2,806
Views
101
CrossRef citations to date
0
Altmetric
Articles

Biosynthesis of essential oils in aromatic plants: A review

, , &

References

  • Öztekin, S.; Martinov, M. Medicinal and Aromatic Crops: Harvesting, Drying, and Processing; Haworth Food & Agricultural Products Press: Binghamtion, NY, 2007.
  • Holopainen, J.K. Multiple functions of inducible plant volatiles. Trends Plant Sci. 2004, 9, 529–533.
  • Dudareva, N.; Negre, F.; Nagegowda, D.A.; Orlova, I. Plant volatiles: Recent advances and future perspectives. Crit. Rev. Plant Sci. 2006, 25, 417–440.
  • Wagner, K.H.; Elmadfa, I. Biological relevance of terpenoids. Overview focusing on mono, di- and tetraterpenes. Ann. Nutr. Metab. 2003, 47, 95–106.
  • Caissard, J.C.; Joly, C.; Bergougnoux, V.; Hugueney, P.; Mauriat, M.; Baudino, S. Secretion mechanisms of volatile organic compounds in specialized cells of aromatic plants. Recent Res. Dev. Cell Biol. 2004, 2, 1–15.
  • Sangwan, N.S.; Farooqi, A.H.A.; Shabih, F.; Sangwan, R.S. Regulation of essential oil production in plants. Plant Growth Regul. 2001, 34, 3–21.
  • Berka-Zougali, B.; Ferhat, M.-A.; Hassani, A.; Chemat, F.; Allaf, K.S. Comparative study of essential oils extracted from Algerian Myrtus communis L. leaves using microwaves and hydrodistillation. Int. J. Mol. Sci. 2012, 13, 4673–4695.
  • Waseem, R.; Low, K.H. Advanced analytical techniques for the extraction and characterization of plant-derived essential oils by gas chromatography with mass spectrometry. J. Sep. Sci. 2014, 38, 483–501.
  • Adam, K.P.; Thiel, R.; Zapp, J. Incorporation of 1-[1-13C]deoxy-d-xylulose in chamomile sesquiterpenes. Arch. Biochem. Biophys. 1999, 369, 127–132.
  • Langenheim, J.H. Higher plant terpenoids: A phytocentric overview of their ecological roles. J. Chem. Ecol. 1994, 20, 1223–1280.
  • Breitmaier, E. Terpenes: Flavors, Fragrances, Pharmaca, Pheromones; John Wiley & Sons: New York, 2006.
  • Dubey, V.S.; Bhalla, R.; Luthra, R. An overview of the non-mevalonate pathway for terpenoid biosynthesis in plants. J. Biosci. 2003, 28, 637–646.
  • McGarvey, D.J.; Croteau, R. Terpenoid metabolism. Plant Cell 1995, 7, 1015–1026.
  • Page, J.E.; Hause, G.; Raschke, M.; Gao, W.; Schmidt, J.; Zenk, M.H.; Kutchan, T.M. Functional analysis of the final steps of the 1-deoxy-d-xylulose 5-phosphate (DXP) pathway to isoprenoids in plants using virus-induced gene silencing. Plant Physiol. 2004, 134, 1401–1413.
  • Newman, J.D.; Chappell, J. Isoprenoid biosynthesis in plants: Carbon partitioning within the cytoplasmic pathway. Crit. Rev. Biochem. Mol. Biol. 1999, 34, 95–106.
  • Liao, Z.H.; Chen, M.; Gong, Y.F.; Miao, Z.Q.; Sun, X.F.; Tang, K.X. Isoprenoid biosynthesis in plants: Pathways, genes, regulation and metabolic engineering. J. Biol. Sci. 2006, 6, 209–219.
  • Nagegowda, D.A. Plant volatile terpenoid metabolism: Biosynthetic genes, transcriptional regulation and subcellular compartmentation. FEBS Lett. 2010, 584, 2965–2973.
  • Wallach, O. Zur Kenntniss der Terpene und ätherischen Oele. Justus Liebigs Ann. Chem. 1887, 238, 78–89.
  • Croteau, R. The discovery of terpenes. Discov. Plant Biol. 1998, 1, 329–343.
  • Ruzicka, L. The isoprene rule and the biogenesis of terpenic compounds. Experientia 1953, 9, 357–367.
  • Rohmer, M.; Seemann, M.; Grosdemange-Billiard, C. Biosynthetic routes to the building blocks of isoprenoids. In Biopolymers Online; Wiley Online Library. Wiley: New York, 2005; p 49.
  • Rohmer, M. Isoprenoids including carotenoids and steroids. In Comprehensive Natural Products Chemistry; Cane, D.E., Eds.; Pergamon Press: Oxford, UK, 1999; pp 45–67.
  • Rohmer, M. Mevalonate-independent methylerythritol phosphate pathway for isoprenoid biosynthesis. Elucidation and distribution. Pure Appl. Chem. 2003, 75, 375–388.
  • Rohmer, M. The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat. Prod. Rep. 1999, 16, 565–574.
  • Schwarz, M., Arigoni, D. Ginkgolide Biosynthesis. In Comprehensive Natural Product Chemistry. Isoprenoids Including Carotenoids and Steroids, Vol. 2; Cane, D.E., Ed.; Pergamon: Oxford, UK, 1999; pp. 367–400.
  • Lombard, J.; Moreira, D. Origins and early evolution of the mevalonate pathway of isoprenoid biosynthesis in the three domains of life. Mol. Biology Evol. 2011, 28, 87–99.
  • Lichtenthaler, H.K.; Schwender, J.; Disch, A.; Rohmer, M. Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate-independent pathway. FEBS Lett. 1997, 400, 271–274.
  • Pulido, P.; Perello, C.; Rodriguez-Concepcion, M. New insights into plant isoprenoid metabolism. Mol. Plant 2012, 5, 964–967.
  • Cheng, A.X.; Lou, Y.G.; Mao, Y.B.; Lu, S.; Wang, L.J.; Chen, X.Y. Plant terpenoids: Biosynthesis and ecological functions. J. Integr. Plant Biol. 2007, 49, 179–186.
  • Ajikumar, P.K.; Tyo, K.; Carlsen, S.; Mucha, O.; Phon, T.H.; Stephanopoulos, G. Terpenoids: Opportunities for biosynthesis of natural product drugs using engineered microorganisms. Mol. Pharm. 2008, 5, 167–190.
  • Lichtenthaler, H.K. The 1-deoxy-d-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu. Rev. Plant Biol. 1999, 50, 47–65.
  • Hemmerlin, A.; Hoeffler, J.F.; Meyer, O.; Tritsch, D.; Kagan, I.A.; Grosdemange-Billiard, C.; Rohmer, M.; Bach, T.J. Cross-talk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in tobacco bright yellow-2 cells. J. Biol. Chem. 2003, 278, 26666–26676.
  • Laule, O.; Fürholz, A.; Chang, H.S.; Zhu, T.; Wang, X.; Heifetz, P.B.; Gruissem, W.; Lange, M. Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 6866–6871.
  • Dudareva, N.; Andersson, S.; Orlova, I.; Gatto, N.; Reichelt, M.; Rhodes, D.; Boland, W.; Gershenzon, J. The nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 933–938.
