoning; Williams and Wilkins: Baltimore, MD, 1997; pp 1204–1235.
  • Arugonda, S.K. Quaternary ammonium compounds. In International Programme On Chemical Safety Poisons Information Monograph G022 (Group PIM) Chemical; University of Otago: Otago, New Zealand, 1998.
  • Mathieu-Nolf, M.; Mathieu, D.; Leblanc, J.H.; Frimat, P.; Furon, D. Les intoxications par les antiseptiques de la classe des ammoniums quaternaires sont-elles toujours bénignes? J. Toxicol. Clin. Exp. 1985, 5, 406.
  • Barui, A.K.; Sharma, R.; Rajput, Y.S. Detection of non-dairy fat in milk based on quantitative assay of anionic detergent using azure a dye. Int. Dairy J. 2012, 24, 44–47.
  • Merin, U.; Rosenthal, I.; Bernstein, S.; Popel, G. The effect of residues of detergents and detergents-sanitizers on the performance of antibiotic test and the organoleptic quality of milk. Lait 1985, 65, 163–167.
  • Scailteur, V.; Maurer, J.K.; Walker, A.P.; Calvin, G. Subchronic oral toxicity testing in rats with a liquid hand-dishwashing detergent containing anionic surfactants. Food Chem. Toxicol. 1986, 24, 175–181.
  • Beuhler, M.C.; Henretig, F.M.; Gala, P.; Meaney, P.; Wolfe, H.; Lewis, L.; Schier, J.; Law, R.; Punja, M.; Kieszak, S.; Pillai, S.K. Health hazards associated with laundry detergent pods—United States, May–June 2012. MMWR Morb. Mort. Wkly. Rep. 2012, 61, 825–829.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.