668
Views
17
CrossRef citations to date
0
Altmetric
Reviews

Phospholipids of Rapeseeds and Rapeseed Oils: Factors Determining Their Content and Technological Significance—A Review

, &

References

  • O’Keefe, S.F. Nomenclature and classification of lipids. In Food Lipids: Chemistry, Nutrition and Biotechnology; Akoh, C.C., Min, D.B., Eds.; CRC Press: New York, 2002; pp 1–40.
  • Boukhchina, S.; Sebai, K.; Cherif, A.; Kallel, H.; Mayer, P. Identification of glycerophospholipids in rapeseed, olive, almond, and sunflower oils by LC-MS and LC-MS-MS. Can. J. Chem. 2004, 82, 1210–1215.
  • Erickson, M.C. Chemistry and function of phospholipids. In Food Lipids: Chemistry, Nutrition and Biotechnology; Akoh, C.C., Min, D.B., Eds.; Marcel Dekker: New York, 2002; pp 41–62.
  • Cowan, A. Phospholipids as plant growth regulators. Plant Growth Regul. 2006, 48, 97–109.
  • Christie, W.W. Preparation of lipid extracts from tissues. In Advances in Lipid Methodology; Christie, W.W., Ed.; Oily Press: Dundee, UK, 1993; pp 195–213.
  • Sosulski, F.; Zadernowski, R.; Babuchowski, K. Composition of polar lipids in rapeseed. J. Am. Oil Chem. Soc. 1981, 58, 561–564.
  • Beermann, C.; Green, A.; Mobius, M.; Schmitt, J.; Boehm, G. Lipid class separation by HPLC combined with GC FA analysis: Comparison of seed lipid composition from different Brassica napus L. varieties. J. Am. Oil Chem. Soc. 2003, 80, 747–753.
  • Perry, H.; Harwood, J. Radiolabelling studies of acyl lipids in developing seeds of Brassica napus: Use of [1-14C]acetate precursor. Phytochemistry 1993, 33, 329–333.
  • McNeil, S.D.; Nuccio, M.L.; Ziemak, M.J.; Hanson, A.D. Enhanced synthesis of choline and glycine betaine in transgenic tabacco plants that overexpress phosphoetanoloamine N-methyltransferase. Proc. Natl. Acad. Sci. U. S. A. 2001, 98, 10001–10005.
  • Sparace, S.; Moore, T. Phospholipid metabolism in plant mitochondria. Plant Physiol. 1979, 63, 963–972.
  • Sparace, S.; Moore, T. Phospholipid metabolism in plant mitochondria. II. Submitochondrial sites of synthesis of phosphatidylcholine and phosphatidylethanolamine. Plant Physiol. 1981, 67, 261–265.
  • Cooper, G. Cell structure and function. In The Cell. A Molecular Approach; Cooper, G., Ed.; Boston University: Boston, MA, 2000; pp 343–558.
  • Bessoule, J.J.; Moreau, P. Phospholipids synthesis and dynamics in plant cells. Topics in Current Genetics. In Lipid Methabolism and Membrane Biogenesis; Daum, G., Ed.; Springer-Verlag: Berlin, 2004; pp 89–123.
  • Katavic, V.; Agrawal, G.; Hajduch, M. Protein and lipid composition analysis of oil bodies from two Brassica. Proteomics 2006, 6, 4586–4598.
  • Delhaize, E.; Hebb, D.; Richards, K.; Lin, J.; Ryan, P.; Gardner, R. Cloning and expression of a wheat (Triticum aestivum L.) phosphatidylserine synthase cDNA. J. Biol. Chem. 1999, 274, 7082–7088.
  • Vincent, P.; Maneta-Peyreta, L.; Sturbois-Balcerzak, B.; Duvertc, M. One of the origins of plasma membrane phosphatidylserine in plant cells is a local synthesis by a serine exchange activity. FEBS Lett. 1999, 464, 80–84.