  • MacSweeney, A.; Lange, R.; Fernandes, R.P.M.; Schulz, H.; Dale, G.E.; Douangamath, A.; Proteau, P.J.; Oefner, C. The crystal structure of E. coli 1-deoxy-d-xylulose-5-phosphate reductoisomerase in a ternary complex with the antimalarial compound fosmidomycin and NADPH reveals a tight-binding closed enzyme conformation. J. Mol. Biol. 2005, 345, 115–127.
  • Chappell, J. Biochemistry and molecular biology of the isoprenoid biosynthetic pathway in plants. Annu. Rev. Plant Biol. 1995, 46, 521–547.
  • Vollack, K.U.; Bach, T.J. Cloning of a cDNA encoding cytosolic acetoacetyl-coenzyme A thiolase from radish by functional expression in Saccharomyces cerevisiae. Plant Physiol. 1996, 111, 1097–1107.
  • Ahumada, I.; Cairó, A.; Hemmerlin, A.; González, V.; Pateraki, I.; Bach, T.J.; Rodríguez-Concepción, M.; Campos, N.; Boronat, A. Characterisation of the gene family encoding acetoacetyl-CoA thiolase in Arabidopsis. Funct. Plant Biol. 2008, 35, 1100–1111.
  • Montamat, F.; Guilloton, M.; Karst, F.; Delrot, S. Isolation and characterization of a cDNA encoding Arabidopsis thaliana 3-hydroxy-3-methylglutaryl-coenzyme A synthase. Gene 1995, 167, 197–201.
  • Nagegowda, D.A.; Bach, T.J.; Chye, M.L. Brassica juncea 3-hydroxy-3-methylglutaryl (HMG)-CoA synthase 1: Expression and characterization of recombinant wild-type and mutant enzymes. Biochem. J. 2004, 383, 517–527.
  • Sirinupong, N.; Suwanmanee, P.; Doolittle, R.F.; Suvachitanont, W. Molecular cloning of a new cDNA and expression of 3-hydroxy-3-methylglutaryl-CoA synthase gene from Hevea brasiliensis. Planta 2005, 221, 502–512.
  • Rodwell, V.W.; Beach, M.J.; Bischoff, K.M.; Bochar, D.A.; Darnay, B.G.; Friesen, J.A.; Gill, J.F.; Hedl, M.; Jordan-Starck, T.; Kennelly, P.J. et al. 3-Hydroxy-3-methylglutaryl-CoA reductase. Methods Enzymol. 2000, 324, 259–280.
  • Lumbreras, V.; Campos, N.; Boronat, A. The use of an alternative promoter in the Arabidopsis thaliana HMG1 gene generates an mRNA that encodes a novel 3-hydroxy-3-methylglutaryl coenzyme A reductase isoform with an extended N-terminal region. Plant J. 1995, 8, 541–549.
  • Nagegowda, D.A.; Rhodes, D.; Dudareva, N. The role of the methyl-erythritol-phosphate (MEP) pathway in rhythmic emission of volatiles. In The Chloroplast; Rebeiz, C.A.; Benning, C.; Bohnert, H.J.; Daniell, H.; Hoober, J.K.; Lichtenthaler, H.K.; Portis, A.R.; Tripathy, B.C., Eds.; Springer: Netherlands, 2010; pp 139–154.
  • McCaskill, D.; Croteau, R. Some caveats for bioengineering terpenoid metabolism in plants. Trends Biotechnol. 1998, 16, 349–355.
  • Lee, M.; Leustek, T. Identification of the gene encoding homoserine kinase from Arabidopsis thaliana and characterization of the recombinant enzyme derived from the gene. Arch. Biochem. Biophys. 1999, 372, 135–142.
  • Lluch, M.A.; Masferrer, A.; Arró, M.; Boronat, A.; Ferrer, A. Molecular cloning and expression analysis of the mevalonate kinase gene from Arabidopsis thaliana. Plant Mol. Biol. 2000, 42, 365–376.
  • Simkin, A.J.; Guirimand, G.; Papon, N.; Courdavault, V.; Thabet, I.; Ginis, O.; Bouzid, S.; Giglioli-Guivarc’h, N.; Clastre, M. Peroxisomal localisation of the final steps of the mevalonic acid pathway in planta. Planta 2011, 234, 903–914.
  • Cordier, H.; Karst, F.; Bergès, T. Heterologous expression in Saccharomyces cerevisiae of an Arabidopsis thaliana cDNA encoding mevalonate diphosphate decarboxylase. Plant Mol. Biol. 1999, 39, 953–967.
  • Heaps, N.A.; Poulter, C.D. Type-2 isopentenyl diphosphate isomerase: Evidence for a stepwise mechanism. J. Am. Chem. Soc. 2011, 133, 19017–19019.
  • Guirimand, G.; Guihur, A.; Phillips, M.A.; Oudin, A.; Glévarec, G.; Mahroug, S.; Melin, C.; Papon, N.; Clastre, M.; Giglioli-Guivarc’h, N. Triple subcellular targeting of isopentenyl diphosphate isomerases encoded by a single gene. Plant Signal. Behav. 2012, 7, 1–3.
  • Lois, L.M.; Rodríguez‐Concepción, M.; Gallego, F.; Campos, N.; Boronat, A. Carotenoid biosynthesis during tomato fruit development: Regulatory role of 1-deoxy-d-xylulose 5-phosphate synthase. Plant J. 2000, 22, 503–513.
  • Bouvier, F.; d’Harlingue A.; Suire C.; Backhaus R.A.; Camara B. Dedicated roles of plastid transketolases during the early onset of isoprenoid biogenesis in pepper fruits. Plant Physiol. 1998, 117, 1423–1431.
  • Souret, F.F.; Weathers, P.J.; Wobbe, K.K. The mevalonate-independent pathway is expressed in transformed roots of Artemisia annua and regulated by light and culture age. In Vitro Cell. Dev. Biol. Plant 2002, 38, 581–588.
  • Proteau, P.J. 1-Deoxy-d-xylulose 5-phosphate reductoisomerase: An overview. Bioorg. Chem. 2004, 32, 483–493.
  • Han, M.; Heppel, S.C.; Su, T.; Bogs, J.; Zu, Y.; An, Z.; Rausch, T. Enzyme inhibitor studies reveal complex control of methyl-d-erythritol 4-phosphate (MEP) pathway enzyme expression in Catharanthus roseus. PloS ONE 2013, 8, e62467.
  • Lange, B.M.; Turner, G.W. Terpenoid biosynthesis in trichomes—Current status and future opportunities. Plant Biotechnol. J. 2013, 11, 2–22.
  • Carretero-Paulet, L.; Ahumada, I.; Cunillera, N.; Rodríguez-Concepción, M.; Ferrer, A.; Boronat, A.; Campos, N. Expression and molecular analysis of the Arabidopsis DXR gene encoding 1-deoxy-d-xylulose 5-phosphate reductoisomerase, the first committed enzyme of the 2-C-methyl-d-erythritol 4-phosphate pathway. Plant Physiol. 2002, 129, 1581–1591.
