2,019
Views
104
CrossRef citations to date
0
Altmetric
Reviews

Sorghum: An Underutilized Cereal Whole Grain with the Potential to Assist in the Prevention of Chronic Disease

, , &

References

  • Flight, I.; Clifton, P. Cereal grains and legumes in the prevention of coronary heart disease and stroke: A review of the literature. Eur. J. Clin. Nutr. 2006, 60, 1145–1159.
  • National Health and Medical Research Council. Australian Dietary Guidelines; National Health and Medical Research Council: Canberra, Australia, 2013.
  • Sahyoun, N.R.; Jacques, P.F.; Zhang, X.L.; Juan, W.; McKeown, N.M. Whole-grain intake is inversely associated with the metabolic syndrome and mortality in older adults. Am. J. Clin. Nutr. 2006, 83, 124–131.
  • Venn, B.J.; Mann, J.I. Cereal grains, legumes and diabetes. Eur. J. Clin. Nutr. 2004, 58, 1443–1461.
  • Williams, P.G.; Grafenauer, S.J.; O’Shea, J.E. Cereal grains, legumes, and weight management: A comprehensive review of the scientific evidence. Nutr. Rev. 2008, 66, 171–182.
  • McIntosh, G.H. Cereal foods, fibres and the prevention of cancers. Aust. J. Nutr. Diet. 2001, 58 (Suppl 2), S35–S48.
  • U.S. Department of Agriculture; U.S. Department of Health and Human Services. Dietary Guidelines for Americans; U.S. Department of Agriculture, U.S. Department of Health and Human Services: Washington, DC, 2010.
  • Food and Agriculture Organisation of the United Nations. Production—Sorghum 2012. 2012. http://faostat.fao.org/site/339/default.aspx ( accessed May 22, 2014).
  • Taylor, J.R.N.; Schober, T.J.; Bean, S.R. Novel food and non-food uses for sorghum and millets. J. Cereal Sci. 2006, 44, 252–271.
  • Awika, J.M.; Rooney, L.W. Sorghum phytochemicals and their potential impact on human health. Phytochemistry 2004, 65, 1199–1221.
  • Ezeogu, L.I.; Duodu, K.G.; Taylor, J.R.N. Effects of endosperm texture and cooking conditions on the in vitro starch digestibility of sorghum and maize flours. J. Cereal Sci. 2005, 42, 33–44.
  • Ezeogu, L.I.; Duodu, K.G.; Emmanbux, M.N.; Taylor, J.R.N. Influence of cooking conditions on the protein matrix of sorghum and maize endosperm flours. Cereal Chem. 2008, 85, 397–402.
  • Bach Knudsen, K.E.; Munck, L. Dietary fibre contents and compositions of sorghum and sorghum-based foods. J. Cereal Sci. 1985, 3, 153–164.
  • Khan, I.; Yousif, A.; Johnson, S.K.; Gamlath, S. Effect of sorghum flour addition on resistant starch content, phenolic profile and antioxidant capacity of durum wheat pasta. Food Res. Int. 2013, 54, 578–586.
  • Niba, L.L.; Hoffman, J. Resistant starch and b-glucan levels in grain sorghum (Sorghum bicolor M.) are influenced by soaking and autoclaving. Food Chem. 2003, 81, 113–118.
  • Glew, R.H.; Vanderjagt, D.J.; Lockett, C.; Grivetti, L.E.; Smith, G.C.; Pastuszyn, A.; Millson, M. Amino Acid, Fatty Acid, and Mineral Composition of 24 Indigenous Plants of Burkina Faso. J. Food Compos. Anal. 1997, 10, 205–217.
  • Avato, P.; Bianchi, G.; Murelli, C. Aliphatic and cyclic lipid components of Sorghum plant organs. Phytochemistry 1990, 29, 1073–1078.
  • Ciacci, C.; Maiuri, L.; Caporaso, N.; Bucci, C.; Del Giudice, L.; Rita Massardo, D.; Pontieri, P.; Di Fonzo, N.; Bean, S.R.; Ioerger, B.; Londei, M. Celiac disease: In vitro and in vivo safety and palatability of wheat-free sorghum food products. Clin. Nutr. 2007, 26, 799–805.
  • Kayitesi, E.; Duodu, K.G.; Minnaar, A.; de Kock, H.L. Sensory quality of marama/sorghum composite porridges. J. Sci. Food Agric. 2010, 90, 2124–2132.
  • Amegovu, A.K.; Ogwok, P.; Ochola, S.; Yiga, P.; Musalima, J.H.; Mutenyo, E. Formulation of sorghum-peanut blend using linear programming for treatment of moderate acute malnutrition in Uganda. J. Food Chem. Nutr. 2013, 1, 67–77.
  • da Silva, L.S.; Taylor, J.; Taylor, J.R. Transgenic sorghum with altered kafirin synthesis: Kafirin solubility, polymerization, and protein digestion. J. Agric. Food Chem. 2011, 59, 9265–9270.
  • World Health Organization. Global Status Report On Noncommunicable Diseases 2010; World Health Organization: Geneva, April 2011.
  • Dicko, M.H.; Gruppen, H.; Traoré, A.S.; Voragen, A.G.J.; van Berkel, W.J.H. Review: Sorghum grain as human food in Africa: Relevance of starch content and amylase activities. Afr. J. Biotechnol. 2006, 5, 384–395.
  • Taylor, J.R.N.; Emmambux, M.N. Review: Developments in our understanding of sorghum polysaccharides and their health benefits. Cereal Chem. 2010, 87, 263–271.
  • United States Department of Agriculture (USDA). USDA National Nutrient Database for Standard Reference, Release 27. 2014; http://ndb.nal.usda.gov/ndb/foods/show/6477 ( accessed January 8, 2015).