  • Dumaurier, M.; Pelassy, C.; Breittmayer, J.; Aussel, C. Regulation of the serine-base exchange enzyme system by CD4: Effects of monoclonal antibodies, jacalin, interleukin 16 and the HIV membrane protein gp120. Biochem. J. 1998, 329 (Pt 1), 49–54.
  • Frentzen, M. Phosphatidylglycerol and sulfoquinovosyldiacylglycerol: Anionic membrane lipids and phosphate regulation. Curr. Opin. Plant Biol. 2004, 7, 270–276.
  • Siloto, R.; Findlay, K.; Lopez-Villalobos, A.; Yeung, E.; Nykiforuk, C.; Moloney, M. The accumulation of oleosins determines the size of seed oilbodies in Arabidopsis. Plant Cell 2006, 18, 1961–1974.
  • Jolivet, P.; Roux, E.; D’Andrea, S.; Davanture, M.; Negron, L.; Zivy, M.; Chardot, T. Protein composition of oil bodies in Arabidopsis thaliana ecotype WS. Plant Physiol. Biochem. 2004, 42, 501–509.
  • Beisson, F.; Ferte, N.; Bruley, S.; Voultoury, R.; Verger, R.; Arondel, V. Oil-bodies as substrates for lipolytic enzymes. Biochim. Biophys. Acta 2001, 1531, 47–58.
  • Frandsen, G.; Mundy, J.; Tzen, J. Oil bodies and their associated proteins, oleosin and caleosin. Plant Physiol. 2001, 112, 301–307.
  • Tzen, J.; Huang, A.H.C. Surface structure and properties of plant seed oil bodies. J. Cell Biol. 1992, 117, 327–335.
  • Tzen, J.; Cao, Y.; Laurent, P.; Ratnayake, C.; Huang, A. Lipids, proteins and structure of seed oil bodies from diverse species. Plant Physiol. 1993, 101, 267–276.
  • Huang, A.H.C. Subcellular oil droplets and oleosins in plants. AOCS (American Oil Chemists’ Society). http://lipidlibrary.aocs.org/plantbio/oilbodies/index.htm ( accessed August 15, 2011).
  • Zienkiewicz, K.; Castro, A.; de Dios Alche, J.; Zienkiewicz, A.; Suarez, C.; Rodrıguez-Garcıa, M. Identification and localization of a caleosin in olive (Olea europaea L.) pollen during in vitro germination. J. Exp. Bot. 2010, 61, 1–10.
  • Poxleitner, M.; Rogers, S.; Samuels, A.; Browse, J.; Rogers, J. A role of caleosin in degradation of oil-body storage lipid during seed germination. Plant J. 2006, 47, 917–933.
  • Frandsen, G.; Muller-Uris, F.; Nielsen, M.; Mundy, J.; Skriver, K. Novel plant Ca2+-binding protein expressed in response to abscisic acid and osmotic stress. J. Biol. Chem. 1996, 271, 343–348.
  • Yu-Qing, H.; Wu, Y. Oil body biogenesis during Brassica napus embryogenesis. J. Integr. Plant Biol. 2009, 51, 792–799.
  • Huang, A.H.C. Oleosins and oil bodies in seeds and other organs. Plant Physiol. 1996, 110, 1055–1061.
  • Beisson, F.; Ferte, N.; Noat, G. Oil-bodies from sunflower (Helianthus annuus L.) seed. Biochem. J. 1996, 31 (Pt 3), 955–958.
  • Ohlroggeav’, J.; Browseb, J. Lipid biosynthesis. Plant Cell 1995, 7, 957–970.
  • Murphy, D.; Cummins, I.; Kang, A. Synthesis of the major oil-body membrane protein in developing rapeseed (Barssica napus) embryos. Biochem. J. 1989, 258, 285–293.