  • Bodill, T.; Conibear, A.C.; Blatch, G.L.; Lobb, K.A.; Kaye, P.T. Synthesis and evaluation of phosphonated N-heteroarylcarboxamides as DOXP-reductoisomerase (DXR) inhibitors. Bioorg. Med. Chem. 2011, 19, 1321–1327.
  • Richard, S.B.; Lillo, A.M.; Tetzlaff, C.N.; Bowman, M.E.; Noel, J.P.; Cane, D.E. Kinetic analysis of Escherichia coli 2-C-methyl-d-erythritol-4-phosphate cytidyltransferase, wild type and mutants, reveals roles of active site amino acids. Biochemistry 2004, 43, 12189–12197.
  • Tholl, D.; Lee, S. Terpene specialized metabolism in Arabidopsis thaliana. In The Arabidopsis Book; The American Society of Plant Biologists: Rockville, MD, 2011; p e0143.
  • Lan, X. Molecular cloning and characterization of the gene encoding 2-C-methyl-d-erythritol 4-phosphate cytidyltransferase from hairy roots of Rauvolfia verticillata. Biologia 2013, 68, 91–98.
  • Miallau, L.; Alphey, M.S.; Kemp, L.E.; Leonard, G.A.; McSweeney, S.M.; Hecht, S.; Bacher, A.; Eisenreich, W.; Rohdich, F.; Hunter, W.N. Biosynthesis of isoprenoids: Crystal structure of 4-diphosphocytidyl-2C-methyl-d-erythritol kinase. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 9173–9178.
  • Rohdich, F.; Wungsintaweekul, J.; Lüttgen, H.; Fischer, M.; Eisenreich, W.; Schuhr, C.A.; Fellermeier, M.; Schramek, N.; Zenk, M.H.; Bacher, A. Biosynthesis of terpenoids: 4-Diphosphocytidyl-2-C-methyl-d-erythritol kinase from tomato. Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 8251–8256.
  • Kim, S.M.; Kim, Y.B.; Kuzuyama, T.; Kim, S.U. Two copies of 4-(cytidine 5′-diphospho)-2-C-methyl-d-erythritol kinase (CMK) gene in Ginkgo biloba: molecular cloning and functional characterization. Planta 2008, 228, 941–950.
  • Gao, S.; Lin, J.; Liu X, Deng, Z.; Li, Y.; Sun, X.; Tang, K. Molecular cloning, characterization and functional analysis of a 2C-methyl-d-erythritol 2,4-cyclodiphosphate synthase gene from Ginkgo biloba. J. Biochem. Mol. Biol. 2006, 39, 502–510.
  • Jin, H.; Gong, Y.; Guo, B.; Qiu, C.; Liu, D.; Miao, Z.; Sun, X.; Tang, K. Isolation and characterization of a 2C-methyl-d-erythritol 2,4-cyclodiphosphate synthase gene from Taxus media. Mol. Biol. 2006, 40, 914–921.
  • Seemann, M.; Wegner, P.; Schünemann, V.; Bui, B.T.S.; Wolff, M.; Marquet, A.; Trautwein, A.X.; Rohmer, M. Isoprenoid biosynthesis in chloroplasts via the methylerythritol phosphate pathway: The (E)-4-hydroxy-3-methylbut-2-enyl diphosphate synthase (GcpE) from Arabidopsis thaliana is a [4Fe–4S] protein. J. Biol. Inorg. Chem. 2005, 10, 131–137.
  • Querol, J.; Campos, N.; Imperial, S.; Boronat, A.; Rodríguez-Concepción, M. Functional analysis of the Arabidopsis thaliana GCPE protein involved in plastid isoprenoid biosynthesis. FEBS Lett. 2002, 514, 343–346.
  • Rodríguez-Concepción, M.; Querol, J.; Lois, L.M.; Imperial, S.; Boronat, A. Bioinformatic and molecular analysis of hydroxymethylbutenyl diphosphate synthase (GCPE) gene expression during carotenoid accumulation in ripening tomato fruit. Planta 2003, 217, 476–482.
  • Gräwert, T.; Kaiser, J.; Zepeck, F.; Laupitz, R.; Hecht, S.; Amslinger, S.; Schramek, N.; Schleicher, E.; Weber, S.; Haslbeck, M. IspH protein of Escherichia coli: Studies on iron-sulfur cluster implementation and catalysis. J. Am. Chem. Soc. 2004, 126, 12847–12855.
  • Cunningham, F.X.; Lafond, T.P.; Gantt, E. Evidence of a role for LytB in the nonmevalonate pathway of isoprenoid biosynthesis. J. Bacteriol. 2000, 182, 5841–5848.
  • Sun, Y.; Chen, M.; Tang, J.; Liu, W.; Yang, C.; Yang, Y.; Lan, X.; Hsieh, M.; Liao, Z. The 1-hydroxy-2-methyl-butenyl 4-diphosphate reductase gene from Taxus media: Cloning, characterization and functional identification. Afr. J. Biotechnol. 2009, 8, 4339–4346.
  • Wouters, J.; Oudjama, Y.; Ghosh, S.; Stalon, V.; Droogmans, L.; Oldfield, E. Structure and mechanism of action of isopentenylpyrophosphate-dimethylallylpyrophosphate isomerase. J. Am. Chem. Soc. 2003, 125, 3198–3199.
  • Durbecq, V.; Sainz, G.; Oudjama, Y.; Clantin, B.; Bompard-Gilles, C.; Tricot, C.; Caillet, J.; Stalon, V.; Droogmans, L.; Villeret, V. Crystal structure of isopentenyl diphosphate: Dimethylallyl diphosphate isomerase. EMBO J. 2001, 20, 1530–1537.
  • Hamano, Y.; Dairi, T.; Yamamoto, M.; Kawasaki, T.; Kaneda, K.; Kuzuyama, T.; Itoh, N.; Seto, H. Cloning of a gene cluster encoding enzymes responsible for the mevalonate pathway from a terpenoid-antibiotic-producing Streptomyces strain. Biosci. Biotechnol. Biochem. 2001, 65, 1627–1635.
  • Guirimand, G.; Guihur, A.; Phillips, M.A.; Oudin, A.; Glévarec, G.; Melin, C.; Papon, N.; Clastre, M.; St-Pierre, B.; Rodríguez-Concepción, M. A single gene encodes isopentenyl diphosphate isomerase isoforms targeted to plastids, mitochondria and peroxisomes in Catharanthus roseus. Plant Mol. Biol. 2012, 79, 443–459.
  • Tritsch, D.; Hemmerlin, A.; Bach, T.J.; Rohmer, M. Plant isoprenoid biosynthesis via the MEP pathway: In vivo IPP/DMAPP ratio produced by E-4-hydroxy-3-methylbut-2-enyl diphosphate reductase in tobacco BY-2 cell cultures. FEBS Lett. 2010, 584, 129–134.
  • Cordoba, E.; Salmi, M.; León, P. Unravelling the regulatory mechanisms that modulate the MEP pathway in higher plants. J. Exp. Bot. 2009, 60, 2933–2943.
  • Vranová, E.; Coman, D.; Gruissem, W. Structure and dynamics of the isoprenoid pathway network. Mol. Plant 2012, 5, 318–333.
