2,401
Views
66
CrossRef citations to date
0
Altmetric
Reviews

Wheat Bran Proteins: A Review of Their Uses and Potential

, &

References

  • United States Department of Agriculture (USDA). National Nutrient Database for Standard Reference Release 26. 2013. http://ndb.nal.usda.gov/ndb/foods/show/6419?fg=&man=&lfacet=&count=&max=25&sort=&qlookup=wheat+bran&offset=&format=Full&new=&measureby= ( accessed January 21, 2014).
  • Heuzé, V.; Tran, G.; Baumont, R.; Lebas, F.; Lessire, M.; Noblet, J.; Renaudeau, D. 2013. Wheat bran. Feedipedia.org. A programme by INRA, CIRAD, AFZ and FAO. http://www.feedipedia.org/node/726 ( accessed February 5, 2014).
  • Prückler, M.; Siebenhandl-Ehn, S.; Apprich, S.; Höltinger, S.; Haas, C.; Schmid, E.; Kneifel, W. Wheat bran-based biorefinery 1: Composition of wheat bran and strategies of functionalization. Food Sci. Technol. 2014, 56, 211–221.
  • Curti, E.; Carini, E.; Bonacini, G.; Tribuzio, G.; Vittadini, E. Effect of the addition of bran fractions on bread properties. J. Cereal Sci. 2013, 57, 325–332.
  • Noort, M.W.J.; van Haaster, D.; Hemery, Y.; Schols, H.A.; Hamer, R.J. The effect of particle size of wheat bran fractions on bread quality—Evidence for fibre–protein interactions. J. Cereal Sci. 2010, 52, 59–64.
  • Reddy, N.; Sathe, S. Food Phytates; CRC Press: Boca Raton, FL, 2002.
  • Sandberg, A.; Hasselblad, C.; Hasselblad, K. The effect of wheat bran on the absorption of minerals in the small intestine. Br. J. Nutr. 1982, 48, 185–191.
  • Weaver, C.; Kannan, S. Phytate and mineral bioavailability. In Food Phytates; Reddy, N., Sathe, S., Eds.; CRC Press: Boca Raton, FL, 2002; pp 211–220.
  • Bean, M. Utilization of high-protein flours in aid programs: On site evaluation. In Proceedings of the 9th National Conference on Wheat Utilization Research, Seattle, WA, October 8–10, 1975; Agricultural Research Service: United States Department of Agriculture, 1976; pp 23–30.
  • Idris, W.; Babiker, E.; El Tinay, A. Fractionation, solubility and functional properties of wheat bran proteins as influenced by pH and/or salt concentration. Nahrung/Food 2003, 47, 425–429.
  • Saunders, R.; Betschart, A.; Edwards, R.; Kohler, G. In Nutritive assessment and potential food applications of protein concentrates prepared by alkaline extraction of wheat millfeeds. In Proceedings of the 9th National Conference on Wheat Utilization Research, Seattle, WA, October 8–10, 1975; Agricultural Research Service: United States Department of Agriculture, 1976; pp 9–22.
  • Jerkovic, A.; Kriegel, A.; Bradner, J.; Atwell, B.; Roberts, T.; Willows, R. Strategic distribution of protective proteins within bran layers of wheat protects the nutrient-rich endosperm. Plant Physiol. 2010, 152, 1459–1470.
  • Grundas, S.; Wrigley, C. Wheat/ultrastructure of the grain, flour, and dough. In Encyclopedia of Grain Science; Wrigley, C., Corke, H., Walker, C., Eds.; Academic Press: New York, 2004; Vol. 3, pp 391–400.
  • Dexter, J.; Sarkar, A. Wheat/dry milling. In Encyclopedia of Grain Science; Wrigley, C., Corke, H., Walker, C., Eds.; Academic Press: New York, 2004; Vol. 3, pp 363–375.
  • Corke, H. Grain, morphology of internal structure. In Encyclopedia of Grain Science; Wrigley, C., Corke, H., Walker, C., Eds.; Elsevier: New York, 2004; Vol. 2, pp 30–38.
  • Parker, M.L.; Ng, A.; Waldron, K.W. The phenolic acid and polysaccharide composition of cell walls of bran layers of mature wheat (Triticum aestivum L. cv. Avalon) grains. J. Sci. Food Agric. 2005, 85, 2539–2547.
  • Xiong, F.; Yu, X. R.; Zhou, L.; Wang, Z.; Wang, F.; Xiong, A. S. Structural development of aleurone and its function in common wheat. Mol. Biol. Rep. 2013, 40, 6785–6792.
  • Belobrajdic, D. P.; Bird, A. R. The potential role of phytochemicals in wholegrain cereals for the prevention of type-2 diabetes. Nutr. J. 2013, 12.
