418
Views
4
CrossRef citations to date
0
Altmetric
Reviews

Submerged Liquid Culture for Production of Biomass and Spores of Penicillium

&

References

  • Mariano, G.-S.; Enrique, B.-A.; Hugo, J.-I.; José, N.-B.; Eloy, B.-C.; Ramiro, R.-M. Growth morphology and hydrodynamics of filamentous fungi in submerged cultures. In Advances in Agricultural and Food Biotechnology; Guevara-González, R. G.; Torres-Pacheco, I., Eds. Research Signpost: Kerala, India, 2006; pp 17–34.
  • Papagianni, M. Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol. Adv. 2004, 22, 288–259.
  • Valik, L.; Baranyi, J.; Görner, F. Predicting fungal growth: The effect of water activity on Penicillium roqueforti. Int. J. Food Microbiol. 1999, 47, 141–146.
  • Dixon, N.M.; Kell, D.B. The inhibition by CO2 of the growth and metabolism of micro-organisms. J. Appl. Bacteriol. 1989, 67, 109–136.
  • Desfarges, C.; Larroche, C.; Gros, J.B. Spore production of Penicillium roqueforti by solid state fermentation: Stoichiometry, growth and sporulation behavior. Biotechnol. Bioeng. 1987, 29, 1050–1058.
  • Larroche, C.; Desfarges, C.; Gros, J.B. Optimization of the spore production of Penicillium roqueforti in solid substrate fermentation on buckwheat seeds. Appl. Microbiol. Biotechnol. 1988, 28, 85–92.
  • Larroche, C.; Gros, J.B. Characterization of the growth and sporulation behavior of Penicillium roquefortii in solid substrate fermentation by material and bioenergetic balances. Biotechnol. Bioeng. 1992, 39, 815–827.
  • Amrane, A.; Plihon, F.; Prigent, Y. Kinetics of growth and medium de-acidification for Geotrichum candidum and Penicillium camemberti cultivated on complex liquid media. World J. Microbiol. Biotechnol. 1999, 15, 489–491.
  • Larroche, C.; Desfarges, C.; Gros, J.B. Spore production of Penicillium roqueforti by simulated state fermentation. Biotechnol. Lett. 1986, 8, 453–456.
  • Znidarsic, P.; Pavko, A. The morphology of filamentous fungi in submerged cultivations as a bioprocess parameter. Food Technol. Biotechnol. 2001, 39, 237–252.
  • Edelstein, L.; Segel, L.A. Growth and metabolism in mycelial fungi. J. Theor. Biol. 1983, 104, 187–210.
  • Jones, E.B.G. Fungal adhesion. Mycol. Res. 1994, 98, 961–981.
  • Paul, G.C.; Kent, C.A.; Thomas, C.R. Viability testing and characterization of germination of fungal spores by automatic image analysis. Biotechnol. Bioeng. 1993, 42, 11–23.
  • Posch, A.E.; Spadiut, O.; Herwig, C. A novel method for fast and statistically verified morphological characterization of filamentous fungi. Fungal Genet. Biol. 2012, 49, 499–510.
  • Olsvik, E.; Kristiansen, B. Rheology of filamentous fermentations. Biotechnol. Adv. 1994, 12, 1–39.
  • Whitaker, A.; Long, P.A. Fungal pelleting. Process Biochem. 1973, 8, 27–31.
  • Wucherpfennig, T.; Kiep, K.A.; Driouch, H.; Wittmann, C.; Krull, R. Morphology and rheology in filamentous cultivations. Adv. Appl. Microbiol. 2010, 72, 89–136.
  • Pirt, S.J. A theory of the mode of growth of fungi in the form of pellets in submerged culture. Proc. R. Soc. Lond. B Biol. Sci. 1966, 166, 369–373.
  • McNeil, B.; Berry, D.R.; Harvey, L.M.; Grant, A.; White, S. Measurement of autolysis in submerged batch cultures of Penicillium chrysogenum. Biotechnol. Bioeng. 1998, 57, 297–305.
  • Cui, Y.Q.; Van der Lans, R.G.J.M.; Luyben, K.C.A.M. Effects of dissolved oxygen tension and mechanical forces on fungal morphology in submerged fermentation. Biotechnol. Bioeng. 1998, 57, 409–419.