  • Arigoni, D.; Eisenreich, W.; Latzel, C.; Sagner, S.; Radykewicz, T.; Zenk, M.H.; Bacher, A. Dimethylallyl pyrophosphate is not the committed precursor of isopentenyl pyrophosphate during terpenoid biosynthesis from 1-deoxyxylulose in higher plants. Proc. Natl. Acad. Sci. U. S. A. 1999, 96, 1309–1314.
  • Thiel, R.; Adam, K.P. Incorporation of [1-13C]1-deoxy-d-xylulose into isoprenoids of the liverwort Conocephalum conicum. Phytochemistry 2002, 59, 269–274.
  • Nabeta, K.; Kawae, T.; Kikuchi, T.; Saitoh, T.; Okuyama, H. Biosynthesis of chlorophyll a from 13C-labelled mevalonates and glycine in liverwort. Nonequivalent labelling of phytyl side chain. J. Chem. Soc. Chem. Commun. 1995, 1995, 2529–2530.
  • Itoh, D.; Karunagoda, R.P.; Fushie, T.; Katoh, K.; Nabeta, K. Nonequivalent labeling of the phytyl side chain of chlorophyll a in callus of the hornwort Anthoceros punctatus. J. Nat. Prod. 2000, 63, 1090–1093.
  • Adam, K.P.; Thiel, R.; Zapp, J. Incorporation of 1-[1-13C]deoxy-d-xylulose in chamomile sesquiterpenes. Arch. Biochem. Biophys. 1999, 369, 127–132.
  • Bick, J.A.; Lange, B.M. Metabolic cross talk between cytosolic and plastidial pathways of isoprenoid biosynthesis: Unidirectional transport of intermediates across the chloroplast envelope membrane. Arch. Biochem. Biophys. 2003, 415, 146–154.
  • Flügge, U.I.; Gao, W. Transport of isoprenoid intermediates across chloroplast envelope membranes. Plant Biol. 2005, 7, 91–97.
  • Luthra, R.; Luthra, P.M.; Kumar, S. Redefined role of mevalonate-isoprenoid pathway in terpenoid biosynthesis in higher plants. Curr. Sci. 1999, 76, 133–135.
  • Mahmoud, S.S.; Croteau, R.B. Metabolic engineering of essential oil yield and composition in mint by altering expression of deoxyxylulose phosphate reductoisomerase and menthofuran synthase. Proc. Natl. Acad. Sci. U. S. A. 2001, 98, 8915–8920.
  • Sacchettini, J.C.; Poulter, C.D. Creating isoprenoid diversity. Science 1997, 277, 1788–1789.
  • Phillips, D.R.; Rasbery, J.M.; Bartel, B.; Matsuda, S. Biosynthetic diversity in plant triterpene cyclization. Curr. Opin. Plant Biol. 2006, 9, 305–314.
  • Trapp, S.C.; Croteau, R.B. Genomic organization of plant terpene synthases and molecular evolutionary implications. Genetics 2001, 158, 811–832.
  • Ohnuma, Si.; Hirooka, K.; Tsuruoka, N.; Yano, M.; Ohto, C.; Nakane, H.; Nishino, T. A pathway where polyprenyl diphosphate elongates in prenyltransferase: Insight into a common mechanism of chain length determination of prenyltransferases. J. Biol. Chem. 1998, 273, 26705–26713.
  • Wang, K.C.; Ohnuma, S.I. Isoprenyl diphosphate synthases. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2000, 1529, 33–48.
  • Lesburg, C.A.; Caruthers, J.M.; Paschall, C.M.; Christianson, D.W. Managing and manipulating carbocations in biology: Terpenoid cyclase structure and mechanism. Curr. Opin. Struct. Biol. 1998, 8, 695–703.
  • Kellogg, B.A.; Poulter, C.D. Chain elongation in the isoprenoid biosynthetic pathway. Curr. Opin. Chem. Biol. 1997, 1, 570–578.
  • Sallaud, C.; Rontein, D.; Onillon, S.; Jabès, F.; Duffé, P.; Giacalone, C.; Thoraval, S.; Escoffier, C.; Herbette, G.; Leonhardt, N. A novel pathway for sesquiterpene biosynthesis from Z, Z-farnesyl pyrophosphate in the wild tomato Solanum habrochaites. Plant Cell Online 2009, 21, 301–317.
  • Hsiao, Y.Y.; Jeng, M.F.; Tsai, W.C.; Chuang, Y.C.; Li, C.Y.; Wu, T.S.; Kuoh, C.S.; Chen, W.H.; Chen, H.H. A novel homodimeric geranyl diphosphate synthase from the orchid Phalaenopsis bellina lacking a DD(X)2–4D motif. Plant J. 2008, 55, 719–733.
  • Schmidt, A.; Wächtler, B.; Temp, U.; Krekling, T.; Séguin, A.; Gershenzon, J. A bifunctional geranyl and geranylgeranyl diphosphate synthase is involved in terpene oleoresin formation in Picea abies. Plant Physiol. 2010, 152, 639–655.
  • Burke, C.C.; Wildung, M.R.; Croteau, R. Geranyl diphosphate synthase: Cloning, expression, and characterization of this prenyltransferase as a heterodimer. Proc. Natl. Acad. Sci. U. S. A. 1999, 96, 13062–13067.
  • Tholl, D.; Kish, C.M.; Orlova, I.; Sherman, D.; Gershenzon, J.; Pichersky, E.; Dudareva, N. Formation of monoterpenes in Antirrhinum majus and Clarkia breweri flowers involves heterodimeric geranyl diphosphate synthases. Plant Cell Online 2004, 16, 977–992.
  • Wang, G.; Dixon, R.A. Heterodimeric geranyl(geranyl)diphosphate synthase from hop (Humulus lupulus) and the evolution of monoterpene biosynthesis. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 9914–9919.
  • Wu, S.; Schalk, M.; Clark, A.; Miles, R.B.; Coates, R.; Chappell, J. Redirection of cytosolic or plastidic isoprenoid precursors elevates terpene production in plants. Nat. Biotechnol. 2006, 24, 1441–1447.
  • Gaffe, J.; Bru, J.P.; Causse, M.; Vidal, A.; Stamitti-Bert, L.; Carde, J.P.; Gallusci, P. LEFPS1, a tomato farnesyl pyrophosphate gene highly expressed during early fruit development. Plant Physiol. 2000, 123, 1351–1362.
  • Hemmerlin, A.; Rivera, S.B.; Erickson, H.K.; Poulter, C.D. Enzymes encoded by the farnesyl diphosphate synthase gene family in the big sagebrush Artemisia tridentata ssp. spiciformis. J. Biol. Chem. 2003, 278, 32132–32140.
  • Cunillera, N.; Arro, M.; Delourme, D.; Karst, F.; Boronat, A.; Ferrer, A. Arabidopsis thaliana contains two differentially expressed farnesyl-diphosphate synthase genes. J. Biol. Chem. 1996, 271, 7774–7780.