  • Kühnel, B.; Holbroock, L.; Moloney, M.; van Rooijen, G. Oil bodies of transgenic Brassica napus as a source of immobilized β-glucuronidase. J. Am. Oil Chem. Soc. 1996, 73, 1533–1537.
  • Ting, J.L.; Lee, K.; Ratnayak, C.; Platt, K.; Balsamo, R.; Hung, A. Oleosin genes in maize kernels having diverse oil contents are constitutively expressed independent of oil contents. Planta 1996, 199, 158–165.
  • Liu, L.; Waters, D.L.E.; Rose, T.J.; Bao, J.; King, G.J. Phospholipids in rice: Significance in grain quality and health benefits: A review. Food Chem. 2013, 139, 1133–1145.
  • Deleu, M.; Vaca-Medina, G.; Fabre, J.; Roiz, J. Interfacial properties of oleosins and phospholipids from rapeseed from the stability of oil bodies in aqueous medium. Colloids Surf B Biointerfaces 2010, 80, 125–132.
  • Tańska, M.; Rotkiewicz, D.; Ambrosewicz, M. Technological value of selected Polish varieties of rapeseed. Pol. J. Nat. Sci. 2009, 24, 122–132.
  • Ambrosewicz, M.; Tańska, M.; Rotkiewicz, D. Phospholipid profiles of different rapeseed varieties. In Book of Abstracts. 30th Scientific Conference Oilseed Crops, Poznań, Poland, 16–17 March 2010; Institute of Beeding and Acclimatization of Plants: Poznań, Poland, 2010; pp 177–179.
  • Abidi, S.L.; List, G.R.; Rennick, K.A. Effect of genetic modification on the distribution of minor constituents in canola oil. J. Am. Oil Chem. Soc. 1999, 76, 463–467.
  • Munnik, T.; Meijer, H. Osmotic stress activates distinct lipid and MAPK signalling pathways in plants. FEBS Lett. 2001, 498, 172–178.
  • Wang, X.; Wang, C.; Sang, Y.; Zheng, L.; Qin, C. Lipids and signalling: Phospholipase-mediated pathways. Determining functions of multiple phospholipase Ds in stress response of Arabidopsis. Biochem. Soc. Trans. 2000, 28, 813–817.
  • Frank, W.; Munnik, T.; Kerkmann, K.; Salamini, F.; Bartels, D. Water deficit tiggers phospholipase D activity in the resurrection plant Craterostigma plantagineum. Plant Cell 2000, 12, 111–124.
  • Young, S.; Wang X.; Leach, J. Changes in the plasma membrane distribution of rice phospholipase D during resistant interactions with Xanthomonas oryzea pv oryzea. Plant Cell 1996, 8, 1079–1095.
  • Delkhosh, B.; Rad, A. H. S.; Bitarafan, Z.; Mousavi, G. Drought stress and sowing date effect on yield and some grain traits of rapeseed culitivars. Adv. Environ. Biotechnol. 2012, 6, 49–55.
  • Sharma, S.; Dhillon, K.S.; Dhillon, S.K.; Munshi, S.K. Changes in biochemical components of wheat and rapeseed grown on selenium-contaminated soil. Arch. Agron. Soil Sci. 2008, 54, 33–40.
  • Terry, N.; Zayed, A.M.; de Souza, M. P.; Tarun, A.S. Selenium in higher plants. Ann. Rev. Plant Physiol. Plant Mol. Biol. 2000, 51, 401–432.
  • Szydłowska-Czerniak, A. MIR spectroscopy and partial least-squares regression for determination of phospholipids in rapeseed oils at various stages of technological process. Food Chem. 2007, 105, 1179–1187.
  • Rotkiewicz, D.; Konopka, I. Effect of some technological factors on the content of phosphorus compounds in the rapeseed oil [in Polish]. Oilseed Crops 2000, 21, 215–224.
  • Prior, E.; Vadke, V.; Sosulski, F. Effect on heat treatment on canola press oils. I. Non-trigliceride components. J. Am. Oil Chem. Soc. 1991, 68, 401–406.