  • Serna-Saldivar, S.; Rooney, L.W. Structure and chemistry of sorghum and millets. In Sorghum and Millets Chemistry and Technology; Dendy, D.A.V., Ed.; American Association of Cereal Chemists: St Paul, MN, 1995; pp 69–124.
  • Duodu, K.G.; Taylor, J.R.N.; Belton, P.S.; Hamaker, B.R. Factors affecting sorghum protein digestibility. J. Cereal Sci. 2003, 38, 117–131.
  • Badi, S.; Pedersen, B.; Monowar, L.; Eggum, B.O. The nutritive value of new and traditional sorghum and millet foods from Sudan. Plant Food Hum. Nutr. 1990, 40, 5–19.
  • Gopalan, C.; Srikantia, S.G. Leucine and pellagra. Lancet 1960, 275, 954–957.
  • Nakagawa, I.; Ohguri, S.; Sasaki, A.; Kajimoto, M.; Sasaki, M.; Takahashi, A. Effects of excess intake of leucine and valine deficiency on tryptophan and niacin metabolites in humans. J. Nutr. 1975, 105, 1241–1252.
  • Nakagawa, I.; Sasaki, A. Effect of an excess intake of leucine, with and without additions of vitamin B6 and/or niacin, on tryptophan and niacin metabolism in rats. J. Nutr. Sci. Vitaminol. 1977, 23, 535–548.
  • Cook, N.E.; Carpenter, K.J. Leucine excess and niacin status in rats. J. Nutr. 1987, 117, 519–526.
  • Hegedüs, M.; Pedersen, B.; Eggum, B.O. The influence of milling on the nutritive value of flour from cereal grains. 7. Vitamins and tryptophan. Qual. Plant. 1985, 35, 175–180.
  • Khalil, J.K.; Sawaya, W.N.; Safi, W.J.; Al-Mohammad, H.M. Chemical composition and nutritional quality of sorghum flour and bread. Qual. Plant. 1984, 34, 141–150.
  • Hurrell, R.F.; Reddy, M.B.; Juillerat, M.-A.; Cook, J.D. Degradation of phytic acid in cereal porridges improves iron absorption by human subjects. Am. J. Clin. Nutr. 2003, 77, 1213–1219.
  • Mohammed, N.A.; Ahmed, I.A.M.; Babiker, E.E. Nutritional evaluation of sorghum flour (Sorghum bicolor L. Moench) during processing of injera. World Acad. Sci. Eng. Technol. 2011, 75, 72–76.
  • Daiber, K.H. Enzyme inhibition by polyphenols of sorghum grain malt. J. Sci. Food Agric. 1975, 26, 1399–1411.
  • Beta, T.; Rooney, L.W.; Marovatsangaa, L.T.; Taylor, J.R.N. Effect of chemical treatments on polyphenols and malt quality in sorghum. J. Cereal Sci. 2000, 31, 295–302.
  • Barros, F.; Awika, J.M.; Rooney, L.W. Interaction of tannins and other sorghum phenolic compounds with starch and effects on in vitro starch digestibility. J. Agric. Food Chem. 2012, 60, 11609–11617.
  • Lemlioglu-Austin, D.; Turner, N.D.; McDonough, C.M.; Rooney, L.W. Effects of sorghum [Sorghum bicolor (L.) Moench] crude extracts on starch digestibility, Estimated Glycemic Index (EGI), and Resistant Starch (Rs) contents of porridges. Molecules 2012, 17, 11124–11138.
  • Hargrove, J.L.; Greenspan, P.; Hartle, D.K.; Dowd, C. Inhibition of aromatase and α-amylase by flavonoids and proanthocyanidins from Sorghum bicolor bran extracts. J. Med. Food 2011, 14, 799–807.
  • Kim, J.-S.; Hyun, T.K.; Kim, M.-J. The inhibitory effects of ethanol extracts from sorghum, foxtail millet and proso millet on α-glucosidase and α-amylase activities. Food Chem. 2011, 124, 1647–1651.
  • Akingbala, J.O.; Gomez, M.H.; Rooney, L.W.; Sweat, V.E. Thermal properties of sorghum starch. Starch Stärke 1988, 40, 375–378.
  • Parada, J.; Aguilera, J.M. Review: Starch matrices and the glycemic response. Food Sci. Technol. Int. 2011, 17, 187–204.
  • Licata, R.; Chu, J.; Wang, S.; Coorey, R.; James, A.; Zhao, Y.; Johnson, S. Determination of formulation and processing factors affecting slowly digestible starch, protein digestibility and antioxidant capacity of extruded sorghum-maize composite flour. Int. J. Food Sci. Technol. 2014, 49, 1408–1419.
  • Yousif, A.; Nhepera, D.; Johnson, S. Influence of sorghum flour addition on flat bread in vitro starch digestibility, antioxidant capacity and consumer acceptability. Food Chem. 2012, 134, 880–887.
  • Sajilata, M.G.; Singhal, R.S.; Kulkarni, P.R. Resistant starch—A review. Compr. Rev. Food Sci. Food Saf. 2006, 5, 1–17.
  • Ferguson, L.R.; Tasman-Jones, C.; Englyst, H.; Harris, P.J. Comparative effects of three resistant starch preparations on transit time and short-chain fatty acid production in rats. Nutr. Cancer 2000, 36, 230–237.
  • Flint, H.J.; Scott, K.P.; Duncan, S.H.; Louis, P.; Forano, E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes 2012, 4, 289–306.
  • Martínez, I.; Kim, J.; Duffy, P.R.; Schlegel, V.L.; Walter, J. Resistant starches types 2 and 4 have differential effects on the composition of the fecal microbiota in human subjects. PLoS ONE 2010, 5, e15046.