  • Hong, Y.J.; Irmisch, S.; Wang, S.C.; Garms, S.; Gershenzon, J.; Zu, L.; Köllner, T.G.; Tantillo, D.J. Theoretical and experimental analysis of the reaction mechanism of MrTPS2, a triquinane-forming sesquiterpene synthase from chamomile. Chem. Eur. J. 2013, 19, 13590–13600.
  • Osbourn, A.E.; Lanzotti, V. Plant-Derived Natural Products; Springer: New York; 2009.
  • Degenhardt, J.; Köllner, T.G.; Gershenzon, J. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry 2009, 70, 1621–1637.
  • Kampranis, S.C.; Ioannidis, D.; Purvis, A.; Mahrez, W.; Ninga, E.; Katerelos, N.A.; Anssour, S.; Dunwell, J.M.; Degenhardt, J.; Makris, A.M. Rational conversion of substrate and product specificity in a Salvia monoterpene synthase: Structural insights into the evolution of terpene synthase function. Plant Cell Online 2007, 19, 1994–2005.
  • Nagegowda, D.A.; Dudareva, N. Plant biochemistry and biotechnology of flavor compounds and essential oils. In Medicinal Plant Biotechnology; Kayser, O.; Quax, W.J., Eds.; GmbH & Co. KGaA: Weinheim, Germany, 2008; pp 469–492.
  • Chen, F.; Tholl, D.; Bohlmann, J.; Pichersky, E. The family of terpene synthases in plants: A mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J. 2011, 66, 212–229.
  • Bohlmann, J.; Phillips, M.; Ramachandiran, V.; Katoh, S.; Croteau, R. cDNA cloning, characterization, and functional expression of four new monoterpene synthase members of the Tpsd gene family from grand fir (Abies grandis). Arch. Biochem. Biophys. 1999, 368, 232–243.
  • Maruyama, T.; Saeki, D.; Ito, M.; Honda, G. Molecular cloning, functional expression and characterization of d-limonene synthase from Agastache rugosa. Biol. Pharm. Bull. 2002, 25, 661–665.
  • Dudareva, N.; Martin, D.; Kish, C.M.; Kolosova, N.; Gorenstein, N.; Fäldt, J.; Miller, B.; Bohlmann, J. (E)-β-ocimene and myrcene synthase genes of floral scent biosynthesis in snapdragon: Function and expression of three terpene synthase genes of a new terpene synthase subfamily. Plant Cell Online 2003, 15, 1227–1241.
  • Nagegowda, D.A.; Gutensohn, M.; Wilkerson, C.G.; Dudareva, N. Two nearly identical terpene synthases catalyze the formation of nerolidol and linalool in snapdragon flowers. Plant J. 2008, 55, 224–239.
  • Chen, F.; Tholl, D.; D’Auria, J.C.; Farooq, A.; Pichersky, E.; Gershenzon, J. Biosynthesis and emission of terpenoid volatiles from Arabidopsis flowers. Plant Cell Online 2003, 15, 481–494.
  • Fäldt, J.; Arimura, G-I.; Gershenzon, J.; Takabayashi, J.; Bohlmann, J. Functional identification of AtTPS03 as (E)-β-ocimene synthase: A monoterpene synthase catalyzing jasmonate- and wound-induced volatile formation in Arabidopsis thaliana. Planta 2003, 216, 745–751.
  • Bohlmann, J.; Martin, D.; Oldham, N.J.; Gershenzon, J. Terpenoid secondary metabolism in Arabidopsis thaliana: cDNA cloning, characterization, and functional expression of a myrcene/(E)-β-ocimene synthase. Arch. Biochem. Biophys. 2000, 375, 261–269.
  • Chen, F.; Ro, D.-K.; Petri, J.; Gershenzon, J.; Bohlmann, J.; Pichersky, E.; Tholl, D. Characterization of a root-specific Arabidopsis terpene synthase responsible for the formation of the volatile monoterpene 1,8-cineole. Plant Physiol. 2004, 135, 1956–1966.
  • Jia, J.-W.; Crock, J.; Lu, S.; Croteau, R.; Chen, X.-Y. (3R)-Linalool synthase from Artemisia annua L.: cDNA isolation, characterization, and wound induction. Arch. Biochem. Biophys. 1999, 372, 143–149.
  • Lu, S.; Xu, R.; Jia, J.-W.; Pang, J.; Matsuda, S.P.; Chen, X.-Y. Cloning and functional characterization of a β-pinene synthase from Artemisia annua that shows a circadian pattern of expression. Plant Physiol. 2002, 130, 477–486.
  • Guennewich, N.; Page, JE.; Köllner, TG.; Degenhardt, J.; Kutchan, TM. Functional expression and characterization of trichome-specific (−)-limonene synthase and (+)-α-pinene synthase from Cannabis sativa. Nat. Prod. Commun. 2007, 2, 223–232.
  • Zeng, Y.; Yang, T. RNA isolation from highly viscous samples rich in polyphenols and polysaccharides. Plant Mol. Biol. Report. 2002, 20, 417–417.
  • Lücker, J.; El Tamer, M.K.; Schwab, W.; Verstappen, F.W.; van der Plas, L.H.; Bouwmeester, H.J.; Verhoeven, H.A. Monoterpene biosynthesis in lemon (Citrus limon). Eur. J. Biochem. 2002, 269, 3160–3171.
  • Shimada, T.; Endo, T.; Fujii, H.; Hara, M.; Omura, M. Isolation and characterization of (E)-beta-ocimene and 1,8-cineole synthases in Citrus unshiu Marc. Plant Sci. 2005, 168, 987–995.
  • Shimada, T.; Endo, T.; Fujii, H.; Omura, M. Isolation and characterization of a new d-limonene synthase gene with a different expression pattern in Citrus unshiu Marc. Sci. Hortic. 2005, 105, 507–512.
  • Shimada, T.; Endo, T.; Fujii, H.; Hara, M.; Ueda, T.; Kita, M.; Omura, M. Molecular cloning and functional characterization of four monoterpene synthase genes from Citrus unshiu Marc. Plant Sci. 2004, 166, 49–58.
  • Aharoni, A.; Giri, A.P.; Verstappen, F.W.; Bertea, C.M.; Sevenier, R.; Sun, Z.; Jongsma, M.A.; Schwab, W.; Bouwmeester, H.J. Gain and loss of fruit flavor compounds produced by wild and cultivated strawberry species. Plant Cell Online 2004, 16, 3110–3131.
  • Landmann, C.; Fink, B.; Festner, M.; Dregus, M.; Engel, K.-H.; Schwab, W. Cloning and functional characterization of three terpene synthases from lavender (Lavandula angustifolia). Arch. Biochem. Biophys. 2007, 465, 417–429.
  • Arimura, G-I.; Ozawa, R.; Kugimiya, S.; Takabayashi, J.; Bohlmann, J. Herbivore-induced defense response in a model legume. Two-spotted spider mites induce emission of (E)-β-ocimene and transcript accumulation of (E)-β-ocimene synthase in Lotus japonicus. Plant Physiol. 2004, 135, 1976–1983.
  • van Schie, C.C.; Haring, M.A.; Schuurink, R.C. Tomato linalool synthase is induced in trichomes by jasmonic acid. Plant Mol. Biol. 2007, 64, 251–263.