  • Spragg, J.; Mailer, R. Canola meal value chain quality improvement. http://www.apri.com.au/Final_Report_1B-103.pdf ( accessed February 2, 2012).
  • Cvengroš, J.; Pavlovičovă, A.; Gladišová, G.; Černý, J. Rapeseed oil methyl esters with low phosphorus content. Lipid/Fett 1999, 101, 261–265.
  • Rotkiewicz, D.; Konopka, I.; Sobieski, G. Stability of rapeseed oils obtained by cold pressing and extraction [in Polish]. Oilseed Crops 1995, 16, 293–300.
  • Tańska, M.; Rotkiewicz, D.; Ambrosewicz-Walacik, M. Effect of industrial conditions of heat treatment of rape, mustard, flax and camelina seeds on the quality of oils intended for biodiesel production. Pol. J. Nat. Sci. 2013, 28, 449–462.
  • Tańska, M.; Rotkiewicz, D.; Ambrosewicz-Walacik, M. Impact of heating conditions of rapeseed and mustard seeds on the characteristics of oils for biodiesel production [in Polish]. Oilseed Crops 2013, 34, 103–114.
  • Ambrosewicz, M.; Rotkiewicz, D.; Tańska, M. Impact of conditions of rapeseed oil hydration on the content and profile of phospholipids. Pol. J. Nat. Sci. 2012, 27, 465–476.
  • Przybylski, R.; Eskin, N. Phospholipid composition of canola oils during the early stages of processing as measured by TLC with flame ionization detector. J. Am. Oil Chem. Soc. 1991, 68, 241–245.
  • Szydłowska-Czerniak, A.; Szłyk, E. Spectrophotometric determination of total phosphorus in rape seeds and oils at various stages of technological process: Calculation of phospholipids and non-hydratable phospholipids contents in rapeseed oil. Food Chem. 2003, 81, 613–619.
  • Unger, E.H. Commercial processing of canola and rapeseed crushing and oil extraction. In Canola and Rapeseed. Production, Chemistry, Nutrition and Processing Technology; Shahidi, F., Ed.; Springer: New York, 1990; pp 235–249.
  • Shahidi, F. Extraction and measurement of total lipids. In Current Protocols in Food Analytical Chemistry; John Wiley & Sons: New York, 2001; D1.1.1–D1.1.11.
  • Tańska, M.; Rotkiewicz, D. Technological value of rapeseed seed fractions after one year storage [in Polish]. Oilseed Crops 2003, 24, 709–716.
  • Zufarov, O.; Schmidt, S.; Sekretar, S.; Cvengros, J. Ethanoloamines used for degumming of rapeseed and sunflower oils as diesel fuels. Eur. J. Lipid Sci. Technol. 2009, 111, 985–992.
  • Subramanian, R.; Nakajima, M.; Yasui, A.; Nabetani, H.; Kimura, T.; Maekawa, T. Evaluation of surfactant-aided degumming of vegetable oils by membrane technology. J. Am. Oil Chem. Soc. 1999, 76, 1247–1253.
  • Rotkiewicz, D.; Konopka, I. Determinants of phosphorus compounds in the seed and oil of rapeseed. Presented at IX International Conference—Advances in Vegetable Fats Technology, Kaunas, Lithuania, 21–24 March 2001.
  • Dijkstra, A.J. Enzymatic degumming. Eur. J. Lipid Sci. Technol. 2010, 112, 1179–1189.
  • Rotkiewicz, D.; Konopka, I. Phosphorus compounds in the rape seed and oil [in Polish]. Oilseed Crops 1998, 19, 61–70.
  • List, G.; Mounts, T.; Lanser, A. Factors promoting the formation of nonhydratable soybean phosphatides. J. Am. Oil Chem. Soc. 1992, 69, 443–446.