  • Topping, D.L. Soluble fiber polysaccharides: Effects on plasma cholesterol and colonic fermentation. Nutr. Rev. 1991, 49, 195–203.
  • Warrand, J. Healthy polysaccharides the next chapter in food products. Food Technol. Biotechnol. 2006, 44, 355–370.
  • Verbruggen, M.A.; Beldman, G.; Voragen, A.G.J.; Hollemans, M. Water-unextractable cell wall material from sorghum: Isolation and characterization. J. Cereal Sci. 1993, 17, 71–82.
  • Bach Knudsen, K.E.; Kirleis, A.W.; Eggum, B.O.; Munck, L. Carbohydrate composition and quality for rats of sorghum to prepared from decorticated white and whole grain red flour. J. Nutr. 1988, 118, 588–597.
  • Verbruggen, M.A.; Beldman, G.; Voragen, A.G.J. The selective extraction of glucuronoarabinoxylans from sorghum endosperm cell walls using barium and potassium hydroxide solutions. J. Cereal Sci. 1995, 21, 271–282.
  • Henry, R.J. Pentosan and (1→3),(1→4)-β-glucan concentrations in endosperm and wholegrain of wheat, barley, oats and rye. J. Cereal Sci. 1987, 6, 253–258.
  • Hatfield, R.D.; Wilson, J.R.; Mertens, D.R. Composition of cell walls isolated from cell types of grain sorghum stems. J. Sci. Food Agric. 1999, 79, 891–899.
  • Maclean, W.C., Jr.; Lopez De Romana, G.; Gastanaduy, A.; Graham, G.G. The effect of decortication and extrusion on the digestibility of sorghum by preschool children. J. Nutr. 1983, 113, 2071–2077.
  • Taylor, J.R.N.; Anyango, J.O. Sorghum Flour and flour products: Production, nutritional quality, and fortification. In Flour and Breads and their Fortification in Health and Disease Prevention; Preedy, V., Watson, R., Patel, V., Eds.; Oxford, U.K.: Academic Press, 2011; pp 127–139.
  • de Mesa-Stonestreet, N.J.; Alavi, S.; Bean, S.R. Sorghum proteins: The concentration, isolation, modification, and food applications of kafirins. J. Food Sci. 2010, 75, R90–R104.
  • Belton, P.S.; Delgadillo, I.; Halford, N.G.; Shewry, P.R. Kafirin structure and functionality. J. Cereal Sci. 2006, 44, 272–286.
  • Taylor, J.R.N.; Schussler, L. The protein compositions of the different anatomical parts of sorghum grain. J. Cereal Sci. 1986, 4, 361–369.
  • Hager, A.-S.; Wolter, A.; Czerny, M.; Bez, J.; Zannini, E.; Arendt, E.K.; Czerny, M. Investigation of product quality, sensory profile and ultrastructure of breads made from a range of commercial gluten-free flours compared to their wheat counterparts. Eur. Food Res. Technol. 2012, 235, 333–344.
  • Axtell, J.D.; Kirleis, A.W.; Hassen, M.M.; D’Cros Mason, N.; Mertz, E.T.; Munck, L. Digestibility of sorghum proteins. Proc. Natl. Acad. Sci. U. S. A. 1981, 78, 1333–1335.
  • Cherney, D.J.R. In vitro ruminal fiber digestion as influenced by phenolic-carbohydrate complexes released from sorghum cell walls. Anim. Feed Sci. Technol. 1992, 39, 79–93.
  • Taylor, J.; Taylor, J.R.N. Alleviation of the adverse effect of cooking on sorghum protein digestibility through fermentation in traditional African porridges. Int. J. Food Sci. Technol. 2002, 37, 129–137.
  • Cornu, A.; Delpeuch, F. Effect of fiber in sorghum on nitrogen digestibility. Am. J. Clin. Nutr. 1981, 34, 2454–2459.
  • Llopart, E.E.; Drago, S.R.; De Greef, D.M.; Torres, R.L.; Gonza´lez, R.J. Effects of extrusion conditions on physical and nutritional properties of extruded whole grain red sorghum (Sorghum spp). Int. J. Food Sci. Nutr. 2014, 65, 34–41.
  • Lin, P.; Wong, J.H.; Ng, T.B.; Ho, V.S.; Xia, L. A sorghum xylanase inhibitor-like protein with highly potent antifungal, antitumor and HIV-1 reverse transcriptase inhibitory activities. Food Chem. 2013, 141, 2916–2922.
  • Strumeyer, D.H.; Malin, M.J. Identification of the amylase inhibitor from seeds of Leoti sorghum. Biochim. Biophys. Acta 1969, 184, 643–645.
  • Kumar, P.M.; Virupaksha, T.K.; Vithayathil, P.J. Sorghum proteinase inhibitors: Purification and some biochemical properties Int. J. Peptide Protein Res. 1978, 12, 185–196.
  • Dicko, M.H.; Gruppen, H.; Hilhorst, R.; Voragen, A.G.; van Berkel, W.J. Biochemical characterization of the major sorghum grain peroxidase. FEBS J. 2006, 273, 2293–2307.
  • Camargo Filho, I.; Cortez, D.A.G.; Ueda-Nakamura, T.; Nakamura, C.V.; Dias Filho, B.P. Antiviral activity and mode of action of a peptide isolated from Sorghum bicolor. Phytomedicine 2008, 15, 202–208.
  • Cavazos, A.; Gonzalez de Mejia, E. Identification of bioactive peptides from cereal storage proteins and their potential role in prevention of chronic diseases. Compr. Rev. Food Sci. Food Saf. 2013, 12, 364–380.
  • Mehmood, S.; Orhan, I.; Ahsan, Z.; Aslan, S.; Gulfraz, M. Fatty acid composition of seed oil of different Sorghum bicolor varieties. Food Chem. 2008, 109, 855–859.