  • Demissie, Z.A.; Erland, L.A.; Rheault, M.R.; Mahmoud, S.S. The Biosynthetic origin of irregular monoterpenes in Lavandula isolation and biochemical characterization of a novel cis-prenyl diphosphate synthase gene, lavandulyl diphosphate synthase. J. Biol. Chem. 2013, 288, 6333–6341.
  • Lee, S.; Chappell, J. Biochemical and genomic characterization of terpene synthases in Magnolia grandiflora. Plant Physiol. 2008, 147, 1017–1033.
  • Irmisch, S.; Krause, S.T.; Kunert, G.; Gershenzon, J.; Degenhardt, J.; Köllner, T.G. The organ-specific expression of terpene synthase genes contributes to the terpene hydrocarbon composition of chamomile essential oils. BMC Plant Biol. 2012, 12, 84.
  • Shelton, D.; Zabaras, D.; Chohan, S.; Wyllie, S.G.; Baverstock, P.; Leach, D.; Henry, R. Isolation and partial characterisation of a putative monoterpene synthase from Melaleuca alternifolia. Plant Physiol. Biochem. 2004, 42, 875–882.
  • Crowell, A.L.; Williams, D.C.; Davis, E.M.; Wildung, M.R.; Croteau, R. Molecular cloning and characterization of a new linalool synthase. Arch. Biochem. Biophys. 2002, 405, 112–121.
  • Roeder, S.; Hartmann, A.-M.; Effmert, U.; Piechulla, B. Regulation of simultaneous synthesis of floral scent terpenoids by the 1,8-cineole synthase of Nicotiana suaveolens. Plant Mol. Biology 2007, 65, 107–124.
  • Iijima, Y.; Gang, D.R.; Fridman, E.; Lewinsohn, E.; Pichersky, E. Characterization of geraniol synthase from the peltate glands of sweet basil. Plant Physiol. 2004, 134, 370–379.
  • Iijima, Y.; Davidovich-Rikanati, R.; Fridman, E.; Gang, D.R.; Bar, E.; Lewinsohn, E.; Pichersky, E. The biochemical and molecular basis for the divergent patterns in the biosynthesis of terpenes and phenylpropenes in the peltate glands of three cultivars of basil. Plant Physiol. 2004, 136, 3724–3736.
  • Yuan, J.S.; Köllner, T.G.; Wiggins, G.; Grant, J.; Degenhardt, J.; Chen, F. Molecular and genomic basis of volatile-mediated indirect defense against insects in rice. Plant J. 2008, 55, 491–503.
  • Ito, M.; Honda, G. Geraniol synthases from perilla and their taxonomical significance. Phytochemistry 2007, 68, 446–453.
  • Ito, M.; Kiuchi, F.; Yang, L.L.; Honda, G. Perilla citriodora from Taiwan and its phytochemical characteristics. Biol. Pharm. Bull. 2000, 23, 359–362.
  • Hosoi, M.; Ito, M.; Yagura, T.; Adams, R.P.; Honda, G. cDNA isolation and functional expression of myrcene synthase from Perilla frutescens. Biol. Pharm. Bull. 2004, 27, 1979–1985.
  • Arimura, G.-I.; Köpke, S.; Kunert, M.; Volpe, V.; David, A.; Brand, P.; Dabrowska, P.; Maffei, M.E.; Boland, W. Effects of feeding Spodoptera littoralis on lima bean leaves: IV. Diurnal and nocturnal damage differentially initiate plant volatile emission. Plant Physiol. 2008, 146, 965–973.
  • Fäldt, J.; Martin, D.; Miller, B.; Rawat, S.; Bohlmann, J. Traumatic resin defense in Norway spruce (Picea abies): Methyl jasmonate-induced terpene synthase gene expression, and cDNA cloning and functional characterization of (+)-3-carene synthase. Plant Mol. Biol. 2003, 51, 119–133.
  • Martin, D.M.; Fäldt, J.; Bohlmann, J. Functional characterization of nine Norway spruce TPS genes and evolution of gymnosperm terpene synthases of the TPS-d subfamily. Plant Physiol. 2004, 135, 1908–1927.
  • McKay, S.A.B.; Hunter, W.L.; Godard, K.-A.; Wang, S.X.; Martin, D.M.; Bohlmann, J.; Plant, A.L. Insect attack and wounding induce traumatic resin duct development and gene expression of (−)-pinene synthase in Sitka spruce. Plant Physiol. 2003, 133, 368–378.
  • Byun-McKay, A.; Godard, K.-A.; Toudefallah, M.; Martin, D.M.; Alfaro, R.; King, J.; Bohlmann, J.; Plant, A.L. Wound-induced terpene synthase gene expression in Sitka spruce that exhibit resistance or susceptibility to attack by the white pine weevil. Plant Physiol. 2006, 140, 1009–1021.
  • Phillips, M.A.; Wildung, M.R.; Williams, D.C.; Hyatt, D.C.; Croteau, R. cDNA isolation, functional expression, and characterization of (+)-α-pinene synthase and (−)-α-pinene synthase from loblolly pine (Pinus taeda): Stereocontrol in pinene biosynthesis. Arch. Biochem. Biophys. 2003, 411, 267–276.
  • Zapata, F.; Fine, P.V. Diversification of the monoterpene synthase gene family (TPSb) in Protium, a highly diverse genus of tropical trees. Mol. Phylogenet. Evol. 2013, 68, 432–442.
  • Huber, D.P.; Philippe, R.N.; Godard, K.-A.; Sturrock, R.N.; Bohlmann, J. Characterization of four terpene synthase cDNAs from methyl jasmonate-induced Douglas-fir, Pseudotsuga menziesii. Phytochemistry 2005, 66, 1427–1439.
  • Fischbach, R.J.; Zimmer, W.; Schnitzler, J.P. Isolation and functional analysis of a cDNA encoding a myrcene synthase from holm oak (Quercus ilex L.). Eur. J. Biochem. 2001, 268, 5633–5638.
  • Kampranis, S.C.; Ioannidis, D.; Purvis, A.; Mahrez, W.; Ninga, E.; Katerelos, N.A.; Anssour, S.; Dunwell, J.M.; Degenhardt, J.; Makris, A.M., et al. Rational conversion of substrate and product specificity in a Salvia monoterpene synthase: Structural insights into the evolution of terpene synthase function. Plant Cell Online 2007, 19, 1994–2005.
  • Hoelscher, D.J.; Williams, D.C.; Wildung, M.R.; Croteau, R. A cDNA clone for 3-carene synthase from Salvia stenophylla. Phytochemistry 2003, 62, 1081–1086.
  • Jones, C.G.; Keeling, C.I.; Ghisalberti, E.L.; Barbour, E.L.; Plummer, J.A.; Bohlmann, J. Isolation of cDNAs and functional characterisation of two multi-product terpene synthase enzymes from sandalwood, Santalum album L. Arch. Biochem. Biophys. 2008, 477, 121–130.
  • Maruyama, T.; Ito, M.; Kiuchi, F.; Honda, G. Molecular cloning, functional expression and characterization of d-limonene synthase from Schizonepeta tenuifolia. Biol. Pharm. Bull. 2001, 24, 373–377.