  • Fornal, J.; Sadowska, J.; Jaroch, R.; Szot, B. Effect of damage and storage condition of rapeseed on the quality of oil [in Polish]. Oilseed Crops 1992, 14, 123–133.
  • Tys, J.; Sobczuk, H.; Rybacki, R. Influence of temperature drying on mechanical properties of rapeseed [in Polish]. Oilseed Crops 2002, 23, 417–426.
  • Korbas, M.; Jajor, E.; Danielewicz, J.; Wickiel, G. Fungi of oilseed rape seeds—Occurrence and importance. In Advances in Research and Technology of Rapeseed Oil; Monograph Part 3; Szłyk, E., Ed.; Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika: Toruń, Poland, 2011; pp 141–154.
  • Karlovits, G.; Kozakiewicz, E.; Jankowska, S.; Teresinski, P. From farm to fork—Screening of the mycotoxin contamination in vegetable oil factory Kruszwica (Poland). In Advances in Research and Technology of Rapeseed Oil; Monograph Part 3. Szłyk, E., Ed.; Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika: Toruń, Poland, 2011; pp 123–139.
  • Kubiak, A.; Mikrut, Z. Quality assessment of rapeseed using artificial nose and neural networks. Automatyka 2005, 9, 67–79.
  • Heller, M.; Mozes; N.; Maes E. Phospholipase D from peanut seeds. EC 3.1.4.4 phosphatidylcholine phosphatidohydrolase. Methods Enzymol. 1975, 35B, 226–232.
  • Simpson, T. Phospholipase D activity in hexane. J. Am. Oil Chem. Soc. 1991, 68, 176–178.
  • Yang, B.; Wang, Y.; Yang, J. Optimization of enzymatic degumming process for rapseed oil. J. Am. Oil Chem. Soc. 2006, 83, 653–658.
  • Hafidi, A.; Pioch, D.; Ajana, H. Membrane-bases simultaneous degumming and deacidification of vegetabele oils. Innov. Food Sci. Emerg. Technol. 2005, 6, 203–212.
  • van Gerpen, J.H.; Dvorak, B. The effect of phosphorus level on the total glycerol and reaction yield of biodiesel. Presented at Bioenergy 2002. The 10th Biennial Bioenergy Conference, Boise, September 22–26, 2002.
  • Subramanian, R.; Nakajima, M. Membrane degumming of crude soybean and rapeseed oils. J. Am. Oil Chem. Soc. 1997, 74, 971–975.
  • Przybylski, R.; Mag, T.; Eskin, N.; McDonald, B. Canola oil. In Bailey’s Industrial Oil and Fat Products; Shahidi, F., Ed.; John Wiley & Sons: Hoboken, NJ, 2005; pp 61–121.
  • Dijkstra, A.J. The purification of edible oils and fats. Lipid Technol. 2013, 25, 271–273.
  • Barton, N.R.; Walsh, D.; Brown, R.; Kreps, J.; Domaille, P.; Hazlewood, G. Commercial application of phospholipase C for degumming with enhanced oil yield. In Book of Abstract. 98th AOCS Annual Meeting & Expo, Québec City, Canada, 13–16 May 2007; 2007; p 129.
  • Hitchman, T. Purifine® PLC: Industrial application in oil degumming and refining. Oil Mill Gazetteer 2009, 115, 2–4.
  • Zufarov, O.; Schmidt, S.; Sekretar, S. Degumming of rapeseed and sunflower oils. Acta Chem. Slovaca 2008, 1, 321–328.
  • van Nieuwenhuyzen, W.; Mabel, C. Update on vegetable lecithin and phospholipid technologies. Eur. J. Lipid Sci. Technol. 2008, 110, 472–486.
  • Smiles, A.; Kakuda, Y.; MacDonald, B. Effect of degumming reagents on the composition and emulsifying properties of canola, soybean and sunflower acetone insolubles. J. Am. Oil Chem. Soc. 1989, 66, 348–352.