  • Björck, I.; Östman, E.; Kristensen, M.; Mateo Anson, N.; Price, R. K.; Haenen, G. R. M. M.; Havenaar, R.; Bach Knudsen, K. E.; Frid, A.; Mykkänen, H.; Welch, R. W.; Riccardi, G. Cereal grains for nutrition and health benefits: Overview of results from in vitro, animal and human studies in the HEALTHGRAIN project. Trends Food Sci. Technol. 2012, 25, 87–100.
  • Ferguson, L. R.; Harris, P. J.; Kestell, P.; Zhu, S.; Munday, R.; Munday, C. M. Comparative effects in rats of intact wheat bran and two wheat bran fractions on the disposition of the mutagen 2-amino-3-methylimidazo[4,5-f]quinoline. Mutat. Res. 2011, 716, 59–65.
  • Gelinas, P. Preventing constipation: A review of the laxative potential of food ingredients. Int. J. Food Sci. Technol. 2013, 48, 445–467.
  • Liu, L.; Winter, K. M.; Stevenson, L.; Morris, C.; Leach, D. N. Wheat bran lipophilic compounds with in vitro anticancer effects. Food Chem. 2012, 130, 156–164.
  • Zhu, Y.; Conklin, D. R.; Chen, H.; Wang, L.; Sang, S. 5-Alk(en)ylresorcinols as the major active components in wheat bran inhibit human colon cancer cell growth. Bioorg. Med. Chem. 2011, 19, 3973–3982.
  • Zhu, Y.; Soroka, D. N.; Sang, S. Structure elucidation and chemical profile of sphingolipids in wheat bran and their cytotoxic effects against human colon cancer cells. J. Agric. Food Chem. 2013, 61, 866–874.
  • Apprich, S.; Tirpanalan, Ö.; Hell, J.; Reisinger, M.; Böhmdorfer, S.; Siebenhandl-Ehn, S.; Novalin, S.; Kneifel, W. Wheat bran-based biorefinery 2: Valorization of products. Food Sci. Technol. 2013, 56, 222–231.
  • Fardet, A. New hypotheses for the health-protective mechanisms of whole-grain cereals: What is beyond fibre? Nutr. Res. Rev. 2010, 23, 65–134.
  • Truswell, A. Cereal grains and coronary heart disease. Eur. J. Clin. Nutr. 2002, 56, 1–14.
  • Graf, E.; Eaton, J. W. Antioxidant functions of phytic acid. Free Radic. Biol. Med. 1990, 8, 61–69.
  • Brindzová, L.; Zalibera, M.; Jakubík, T.; Mikulášová, M.; Takácsová, M.; Mošovská, S.; Rapta, P. Antimutagenic and radical scavenging activity of wheat bran. Cereal Res. Commun. 2009, 37, 45–55.
  • François, I.; Lescroart, O.; Veraverbeke, W.; Kubaszky, R.; Hargitai, J.; Esdaile, D.; Beres, E.; Soni, M.; Cockburn, A.; Broekaert, W. Safety assessment of a wheat bran extract containing arabinoxylan-oligosaccharides: Mutagenicity, clastogenicity, and 90-day rat-feeding studies. Int. J. Toxicol. 2010, 29, 479–495.
  • Eswaran, S.; Muir, J.; Chey, W. D. Fiber and functional gastrointestinal disorders. Am. J. Gastroenterol. 2013, 108, 718–727.
  • Moonmoon, M.; Shelly, N. J.; Khan, M. A.; Uddin, M. N.; Hossain, K.; Tania, M.; Ahmed, S. Effects of different levels of wheat bran, rice bran and maize powder supplementation with saw dust on the production of shiitake mushroom (Lentinus edodes (Berk.) Singer). Saudi J. Biol. Sci. 2011, 18, 323–328.
  • Locci, E.; Laconi, S.; Pompei, R.; Scano, P.; Lai, A.; Marincola, F. C. Wheat bran biodegradation by Pleurotus ostreatus: A solid-state Carbon-13 NMR study. Bioresour. Technol. 2008, 99, 4279–4284.
  • Du, C.; Campbell, G.M.; Misailidis, N.; Mateos-Salvador, F.; Sadhukhan, J.; Mustafa, M.; Weightman, R.M. Evaluating the feasibility of commercial arabinoxylan production in the context of a wheat biorefinery principally producing ethanol. Part 1. Experimental studies of arabinoxylan extraction from wheat bran. Chem. Eng. Res. Des. 2009, 87, 1232–1238.
  • Favaro, L.; Basaglia, M.; Casella, S. Processing wheat bran into ethanol using mild treatments and highly fermentative yeasts. Biomass Bioenerg. 2012, 46, 605–617.