  • Adeyeye, A.; Ajewole, K. Chemical composition and fatty acid profiles of cereals in Nigeria. Food Chem. 1992, 44, 41–44.
  • Carr, T.; Weller, C.; Schlegel, V.; Cuppett, S.; Guderian, D., Jr.; Johnson, K. Grain sorghum lipid extraction reduces cholesterol absorption and plasma non-HDL cholesterol concentrations in hamsters. Nutrition 2005, 135, 2236–2240.
  • Lee, B.H.; Carr, T.P.; Weller, C.L.; Cuppett, S.; Dweikat, I.M.; Schlegel, V. Grain sorghum whole kernel oil lowers plasma and liver cholesterol in male hamsters with minimal wax involvement. J. Funct. Foods. 2014, 7, 709–718.
  • Irmak, S.; Dunford, N.T.; Milligan, J. Policosanol contents of beeswax, sugar cane and wheat extracts. Food Chem. 2006, 95, 312–318.
  • Gouni-Berthold, I.; Berthold, H.K. Policosanol: Clinical pharmacology and therapeutic significance of a new lipid-lowering agent. Am. Heart J. 2002, 143, 356–365.
  • Martinez, I.; Wallace, G.; Zhang, C.; Legge, R.; Benson, A.K.; Carr, T.P.; Moriyama, E.N.; Walter, J. Diet-induced metabolic improvements in a hamster model of hypercholesterolemia are strongly linked to alterations of the gut microbiota. Appl. Environ. Microbiol. 2009, 75, 4175–4184.
  • Macfarlane, S.; Macfarlane, G.T.; Cummings, J.H. Review article: Prebiotics in the gastrointestinal tract. Alimen. Pharmacol. Ther. 2006, 24, 701–714.
  • Wong, J.M.W.; De Souza, R.; Kendall, C.W.C.; Emam, A.; Jenkins, D.J.A. Colonic health: Fermentation and short chain fatty acids. J. Clin. Gastroenterol. 2006, 40, 235–243.
  • Broekaert, W.F.; Courtin, C.M.; Verbeke, K.; Van de Wiele, T.; Verstraete, W.; Delcour, J.A. Prebiotic and other health-related effects of cereal-derived arabinoxylans, arabinoxylan-oligosaccharides, and xylooligosaccharides. Crit. Rev. Food Sci. Nutr. 2011, 51, 178–194.
  • Zbasnik, R.; Carr, T.; Weller, C.; Hwang, K.T.; Wang, L.J.; Cuppett, S.; Schlegel, V. Anti proliferation properties of grain sorghum dry distiller’s grain lipids in Caco-2 cells. J. Agric. Food Chem. 2009, 57, 10435–10441.
  • Awika, J.M.; Rooney, L.W.; Waniska, R.D. Anthocyanins from black sorghum and their antioxidant properties. Food Chem. 2005, 90, 293–301.
  • Rooney, L.W.; Awika, J.M. Overview of products and health benefits of specialty sorghums. Cereal Food World 2005, 50, 109–115.
  • Awika, J.M.; Rooney, L.W.; Waniska, R.D. Properties of 3-deoxyanthocyanins from sorghum. J. Agric. Food Chem. 2004, 52, 4388–4394.
  • Dykes, L.; Rooney, L.W.; Waniska, R.D.; Rooney, W.L. Phenolic compounds and antioxidant activity of sorghum grains of varying genotypes. J. Agric. Food Chem. 2005, 53, 6813–6818.
  • Towo, E.; Matuschek, E.; Svanberg, U. Fermentation and enzyme treatment of tannin sorghum gruels: Effects on phenolic compounds, phytate and in vitro accessible iron. Food Chem. 2006, 94, 369–376.
  • Dlamini, N.R.; Taylor, J.R.N.; Rooney, L.W. The effect of sorghum type and processing on the antioxidant properties of African sorghum-based foods. Food Chem. 2007, 105, 1412–1419.
  • N’Dri, D.; Mazzeo, T.; Zaupa, M.; Ferracane, R.; Fogliano, V.; Pellegrini, N. Effect of cooking on the total antioxidant capacity and phenolic profile of some whole-meal African cereals. J. Sci. Food Agric. 2012, 93, 29–30.
  • Kayodé, A.P.P.; Hounhouigan, J.D.; Nout, M.J.R. Impact of brewing process operations on phytate, phenolic compounds and in vitro solubility of iron and zinc in opaque sorghum beer. LWT Food Sci. Technol. 2007, 40, 834–841.
  • Wu, L.; Huang, Z.H.; Qin, P.Y.; Ren, G.X. Effects of processing on phytochemical profiles and biological activities for production of sorghum tea. Food Res. Int. 2013, 53, 678–685.
  • Adom, K.K.; Liu, R.H. Antioxidant activity of grains. J. Agric. Food Chem. 2002, 50, 6182–6187.
  • Hsu, C.L.; Yen, G.C. Phenolic compounds: Evidence for inhibitory effects against obesity and their underlying molecular signaling mechanisms. Mol. Nutr. Food Res. 2008, 52, 53–61.
  • Montonen, J.; Knekt, P.; Jarvinen, R.; Reunanen, A. Dietary antioxidant intake and risk of type 2 diabetes. Diabetes Care 2004, 27, 362–366.
  • Farrar, J.L.; Hartle, D.K.; Hargrove, J.L.; Greenspan, P. A novel nutraceutical property of select sorghum (Sorghum bicolor) brans: Inhibition of protein glycation. Phytother. Res. 2008, 22, 1052–1056.
  • Dykes, L.; Rooney, L.W. Sorghum and millet phenols and antioxidants. J. Cereal Sci. 2006, 44, 236–251.