  • Metz, B.; Kossen, N.W.F. The growth of molds in the form of pellets—A literature review. Biotechnol. Bioeng. 1977, 19, 781–799.
  • Vézina, C.; Singh, K.; Sehgal, S.N. Sporulation of filamentous fungi in submerged culture. Mycologia 1965, 57, 722–736.
  • Papagianni, M. Fungal morphology. In Citric Acid Biotechnology; Kristiansen, B., Linden, J., Mattey, M., Eds.; CRC Press: Boca Raton, Florida, 1999; 69–84.
  • Bockelmann, W.; Portius, S.; Lick, S.; Heller, K.J. Sporulation of Penicillium camemberti in submerged batch culture. Syst. Appl. Microbiol. 1999, 22, 479–485.
  • Meyers, E.; Knight, S.G. Studies on the nutrition of Penicillium roqueforti. Appl. Microbiol. 1958, 6, 174–178.
  • Lawrence, R.C.; Bailey, R.W. Evidence for the role of the citric acid cycle in the activation of spores of Penicillium roqueforti. Biochim. Biophys. Acta 1970, 208, 77–86.
  • Poulsen, B.R. Can submerged cultures of filamentous fungi be made reproducible?, In Characterization of pathway engineered strains of filamentous fungi in submerged cultures Ph.D. thesis, Wageningen University; Wageningen, The Netherlands, 2005; pp 145–163.
  • Pitt, D.; Poole, P.C. Calcium-induced conidiation in Penicillium notatum in submerged culture. Trans. Br. Mycol. Soc. 1981, 76, 219–230.
  • Roncal, T.; Ugalde, U. Conidiation induction in Penicillium. Res. Microbiol. 2003, 154, 539–546.
  • Morton, A.G.E.A. Changes in enzyme activity of fungi during nitrogen starvation. J. Exp. Bot. 1960, 11, 116–128.
  • Fan, T.Y.; Kinsella, J.E. Changes in biochemical components during the germination of spores of Penicillium roqueforti. J. Sci. Food Agric. 1976, 27, 745–752.
  • Morton, A.G. The induction of sporulation in mould fungi. Proc. R. Microsc. Soc. 1961, B (153), 548–569.
  • Youatt, J. Calcium and microorganisms. Crit. Rev. Microbiol. 1993, 19, 83–97.
  • Armstrong, J.J. Stimulation of sporulation in Penicillium by anhydroglucose. Nature 1963, 197, 723–732.
  • William, J.G.; Richard, J.H. Production of Conidia in submerged cultures of Penicillium notatum. J Bacteriol. 1946, 51, 731–733.
  • Roncal, T.; Cordobés, S.; Sterner, O.; Ugalde, U. Conidiation in Penicillium cyclopium is induced by conidiogenone, an endogenous diterpene. Eukaryotic Cell 2002, 1, 823–829.
  • Suijdam, J.C.; Kossen, N.W.F.; Paul, P.G. An inoculum technique for the production of fungal pellets. Appl. Microbiol. Biotechnol. 1980, 10, 211–221.
  • Takahashi, J.; Abekawa, Y.; Yamada, K.J. Effect of nonionic surface-active agent on the formation of Aspergillus niger pellets. Agric. Chem. Soc. Jpn. 1960, 34, 1043–1047.
  • Pirt, S.J.; Callow, D.S. Continuous-flow culture of the filamentous mould Penicillium chrysogenum and the control of its morphology. Nature 1959, 184, 307–310.
  • Galbraith, J.C.; Smith, J.E. Sporulation of Aspergillus niger in submerged liquid culture. J. Gen. Microbiol. 1969, 59, 31–45.
  • Zetelaki, K.; Vas, K. The role of aeration and agitation in the production of glucose oxidase in submerged culture. Biotechnol. Bioeng. 1968, 10, 45–59.
  • Carilli, A.; Chain, E.B.; Gualandi, G.; Morisi, G. Aeration studies. III. Continuous measurement of dissolved oxygen during fermentation in large fermenters. Sci. Rep. Ist. Super. Sanita 1961, 1, 177–189.