  • Favaro, L.; Basaglia, M.; van Zyl, W.H.; Casella, S. Using an efficient fermenting yeast enhances ethanol production from unfiltered wheat bran hydrolysates. Appl. Energ. 2013, 102, 170–178.
  • Nogata, Y.; Saito, T.; Abe, D.; Yoshida, A.; Ohta, H. Storage stability of wheat bran proteases for producing angiotensin I-converting enzyme inhibitory peptides. Food Sci. Technol. Res. 2013, 19, 313–317.
  • Ueno, T.; Nogata, Y.; Nakamura, A.; Nakamura, T.; Koga, H.; Torimura, T.; Suetsugu, M.; Yano, T.; Baba, S.; Taguchi, J.; Kajiwara, M.; Ishii, K.; Morita, Y.; Nagata, E.; Sata, M. 1304. Peptides produced by autolysis reactions from wheat bran have therapeutic effects in nonalcoholic steatohepatitis. J. Hepatol. 2013, 58, (Suppl. 1), S526–S527.
  • El-Mekawy, A.; Diels, L.; De Wever, H.; Pant, D. Valorization of cereal based biorefinery byproducts: Reality and expectations. Environ. Sci. Technol. 2013, 47, 9014–9027.
  • Reisinger, M.; Tirpanalan, Ö.; Prückler, M.; Huber, F.; Kneifel, W.; Novalin, S. Wheat bran biorefinery—A detailed investigation on hydrothermal and enzymatic treatment. Bioresour. Technol. 2013, 144, 179–185.
  • Fama, L.; Bittante, A. M. B. Q.; Sobral, P. J. A.; Goyanes, S.; Gerschenson, L. N. Garlic powder and wheat bran as fillers: Their effect on the physicochemical properties of edible biocomposites. Mater. Sci. Eng. C 2010, 30, 853–859.
  • Fama, L.; Gerschenson, L.; Goyanes, S. Starch-vegetable fibre composites to protect food products. Carbohydr. Polym. 2009, 75, 230–235.
  • Kanwal, F.; Rehman, R.; Anwar, J.; Saeed, M. Removal of lead(II) from water by adsorption on novel composites of polyaniline with maize bran, wheat bran and rice bran. Asian J. Chem. 2013, 25, 2399–2404.
  • Singh, K.K.; Hasan, S.H.; Talat, M.; Singh, V.K.; Gangwar, S.K. Removal of Cr (VI) from aqueous solutions using wheat bran. Chem. Eng. J. 2009, 151, 113–121.
  • Shewry, P.R.; D’Ovidio, R.; Lafiandra, D.; Jenkins, J.A.; Mills, E.N.C.; Békés, F. Wheat grain proteins. In Wheat: Chemistry and Technology; 4th ed.; Khan, K., Shewry, P.R., Eds.; AACC International: St. Paul, MN, 2009; pp 223–298.
  • Meziani, S.; Nadaud, I.; Gaillard-Martinie, B.; Chambon, C.; Benali, M.; Branlard, G. Proteomic analysis of the mature kernel aleurone layer in common and durum wheat. J. Cereal Sci. 2012, 55, 323–330.
  • Jones, D. B.; Gersdorf, C. Proteins of wheat bran: I. Isolation and elementary analyses of a globulin, albumin, and prolamine. J. Biol. Chem. 1923, 58, 117–131.
  • Fellers, D. A.; Sinkey, V.; Shepherd, A. D.; Pence, J. W. Solubilization and recovery of protein from wheat millfeeds. Cereal Chem. 1966, 43, 1–13.
  • Woerman, J.; Satterlee, L. Extraction and nutritive quality of wheat protein concentrate. Food Technol. Chicago 1974, 28, 50–52.
  • Hansmeyer, W.; Satterlee, L.; Mattern, P. Characterization of products from wet fractionation of wheat bran. J. Food Sci. 1976, 41, 505–508.
  • Roberts, P. J.; Simmonds, D. H.; Wootton, M.; Wrigley, C. W. Extraction of protein and solids from wheat bran. J. Sci. Food Agric. 1985, 36, 5–10.
  • Nogata, Y.; Nagamine, T. Production of free amino acids and γ-aminobutyric acid by autolysis reactions from wheat bran. J. Agric. Food Chem. 2009, 57, 1331–1336.
  • Jin, W.; Kim, M.; Kim, K. Utilization of barley or wheat bran to bioconvert glutamate to γ-aminobutyric acid (GABA). J. Food Sci. 2013, 78, C1376–C1382.
  • Möller, N.; Scholz-Ahrens, K.; Roos, N.; Schrezenmeir, J. Bioactive peptides and proteins from foods: Indication for health effects. Eur. J. Nutr. 2008, 47, 171–182.