  • Dykes, L.; Seitz, L.M.; Rooney, W.L.; Rooney, L.W. Flavonoid composition of red sorghum genotypes. Food Chem. 2009, 116, 313–317.
  • Dykes, L.; Peterson, G.C.; Rooney, W.L.; Rooney, L.W. Flavonoid composition of lemon-yellow sorghum genotypes. Food Chem. 2011, 128, 173–179.
  • Carbonneau, M.A.; Cisse, M.; Mora-Soumille, N.; Dairi, S.; Rosa, M.; Michel, F.; Lauret, C.; Cristol, J.P.; Dangles, O. Antioxidant properties of 3-deoxyanthocyanidins and polyphenolic extracts from Cote d’Ivoire’s red and white sorghums assessed by ORAC and in vitro LDL oxidisability tests. Food Chem. 2014, 145, 701–709.
  • Devi, P.S.; Kumar, M.; Mohandas, S. In Vitro Antiproliferative Effects of anthocyanin extracted from red sorghum (Sorghum bicolor) bran on human larynx carcinoma cell line. Int J. Pharm. Pharm. Sci. 2012, 4, 532–536.
  • Awika, J.M.; Yang, L.Y.; Browning, J.D.; Faraj, A. Comparative antioxidant, antiproliferative and phase II enzyme inducing potential of sorghum (Sorghum bicolor) varieties. LWT Food Sci. Technol. 2009, 42, 1041–1046.
  • Yang, L.Y.; Browning, J.D.; Awika, J.M. Sorghum 3-deoxyanthocyanins possess strong phase II enzyme inducer activity and cancer cell growth inhibition properties. J. Agric. Food Chem. 2009, 57, 1797–1804.
  • Yang, L.; Allred, K.F.; Geera, B.; Allred, C.D.; Awika, J.M. Sorghum phenolics demonstrate estrogenic action and induce apoptosis in nonmalignant colonocytes. Nutr. Cancer 2012, 64, 419–427.
  • Suganyadevi, P.; Saravanakumar, K.M.; Mohandas, S. The antiproliferative activity of 3-deoxyanthocyanins extracted from red sorghum (Sorghum bicolor) bran through P53-dependent and Bcl-2 gene expression in breast cancer cell line. Life Sci. 2013, 92, 379–382.
  • Hwang, J.M.; Choi, K.C.; Bang, S.J.; Son, Y.O.; Kim, B.T.; Kim, D.H.; Choi, G.J.; Kim, D.H.; Shi, X.L.; Lee, J.C. Anti-oxidant and anti-inflammatory properties of methanol extracts from various crops. Food Sci. Biotechnol. 2013, 22, 265–272.
  • Earp, C.F.; McDonough, C.M.; Awika, J.; Rooney, L.W. Testa development in the caryopsis of Sorghum bicolor (L.) Moench. J. Cereal Sci. 2004, 39, 303–311.
  • Gu, L.; House, S.E.; Rooney, L.W.; Prior, R.L. Sorghum extrusion increases bioavailability of catechins in weanling pigs. J. Agric. Food Chem. 2008, 56, 1283–1288.
  • Chung, I.-M.; Kim, E.-H.; Yeo, M.-A.; Kim, S.-J.; Seo, M.C.; Moon, H.-I. Antidiabetic effects of three Korean sorghum phenolic extracts in normal and streptozotocin-induced diabetic rats. Food Res. Int. 2011, 44, 127–132.
  • Haslam, E. Protein-polyphenol interactions. In International Congress and Symposium Series, No. 226; Royal Society of Medicine: London, 2000; p 25.
  • Emmambux, N.M.; Taylor, J.R.N. Sorghum kafirin interaction with various phenolic compounds. J. Sci. Food Agric. 2003, 83, 402–407.
  • Hagerman, A.E.; Butler, L.G. The specificity of proanthocyanidin-protein interactions. J. Agric. Food Chem. 1980, 28, 947–952.
  • Naczk, M.; Shahidi, F. Nutritional implications of canola condensed tannins. In Antinutrients and Phytochemicals in Food; ACS Symposium Series, Vol. 662; Shahidi, F., Ed.; American Chemical Society: Washington, DC, 1997; pp 186–208.
  • Lizardo, R.; Peiniau, J.; Aumaitre, A. Effect of sorghum on performance, digestibility of dietary components and activities of pancreatic and intestinal enzymes in the weaned piglet. Anim. Feed Sci. Technol. 1995, 56, 67–82.
  • Al-Mamary, M.; Al-Habori, M.; Al-Aghbari, A.; Al-Obeidi, A. In vivo effects of dietary sorghum tannins on rabbit digestive enzymes and mineral absorption. Nutr. Res. 2001, 21, 1393–1401.
  • King, D.; Fan, M.Z.; Ejeta, G.; Asem, E.K.; Adeola, O. The effects of tannins on nutrient utilisation in the White Pekin duck. Br. Poult. Sci. 2000, 41, 630–639.
  • Sarni-Manchado, P.; Cheynier, V.; Moutounet, M. Interactions of grape seed tannins with salivary proteins. J. Agric. Food Chem. 1999, 47, 42–47.
  • Muriu, J.I.; Njoka-Njiru, E.N.; Tuitoek, J.K.; Nanua, J.N. Evaluation of sorghum (Sorghum bicolor) as replacement for maize in the diet of growing rabbits (Oryctolagus cuniculus). Asian Aust J. Anim Sci. 2002, 15, 565–569.
  • Bralley, E.; Greenspan, P.; Hargrove, J.L.; Hartle, D.K. Inhibition of hyaluronidase activity by select sorghum brans. J. Med. Food 2008, 11, 307–312.