  • Cronenberg, C.C.H.; Ottengraf, S.P.P.; van den Heuvel, J.C.; Pottel, F.; Sziele, D.; Schügerl, K.; Bellgardt, K.H. Influence of age and structure of Penicillium chrysogenum pellets on the internal concentration profiles. Bioprocess Eng. 1994, 10, 209–216.
  • Kobayashi, T.; Van Dedem, G.; Mooyoung, M. Oxygen transfer into mycelial pellets. Biotechnol. Bioeng. 1973, 15, 27–45.
  • Olsvik, E.S.; Kristiansen, B. Influence of oxygen tension, biomass concentration, and specific growth rate on the rheological properties of a filamentous fermentation broth. Biotechnol. Bioeng. 1992, 40, 1293–1299.
  • El-Sabbagh, N.; McNeil, B.; Harvey, L.M. Dissolved carbon dioxide effects on growth, nutrient consumption, penicillin synthesis and morphology in batch cultures of Penicillium chrysogenum. Enzyme Microb. Technol. 2006, 39, 185–190.
  • Rockwell, E.; Highberger, J.H. The necessity of CO2 for the growth of bacteria, yeasts and moulds. J. Infect. Dis. 1927, 40, 438–446.
  • Nyiri, L. Effect of CO2 on the germination of Penicillium chrysogenum spores. Z. Allg. Mikrobiol. 1967, 7, 107–111.
  • Edwards, A.G.; Ho, C.S. Effects of carbon dioxide on Penicillium chrysogenum: An autoradiographic study. Biotechnol. Bioeng. 1988, 32, 1–7.
  • McIntyre, M.; Mc Neil, B. Morphogenetic and biochemical effects of dissolved carbon dioxide on filamentous fungi in submerged cultivation. Appl. Microbiol. Biotechnol. 1998, 50, 291–298.
  • Li, Y.; Wadsö, L.; Larsson, L. Impact of temperature on growth and metabolic efficiency of Penicillium roqueforti—Correlations between produced heat, ergosterol content and biomass. J. Appl. Microbiol. 2009, 106, 1494–1501.
  • Tucker, K.G.; Thomas, C.R. Inoculum effects on fungal morphology: Shake flasks vs agitated bioreactors. Biotechnol. Tech. 1994, 8, 153–156.
  • Tucker, K.G.; Thomas, C.R. Mycelial morphology: The effect of spore inoculum level. Biotechnol. Lett. 1992, 14, 1071–1074.
  • Camici, L.; Sermonti, G.; Chain, E.B. Observations on Penicillium chrysogenum in submerged culture. 1. Mycelial growth and autolysis. Bull. World Health Organ. Suppl. 1952, 6, 265–275.
  • Riley, G.L.; Tucker, K.G.; Paul, G.C.; Thomas, C.R. Effect of biomass concentration and mycelial morphology on fermentation broth rheology. Biotechnol. Bioeng. 2000, 68, 160–172.
  • Roels, J.A.; Van Den Berg, J.; Voncken, R.M. The rheology of mycelial broths. Biotechnol. Bioeng. 1974, 16, 181–208.
  • Nienow, A.W. Agitators for mycelial fermentations. Trends Biotechnol. 1990, 8, 224–233.
  • Solomons, G.L.; Weston, G.O. The prediction of oxygen transfer rates in the presence of mould mycelium. J. Biochem. Microbiol. Technol. Eng. 1961, 3, 1–6.
  • Cui, Y.Q.; Van Der Lans, R.G.J.M.; Luyben, K.C.A.M. Effect of agitation intensities on fungal morphology of submerged fermentation. Biotechnol. Bioeng. 1997, 55, 715–726.
  • Tanaka, H. Studies on the effect of agitation on mycelia in submerged culture. J. Ferment. Technol. 1976, 54, 818–829.
  • Justen, P.; Paul, G.; Nienow, A.; Thomas, C. Dependence of Penicillium chrysogenum growth, morphology, vacuolation, and productivity in fed-batch fermentations on impeller type and agitation intensity. Biotechnol. Bioeng. 1997, 59, 762–775.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.