  • Schilmiller, A.L.; Schauvinhold, I.; Larson, M.; Xu, R.; Charbonneau, A.L.; Schmidt, A.; Wilkerson, C.; Last, R.L.; Pichersky, E. Monoterpenes in the glandular trichomes of tomato are synthesized from a neryl diphosphate precursor rather than geranyl diphosphate. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 10865–10870.
  • Martin, D.M.; Bohlmann, J. Identification of Vitis vinifera (−)-α-terpineol synthase by in silico screening of full-length cDNA ESTs and functional characterization of recombinant terpene synthase. Phytochemistry 2004, 65, 1223–1229.
  • Fu, H.; Dooner, H.K. Intraspecific violation of genetic colinearity and its implications in maize. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 9573–9578.
  • Lin, C.; Shen, B.; Xu, Z.; Köllner, T.G.; Degenhardt, J.; Dooner, H.K. Characterization of the monoterpene synthase gene tps26, the ortholog of a gene induced by insect herbivory in maize. Plant Physiol. 2008, 146, 940–951.
  • Wu, S.; Schoenbeck, M.A.; Greenhagen, B.T.; Takahashi, S.; Lee, S.; Coates, R.M.; Chappell, J. Surrogate splicing for functional analysis of sesquiterpene synthase genes. Plant Physiol. 2005, 138, 1322–1333.
  • Mayer, K.; Schuller, C.; Wambutt, R.; Murphy, G.; Volckaert, G.; Pohl, T.; Dusterhoft, A.; Stiekema, W.; Entian, K.D.; Terryn, N., et al. Sequence and analysis of chromosome 4 of the plant Arabidopsis thaliana. Nature 1999, 402, 769–777.
  • Cai, Y.; Jia, J.-W.; Crock, J.; Lin, Z.-X.; Chen, X.-Y. Croteau, R. A cDNA clone for β-caryophyllene synthase from Artemisia annua. Phytochemistry 2002, 61, 523–529.
  • Chang, Y.-J.; Song, S.-H.; Park, S.-H.; Kim, S.-U. Amorpha-4,11-diene synthase of Artemisia annua: cDNA isolation and bacterial expression of a terpene synthase involved in artemisinin biosynthesis. Arch. Biochem. Biophys. 2000, 383, 178–184.
  • Mercke, P.; Bengtsson, M.; Bouwmeester, H.J.; Posthumus, M.A.; Brodelius, P.E. Molecular cloning, expression, and characterization of amorpha-4,11-diene synthase, a key enzyme of artemisinin biosynthesis in Artemisia annua L. Arch. Biochem. Biophys. 2000, 381, 173–180.
  • Wallaart, T.E.; Bouwmeester, H.J.; Hille, J.; Poppinga, L.; Maijers, N.C. Amorpha-4,11-diene synthase: Cloning and functional expression of a key enzyme in the biosynthetic pathway of the novel antimalarial drug artemisinin. Planta 2001, 212, 460–465.
  • Van Geldre, E.; De Pauw, I.; Inzé, D.; Van Montagu, M., Van den Eeckhout, E. Cloning and molecular analysis of two new sesquiterpene cyclases from Artemisia annua L. Plant Sci. 2000, 158, 163–171.
  • Hua, L.; Matsuda, S.P. The molecular cloning of 8-epicedrol synthase from Artemisia annua. Arch. Biochem. Biophys. 1999, 369, 208–212.
  • Mercke, P.; Crock, J.; Croteau, R.; Brodelius, P.E. Cloning, expression, and characterization of epi-cedrol synthase, a sesquiterpene cyclase from Artemisia annua L. Arch. Biochem. Biophys. 1999, 369, 213–222.
  • Picaud, S.; Brodelius, M.; Brodelius, P.E. Expression, purification and characterization of recombinant (E)-β-farnesene synthase from Artemisia annua. Phytochemistry 2005, 66, 961–967.
  • Bertea, C.M.; Voster, A.; Verstappen, F.W.; Maffei, M.; Beekwilder, J.; Bouwmeester, H.J. Isoprenoid biosynthesis in Artemisia annua: Cloning and heterologous expression of a germacrene A synthase from a glandular trichome cDNA library. Arch. Biochem. Biophys. 2006, 448, 3–12.
  • Bouwmeester, H.J.; Kodde, J.; Verstappen, F.W.; Altug, I.G.; de Kraker, J.-W.; Wallaart, T.E. Isolation and characterization of two germacrene A synthase cDNA clones from chicory. Plant Physiol. 2002, 129, 134–144.
  • Maruyama, T.; Ito, M.; Honda, G. Molecular cloning, functional expression and characterization of (E)-beta-farnesene synthase from Citrus junos. Biol. Pharm. Bull. 2001, 24, 1171–1175.
  • Sharon-Asa, L.; Shalit, M.; Frydman, A.; Bar, E.; Holland, D.; Or, E.; Lavi, U.; Lewinsohn, E.; Eyal, Y. Citrus fruit flavor and aroma biosynthesis: Isolation, functional characterization, and developmental regulation of Cstps1, a key gene in the production of the sesquiterpene aroma compound valencene. Plant J. 2003, 36, 664–674.
  • Portnoy, V.; Benyamini, Y.; Bar, E.; Harel-Beja, R.; Gepstein, S.; Giovannoni, J.J.; Schaffer, A.A.; Burger, J.; Tadmor, Y.; Lewinsohn, E.; Katzir, N. The molecular and biochemical basis for varietal variation in sesquiterpene content in melon (Cucumis melo L.) rinds. Plant Mol. Biol. 2008, 66, 647–661.
  • Mercke, P.; Kappers, I.F.; Verstappen, F.W.; Vorst, O.; Dicke, M.; Bouwmeester, H.J. Combined transcript and metabolite analysis reveals genes involved in spider mite induced volatile formation in cucumber plants. Plant Physiol. 2004, 135, 2012–2024.
  • Shah, F.H.; Cha, T. A mesocarp- and species-specific cDNA clone from oil palm encodes for sesquiterpene synthase. Plant Sci. 2000, 154, 153–160.
  • Tan, X.-P.; Liang, W.-Q.; Liu, C.-J.; Luo, P.; Heinstein, P.; Chen, X.-Y. Expression pattern of (+)-δ-cadinene synthase genes and biosynthesis of sesquiterpene aldehydes in plants of Gossypium arboreum L. Planta 2000, 210, 644–651.
  • Townsend, B.J.; Poole, A.; Blake, C.J.; Llewellyn, D.J. Antisense suppression of a (+)-δ-cadinene synthase gene in cotton prevents the induction of this defense response gene during bacterial blight infection but not its constitutive expression. Plant Physiol. 2005, 138, 516–528.
  • Meng, Y.-L.; Jia, J.-W.; Liu, C.-J.; Liang, W.-Q.; Heinstein, P.; Chen, X.-Y. Coordinated accumulation of (+)-δ-cadinene synthase mRNAs and gossypol in developing seeds of Gossypium hirsutum and a new member of the cad 1 family from G. arboreum. J. Nat. Prod. 1999, 62, 248–252.