  • Burdette, A.; Garner, P.L.; Mayer, E.P.; Hargrove, J.L.; Hartle, D.K.; Greenspan, P. Anti-inflammatory activity of select sorghum (Sorghum bicolor) brans. J. Med. Food 2010, 13, 879–887.
  • Grimmer, H.R.; Parbhoo, V.; McGarth, R.M. Antimutagenicity of polyphenol-rich fractions from Sorghum bicolor grain. J. Agric. Food Chem. 1992, 59, 251–256.
  • Gomez-Cordoves, C.; Bartolome, B.; Vieira, W.; Virador, V.M. Effects of wine phenolics and sorghum tannins on tyrosinase activity and growth of melanoma cells. J. Agric. Food Chem. 2001, 49, 1620–1624.
  • Deosthale, Y.G.; Gopalan, C. The effect of molybdenum levels in sorghum (Sorghum vulgare Pers.) on uric acid and copper excretion in man. Br. J. Nutr. 1974, 31, 351–355.
  • Krishnaswamy, K.; Rao, B.; Raghuram, T.C.; Srikantia, S.G. Effect of vitamin B6 on leucine induced changes in human subjects. Am. J. Clin. Nutr. 1976, 29, 177–181.
  • Obizoba, I.C.; Ezekwe, M.O.; Akaigwe, B.N. Utilization of sorghum, wheat, and navy beans by human adults: Protein metabolism. Nutr. Rep. Int. 1979, 20, 291–301
  • Wang, R.S.; Kies, C. Niacin status of humans as affected by eating decorticated and whole-ground sorghum (Sorghum gramineae) grain, ready-to-eat breakfast cereals. Plant Food Hum. Nutr. 1991;41:355–369.
  • Schmid, M.A.; Salomeyesudas, B.; Satheesh, P.; Hanley, J.; Kuhnlein, H.V. Intervention with traditional food as a major source of energy, protein, iron, vitamin C and vitamin A for rural Dalit mothers and young children in Andhra Pradesh, South India. Asia Pac. J. Clin. Nutr. 2007;16:84–93.
  • Derman, D.P.; Bothwell, T.H.; Torrance, J.D.; Bezwoda, W.R.; MacPhail, A.P.; Kew, M.C.; Sayers, M.H.; Disler, P. B.; Charlton, R.W. Iron absorption from maize (Zea mays) and sorghum (Sorghum vulgare) beer. Br. J. Nutr. 1980, 43, 271–279.
  • Radhakrishnan, M.R.; Sivaprasad, J. Tannin content of sorghum varieties and their role in iron bioavailability. J. Agric. Food Chem. 1980, 28, 55–57.
  • Gillooly, M.; Bothwell, T.H.; Charlton, R.W.; Torrance, J.D.; Bezwoda, W.R.; MacPhail, A.P.; Derman, D.P.; Novelli, L.; Mayet, F. Factors affecting the absorption of iron from cereals. Br. J. Nutr. 1984, 51, 37–46.
  • Haidar, J.; Nekatibeb, H.; Urga, K. Iron deficiency anaemia in pregnant and lactating mothers in rural Ethiopia. East Afr. Med. J. 1999, 76, 618–622.
  • Suhasini, G.E.; Krishna, D.R. Influence of unrefined sorghum or maize on serum lipids. Anc. Sci. Life. 1991, 1–2, 26–27.
  • Mani, U.V.; Prabhu, B.M.; Damle, S.S.; Mani, I. Glycaemic index of some commonly consumed foods in western India. Asia Pac. J. Clin. Nutr. 1993, 2, 111–114.
  • Lakshmi, K.B.; Vimala, V. Hypoglycemic effect of selected sorghum recipes. Nutr. Res. 1996, 16, 1651–1658.
  • Abdelgadir, M.; Abbas, M.; Jarvi, A.; Elbagir, M.; Eltom, M.; Berne, C. Glycaemic and insulin responses of six traditional Sudanese carbohydrate-rich meals in subjects with Type 2 diabetes mellitus. Diabet. Med. 2005, 22, 213–217.
  • Poquette, N.M.; Gu, X.; Lee, S.O. Grain sorghum muffin reduces glucose and insulin responses in men. Food Funct. 2014, 5, 894–899.
  • Khan, I.; Yousif, A.M.; Johnson, S.K.; Gamlath, S. Acute effect of sorghum flour-containing pasta on plasma total polyphenols, antioxidant capacity and oxidative stress markers in healthy subjects: A randomised controlled trial. Clin. Nutr. 2015, 34, 415–421.
  • Fedail, S.S.; Badi, S.M.; Musa, R.M. The effects of sorghum and wheat bran on the colonic functions of healthy Sudanese subjects. Am. J. Clin. Nutr. 1984, 40, 776–779.
  • Cornu, A.; Delpeuch, F. Effects of Dietary Fiber intake on the digestibility of lipids in an african sorghum-consuming population. Ann. Nutr. Metab. 1986, 30, 227–232.
  • Kurien, P.P.; Narayanarao, M.; Kurien, M.; Swaminathan, M.; Subrahmanyan, V. The metabolism of nitrogen, calcium and phosphorus in undernourished children. The effect of partial or complete replacement of rice in poor vegetarian diets by kaffir corn (Sorghum vulgare). Br. J. Nutr. 1960, 14, 339.
  • Nicol, B.M.; Phillips, P.G. The utilization of proteins and amino acids in diets based on cassava (Manihot utilissima), rice or sorghum (Sorghum sativa) by young Nigerian men of low income. Br. J. Nutr. 1978;39:271–287.
  • Maclean, W.C., Jr.; Lopez De Romana, G.; Placko, R.P.; Graham, G.G. Protein quality and digestibility of sorghum in preschool children: Balance studies and plasma free amino acids. J. Nutr. 1981, 1928–1936.