  • Nogata, Y.; Nagamine, T.; Yanaka, M.; Ohta, H. Angiotensin I converting enzyme inhibitory peptides produced by autolysis reactions from wheat bran. J. Agric. Food Chem. 2009, 57, 6618–6622.
  • Whelton, P.K.; He, J.; Muntner, P. Prevelance, awareness, treatment and control of hypertension in North America, North Africa and Asia. J. Hum. Hypertens. 2004, 18, 545–551.
  • Campas-Ríos, M.; Mercado-Ruiz, J.; Valdéz-Covarrubias, M.; Islas-Rubio, A.; Mendoza-Wilson, A.; Balandrán-Quintana, R. Hydrolysates from wheat bran albumin as color-adding agents and inhibitors of apple polyphenol oxidase. J. Food Biochem. 2012, 36, 470–478.
  • Ramírez, E.; Whitaker, J.; Mirador, V. Polyphenol oxidase. In Handbook of Food Enzymology; Whitaker, J., Voragen, A., Wong, D., Eds.; Marcel Deckker: New York, 2003; pp 509–523.
  • Ates, S.; Pekyardimci, S.; Cokmus, C. Partial characterization of a peptide from honey that inhibits mushroom polyphenol oxidase. J. Food Biochem. 2001, 25, 127–137.
  • Ortíz-Estrada, A.; Mercado-Ruiz, J.; García-Robles, J.; Islas-Rubio, A.; Mendoza-Wilson, A.; Balandrán-Quintana, R. Wheat bran globulins: Competitive inhibitors of mushroom tyrosinase. Food Sci. Biotechnol. 2012, 21, 633–635.
  • Koh-Banerjee, P.; Franz, M.; Sampson, L.; Liu, Simin.; Jacobs, D.R., Jr.; Spiegelman, D.; Willett, W.; Rimm, E. Changes in whole-grain, bran, and cereal fiber consumption in relation to 8-y weight gain among men. Am. J. Clin. Nutr. 2004, 80, 1237–1245.
  • Borel, P.; Lairon, D.; Termine, E.; Grataroli, R.; Lafont, H. Isolation and properties of lipolysis inhibitory proteins from wheat germ and wheat bran. Plant Foods Hum. Nutr. 1989, 39, 339–348.
  • O’connor, C.; Sun, D.; Smith, B.; Melton, L. The inhibitory effects of brans and their aqueous extracts on the lipolysis of tributyrin catalyzed by calf pregastric lipase. J. Food Sci. 2003, 68, 1818–1825.
  • Neethirajan, S.; Jayas, D.S. Nanotechnology for the food and bioprocessing industries. Food Bioprocess Technol. 2011, 4, 39–47.
  • Scanlon, S.; Aggeli, A. Self-assembling peptide nanotubes. Nanotoday 2008, 3, 22–30.
  • Zhang, S. Fabrication of novel biomaterials through molecular self assembly. Nat. Biotechnol. 2003, 21, 1171–1178.
  • Zhang, S.; Davide, M.M.; Hwang, W.; Santoso, S. Design of nanostructured biological materials through self-assembly of peptides and proteins. Curr. Opin. Chem. Biol. 2002, 6, 865–871.
  • Lu, G.; Komatsu, T.; Tsuchida, E. Artificial hemoprotein nanotubes. Chem. Commun. 2007, 2980–2982.
  • Mackintosh, S.H.; Meade, S.J.; Healy, J.P.; Sutton, K.H.; Larsen, N.G.; Squires, A. M.; Gerrard, J. A. Wheat glutenin proteins assemble into a nanostructure with unusual structural features. J. Cereal Sci. 2009, 49, 157–162.
  • Graveland-Bikker, J.; deKruif, C. Unique milk protein based nanotubes: Food and nanotechnology meet. Trends Food Sci. Technol. 2006, 17, 196–203.
  • Ezpeleta, I.; Irache, J.M.; Stainmesse, S.; Chabenat, C.; Gueguen, J.; Popineau, Y.; Orecchioni, A.-M. Gliadin nanoparticles for the controlled release of all-trans-retinoic acid. Int. J. Pharm. 1996, 131, 191–200.
  • Arangoa, M.A.; Ponchel, G.; Orecchioni, A.M.; Renedo, M.J.; Duchêne, D.; Irache, J.M. Bioadhesive potential of gliadin nanoparticulate systems. Eur. J. Pharm. Sci. 2000, 11, 333–341.
  • Paliwal, R.; Palakurthi, S. Zein in controlled drug delivery and tissue engineering. J. Control. Release 2014, 189, 108–122.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.