  • Rotkiewicz, D.; Żylik, S.; Konopka, I. State of works on the rapeseed oil processing optimalization. II. Oil refining [in Polish]. Oilseed Crops 1999, 20, 151–160.
  • Ringers, H.J.; Segers, J.C. inventors. Degumming process for triglyceride oils. U.S. Patent 4049686, 20 September 1977.
  • Segers, J.C.; van de Sande, R.L.K.M. Degumming—Theory and practice. In Edible Oils and Fats Processing: Basic Principles and Modern Practices; Erickson, D.R., Ed.; American Oil Chemists’ Society: Champaign, IL, 1989; pp 88–93.
  • Dijkstra, A.J.; Van Opstal, M. The total degumming process. J. Am. Oil Chem. Soc. 1989, 66, 1002–1009.
  • Dijkstra, A.J. Degumming, refining, washing and drying fats and oils. In Proceedings of the World Conference on Oilseed Technology and Utylization; Applewhite, T.H., Ed.; Budapest, Hungary, 1992; American Oil Chemists’ Society: Champaign, IL, 1993; pp 138–151.
  • Choukira, A.; Kinanyb, M.; Gibonc, V.; Tirtiauxc, A.; Jamila, S. Improved oil treatment conditions for soft degumming. J. Am. Oil Chem. Soc. 2001, 78, 1157–1160.
  • Rafe, A.; Razavi, S.M.A.; Khodaparast, M. H. H. Refining of crude canola oil using PSA ultrafiltration membrane. Int. J. Food Eng. 2012, 8, 1–23.
  • Niazmand, R.; Farhoosh, R.; Razavi, S.M.A. Filtration of crude canola oil miscella utilizing PVDF membrane: The effects of pretreatments and operating conditions. Int. J. Food Eng. 2012, 8, 1556–3758.
  • Gupta, A.K.S. Novel developments in refining of edible oils. Fette Seifen Anstrichm 1986, 88, 79–86.
  • Koseoglu, S.S.; Engelgau, D.E. Membrane applications and research in the edible oil industry: An assessment. J. Am. Oil Chem. Soc. 1990, 67, 239–249.
  • Dijkstra, A.J. Enzymatic degumming. Lipid Technol. 2011, 23, 36–38.
  • Sampaio, K.A.; Zyaykina, N.;Wozniak, B.; Tsukamoto, J.; De Greyt, W.; Stevens, C.V. Enzymatic degumming: Degumming efficiency versus yield increase. Eur. J. Lipid Sci. Technol. 2015, 117, 81–86.
  • Clausen, K. Enzymatic oil-degumming by a novel microbial phospholipase. Eur. J. Lipid Sci. Technol. 2001, 103, 333–340.
  • Vind. J.; Patkar. S.A. Preparing modified polypeptide comprises providing a sequence encoding a parent polypeptide comprising at least two Cys residues forming a disulfide bond. Novozymes A/S, 2005, Denmark. WO2005/024012.
  • De Maria, L.; Vind, J.; Oxenbøll, K.M.; Svendsen, A.; Patka, S. Phospholipases and their industrial applications. Appl. Microbiol. Biotechnol. 2007, 74, 290–300.
  • Ciofalo, V.; Barton, N.; Kreps, J.; Coats, I.; Shanahan, D. Safety evaluation of a lipase enzyme preparation, expressed in Pichia pastoris, intended for use in the degumming of edible vegetable oil. Regul. Toxicol. Pharmacol. 2006, 45, 1–8.
  • Dixit, S.; Kanakraj, S. Enzymatic degumming of feedstoc’s (vegetable oil) for bio-diesel—A reviev. J. Eng. Sci. Manage. Educ. 2010, 3, 57–59.
  • Münch, E.W. Enzymatic degumming processes for oils from soybean, rapeseed and sunflower. Lipid Technol. 2005, 17, 155–159.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.