  • Dibari, F.; Bahwere, P.; Huerga, H.; Irena, A.H.; Owino, V.; Collins, S.; Seal, A. Development of a cross-over randomized trial method to determine the acceptability and safety of novel ready-to-use therapeutic foods. Nutrition 2013, 29, 107–112.
  • Bisimwa, G.; Owino, V.O.; Bahwere, P.; Dramaix, M.I.; Donnen, P.; Dibari, F.; Collins, S. Randomized controlled trial of the effectiveness of a soybean-maize-sorghum-based ready-to-use complementary food paste on infant growth in South Kivu, Democratic Republic of Congo. Am. J. Clin. Nutr. 2012, 95, 1157–1164.
  • Mustafa, S.A.; Karrar, Z.E.; Suliman, J.I. Cereal-based oral rehydration solutions in Sudanese children with diarrhoea: A comparative clinical trial of rice-based and sorghum-based oral rehydration solutions. Ann. Trop. Paediatr. 1995, 15, 313–319.
  • Molla, A.M.; Molla, A.; Nath, S.K.; Khatun, M. Food-based oral rehydration salt solution for acute childhood diarrhoea. Lancet 1989, 2, 429–431.
  • Pelleboer, R.A.; Felius, A.; Goje, B.S.; Gelderen, H.H. Sorghum-based oral rehydration solution in the treatment of acute diarrhoea. Trop. Geogr. Med. 1990, 42, 63–68.
  • Vazquez-Araujo, L.; Chambers, E.; Cherdchu, P. Consumer input for developing human food products made with sorghum grain. J. Food Sci. 2012, 77, S384–S389.
  • Muhihi, A.; Gimbi, D.; Njelekela, M.; Shemaghembe, E.; Mwambene, K.; Chiwanga, F.; Malik, V.S.; Wedick, N.M.; Spiegelman, D.; Hu, F.B.; Willett, W.C. Consumption and acceptability of whole grain staples for lowering markers of diabetes risk among overweight and obese Tanzanian adults. Glob. Health 2013, 9.
  • Motswagole, B.S.; Mongwaketse, T.C.; Mokotedi, M.; Kobue-Lekalake, R.I.; Bulawayo, B.T.; Thomas, T.S.; Kurpad, A.V.; Kwape, L.D. The efficacy of micronutrient-fortified sorghum meal in improving the immune status of HIV-positive adults. Ann. Nutr. Metab. 2013;62:323–330.
  • Ayuba, G.I.; Jensen, G.S.; Benson, K.F.; Okubena, A.M.; Okubena, O. Clinical efficacy of a West African Sorghum bicolor-based traditional herbal preparation Jobelyn shows increased hemoglobin and CD4+ T-lymphocyte counts in HIV-positive patients. J. Altern. Complement Med. 2014, 20, 53–56.
  • Featherstone, W.R. Influence of tannins on the utilization of sorghum grain by rats and chicks. Nutr. Rep. Int. 1975, 11, 491.
  • Cousins, B.W.; Tanksley, T.D., Jr.; Knabe, D.A.; Zebrowska, T. Nutrient digestibility and performance of pigs fed sorghums varying in tannin concentration. J. Anim. Sci. 1981, 53, 1524–1537.
  • Liu, S.; Willett, W.C.; Manson, J.E.; Hu, F.B.; Rosner, B.; Colditz, G. Relation between changes in intakes of dietary fiber and grain products and changes in weight and development of obesity among middle-aged women. Am. J. Clin. Nutr. 2003, 78, 920–927.
  • Lairon, D.; Arnault, N.; Bertrais, S.; Planells, R.; Clero, E.; Hercberg, S.; Boutron-Ruault, M.-C. Dietary fiber intake and risk factors for cardiovascular disease in French adults. Am. J. Clin. Nutr. 2005, 82, 1185–1194.
  • Flint, H.J. The impact of nutrition on the human microbiome. Nutr. Rev. 2012, 70 (Suppl 1), S10–S13.
  • Shen, R.L.; Zhang, W.L.; Dong, J.L.; Ren, G.X.; Chen, M. Sorghum resistant starch reduces adiposity in high-fat diet-induced overweight and obese rats via mechanisms involving adipokines and intestinal flora. Food Agric. Immunol. 2015, 26, 120–130.
  • Appleton, D.J.; Rand, J.S.; Priest, J.; Sunvold, G.D.; Vickers, J.R. Dietary carbohydrate source affects glucose concentrations, insulin secretion, and food intake in overweight cats. Nutr. Res. 2004, 24, 447–467.
  • Kim, J.; Park, Y. Anti-diabetic effect of sorghum extract on hepatic gluconeogenesis of streptozotocin-induced diabetic rats. Nutr. Metab. 2012, 9, 1–7.
  • Park, J.H.; Lee, S.H.; Chung, I.M.; Park, Y. Sorghum extract exerts an anti-diabetic effect by improving insulin sensitivity via PPAR-gamma in mice fed a high-fat diet. Nutr. Res. Pract. 2012, 6, 322–327.
  • Cervantes-Pahm, S.K.; Liu, Y.; Stein, H.H. Comparative digestibility of energy and nutrients and fermentability of dietary fiber in eight cereal grains fed to pigs. J. Sci. Food Agric. 2014, 94, 841–849.
  • Dixit, A.A.; Azar, K.M.; Gardner, C.D.; Palaniappan, L.P. Incorporation of whole, ancient grains into a modern Asian Indian diet to reduce the burden of chronic disease. Nutr. Rev. 2011, 69, 479–488.
  • Chung, I.M.; Yeo, M.A.; Kim, S.J.; Kim, M.J.; Park, D.S.; Moon, H.I. Antilipidemic activity of organic solvent extract from Sorghum bicolor on rats with diet-induced obesity. Hum. Exp. Toxicol. 2011, 30, 1865–1868.
  • Cho, S.H.; Ha, T.Y. In vitro and in vivo effects of prosomillet and sorghum on cholesterol metabolism. Food Sci. Biotechnol. 2003, 12, 485–490.
  • Hoi, J.T.; Weller, C.L.; Schlegel, V.L.; Cuppett, S.L.; Lee, J.-Y.; Carr, T.P. Sorghum distillers dried grain lipid extract increases cholesterol excretion and decreases plasma and liver cholesterol concentration in hamsters. J. Funct. Foods. 2009, 1, 381–386.
  • Klopfenstein, C.F.; Varriano-Marston, E.; Hoseney, R.C. Cholesterol-lowering effect of sorghum diet in guinea pigs. Nutr. Rep. Int. 1981, 24, 621–626.
  • Lee, S.H.; Chung, I.M.; Cha, Y.S.; Park, Y. Millet consumption decreased serum concentration of triglyceride and C-reactive protein but not oxidative status in hyperlipidemic rats. Nutr. Res. 2010, 30, 290–296.
  • Lee, S.M.; Pan, B.S. Effect of dietary sorghum distillery residue on hematological characteristics of cultured grey mullet (Mugil cephalus)—An animal model for prescreening antioxidant and blood thinning activities. J. Biotechnol. 2003, 27, 1–18.
  • Loefler, I.J.P. Sorghum in oesophageal cancer. Lancet 1985, 2, 562.
  • Van Rensburg, S.J. Epidemiologic and dietary evidence for a specific nutritional predisposition to esophageal cancer. J. Natl. Cancer Inst. 1981, 67, 243–251.
  • Chen, F.; Cole, P.; Mi, Z.; Xing, L.Y. Corn and wheat-flour consumption and mortality from esophageal cancer in Shanxi, China. Int. J. Cancer 1993, 53, 902–906.
  • Isaacson, C. The change of the staple diet of black South Africans from sorghum to maize (corn) is the cause of the epidemic of squamous carcinoma of the oesophagus. Med. Hypothoses 2005, 64, 658–660.
  • Park, J.H.; Darvin, P.; Lim, E.J.; Joung, Y.H.; Hong, D.Y.; Park, E.U.; Park, S.H.; Choi, S.K.; Moon, E.S.; Cho, B.W.; Park, K.D.; Lee, H.K.; Kim, M.J.; Park, D.S.; Chung, I.M.; Yang, Y.M. Hwanggeumchal sorghum induces cell cycle arrest, and suppresses tumor growth and metastasis through Jak2/STAT pathways in breast cancer xenografts. PLoS ONE 2012, 7, e40531.
  • Wu, L.; Huang, Z.; Qin, P.; Yao, Y.; Meng, X.; Zou, J.; Zhu, K.; Ren, G. Chemical characterization of a procyanidin-rich extract from sorghum bran and its effect on oxidative stress and tumor inhibition in vivo. J. Agric. Food Chem. 2011, 59, 8609–8615.
  • Beck, E.J.; Tosh, S.M.; Batterham, M.J.; Tapsell, L.C.; Huang, X.F. Oat beta-glucan increases postprandial cholecystokinin levels, decreases insulin response and extends subjective satiety in overweight subjects. Mol. Nutr. Food Res. 2009, 53, 1343–1351.
  • Hall, R.S.; Baxter, A.L.; Fryirs, C.; Johnson, S.K. Liking of health-functional foods containing lupin kernel fibre following repeated consumption in a dietary intervention setting. Appetite 2010, 55, 232–237.
  • National Health and Medical Research Council. Final Guidance General Level Health Claims September 2013; National Health and Medical Research Council: Canberra, Australia, 2013.
  • Sacks, F.M.; Bray, G.A.; Carey, V.J.; Smith, S.; Ryan, D.; Anton, S.; McManus, K.; Champagne, C.; Bishop, L.; Laranjo, N.; Leboff, M.; Rood, J.; De Jonge, L.; Greenway, F.; Loria, C.M.; Obarzanek, E., Williamson, D.A. Comparison of weight-loss diets with different compositions of fat, protein, and carbohydrates. N. Engl. J. Med. 2009, 360, 859–873.
  • Kamath, V.G.; Chandrashekar, A.; Rajini, P.S. Antiradical properties of sorghum (Sorghum bicolor L. Moench) flour extracts. J. Cereal Sci. 2004, 40, 283–288.
  • Oboh, G.; Akomolafe, T.L.; Adetuyi, A.O. Inhibition of cyclophosphamide-induced oxidative stress in brain by dietary inclusion of red dye extracts from sorghum (Sorghum bicolor) stem. J. Med. Food 2010, 13, 1075–1080.
  • Moraes, É.A.; Natal, D.I.G.; Queiroz, V.A.V.; Schaffert, R.E.; Cecon, P.R.; de Paula, S.O.; Benjamim, L.A.; Ribeiro, S.M.R.; Martino, H.S.D. Sorghum genotype may reduce low-grade inflammatory response and oxidative stress and maintains jejunum morphology of rats fed a hyperlipidic diet. Food Res. Int. 2012, 49, 553–559.
  • Ajiboye, T.O.; Komolafe, Y.O.; Oloyede, O.B.; Ogunbode, S.M.; Adeoye, M.D.; Abdulsalami, I.O.; Nurudeen, Q.O. Diethylnitrosamine-induced redox imbalance in rat microsomes: Protective role of polyphenolicrich extract from Sorghum bicolor grains. J. Basic Clin. Physiol. Pharmacol. 2013, 24, 41–49.
  • He, J.; Giusti, M.M. Anthocyanins: Natural colorants with health-promoting properties. Ann. Rev. Food Sci. Technol. 2010, 1, 163–187.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.