  • Chang, Y.-J.; Jin, J.; Nam, H.-Y.; Kim, S.-U. Point mutation of (+)-germacrene A synthase from Ixeris dentata. Biotechnol. Lett. 2005, 27, 285–288.
  • Bennett, M.H.; Mansfield, J.W.; Lewis, M.J.; Beale, M.H. Cloning and expression of sesquiterpene synthase genes from lettuce (Lactuca sativa L.). Phytochemistry 2002, 60, 255–261.
  • van der Hoeven, R.S.; Monforte, A.J.; Breeden, D.; Tanksley, S.D.; Steffens, J.C. Genetic control and evolution of sesquiterpene biosynthesis in Lycopersicon esculentum and L. hirsutum. Plant Cell Online 2000, 12, 2283–2294.
  • Colby, S.M.; Crock, J.; Dowdle-Rizzo, B.; Lemaux, P.G.; Croteau, R. Germacrene C synthase from Lycopersicon esculentum cv. VFNT Cherry tomato: cDNA isolation, characterization, and bacterial expression of the multiple product sesquiterpene cyclase. Proc. Natl. Acad. Sci. U. S. A. 1998, 95, 2216–2221.
  • Pechous, S.W.; Whitaker, B.D. Cloning and functional expression of an (E, E)-α-farnesene synthase cDNA from peel tissue of apple fruit. Planta 2004, 219, 84–94.
  • Gomez, S.K.; Cox, M.M.; Bede, J.C.; Inoue, K.; Alborn, H.T.; Tumlinson, J.H.; Korth, K.L. Lepidopteran herbivory and oral factors induce transcripts encoding novel terpene synthases in Medicago truncatula. Arch. Insect Biochem. Physiol. 2005, 58, 114–127.
  • Arimura, G.-i.; Garms, S.; Maffei, M.; Bossi, S.; Schulze, B.; Leitner, M.; Mithöfer, A.; Boland, W. Herbivore-induced terpenoid emission in Medicago truncatula: Concerted action of jasmonate, ethylene and calcium signaling. Planta 2008, 227, 453–464.
  • Prosser, I.M.; Adams, R.J.; Beale, M.H.; Hawkins, N.D.; Phillips, A.L.; Pickett, J.A.; Field, L.M. Cloning and functional characterisation of a cis-muuroladiene synthase from black peppermint (Mentha × piperita) and direct evidence for a chemotype unable to synthesise farnesene. Phytochemistry 2006, 67, 1564–1571.
  • Bohlmann, J.; Stauber, E.J.; Krock, B.; Oldham, N.J.; Gershenzon, J.; Baldwin, I.T. Gene expression of 5-epi-aristolochene synthase and formation of capsidiol in roots of Nicotiana attenuata and N. sylvestris. Phytochemistry 2002, 60, 109–116.
  • Cheng, A.-X.; Xiang, C.-Y.; Li, J.-X.; Yang, C.-Q.; Hu, W.-L.; Wang, L.-J.; Lou, Y.-G.; Chen, X.-Y. The rice (E)-β-caryophyllene synthase (OsTPS3) accounts for the major inducible volatile sesquiterpenes. Phytochemistry 2007, 68, 1632–1641.
  • Cho, E.-M.; Okada, A.; Kenmoku, H.; Otomo, K.; Toyomasu, T.; Mitsuhashi, W.; Sassa, T.; Yajima, A.; Yabuta, G.; Mori, K., et al. Molecular cloning and characterization of a cDNA encoding ent-cassa-12,15-diene synthase, a putative diterpenoid phytoalexin biosynthetic enzyme, from suspension-cultured rice cells treated with a chitin elicitor. Plant J. 2004, 37, 1–8.
  • Nemoto, T.; Cho, E.-M.; Okada, A.; Okada, K.; Otomo, K.; Kanno, Y.; Toyomasu, T.; Mitsuhashi, W.; Sassa, T.; Minami, E., et al. Stemar-13-ene synthase, a diterpene cyclase involved in the biosynthesis of the phytoalexin oryzalexin S in rice. FEBS Lett. 2004, 571, 182–186.
  • Sallaud, C.; Rontein, D.; Onillon, S.; Jabès, F.; Duffé, P.; Giacalone, C.; Thoraval, S.; Escoffier, C.; Herbette, G.; Leonhardt, N, et al. A novel pathway for sesquiterpene biosynthesis from Z, Z-farnesyl pyrophosphate in the wild tomato Solanum habrochaites. Plant Cell 2009, 21, 301–317.
  • Köllner, T.G.; Schnee, C.; Gershenzon, J.; Degenhardt, J. The variability of sesquiterpenes emitted from two Zea mays cultivars is controlled by allelic variation of two terpene synthase genes encoding stereoselective multiple product enzymes. Plant Cell Online 2004, 16, 1115–1131.
  • Davis, E.M.; Croteau, R. Cyclization enzymes in the biosynthesis of monoterpenes, sesquiterpenes, and diterpenes. In Biosynthesis; Springer: Berlin Heidelberg, Germany, 2000; pp 53–95.
  • Bohlmann, J.; Gershenzon, J. Old substrates for new enzymes of terpenoid biosynthesis. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 10402–10403.
  • Falara, V.; Akhtar, T.A.; Nguyen, T.T.H.; Spyropoulou, E.A.; Bleeker, P.M.; Schauvinhold, I.; Matsuba, Y.; Bonini, M.E.; Schilmiller, A.L.; Last, R.L., et al. The tomato terpene synthase gene family. Plant Physiol. 2011, 157, 770–789.
  • Demissie, Z.A.; Erland, L.A.E.; Rheault, M.R.; Mahmoud, S.S. The Biosynthetic origin of irregular monoterpenes in Lavandula Isolation and biochemical characterization of a novel cis-prenyl diphosphate synthase gene, lavandulyl diphosphate synthase. J. Biol. Chem. 2013, 288, 6333–6341.
  • Hsieh, F.L.; Chang, T.H.; Ko, T.P.; Wang, A.H.J. Structure and mechanism of an Arabidopsis medium/long-chain-length prenyl pyrophosphate synthase. Plant Physiol. 2011, 155, 1079–1090.
  • Effmert, U.; Große, J.; Röse, U.S.R.; Ehrig, F.; Kägi, R.; Piechulla, B. Volatile composition, emission pattern, and localization of floral scent emission in Mirabilis jalapa (Nyctaginaceae). Am. J. Bot. 2005, 92, 2–12.
  • Dong, L.; Miettinen, K.; Goedbloed, M.; Verstappen, F.W.A.; Voster, A.; Jongsma, M.A.; Memelink, J.; Krol, Svd.; Bouwmeester, H.J. Characterization of two geraniol synthases from Valeriana officinalis and Lippia dulcis: Similar activity but difference in subcellular localization. Metab. Eng. 2013, 20, 198–211.
  • Szkopiñska, A.; Plochocka, D. Farnesyl diphosphate synthase; regulation of product specificity. Acta Biochim. Pol. 2005, 52, 45–55.
  • Manzano, D.; Busquets, A.; Closa, M.; Hoyerová, K.; Schaller, H.; Kamínek, M.; Arró, M.; Ferrer, A. Overexpression of farnesyl diphosphate synthase in Arabidopsis mitochondria triggers light-dependent lesion formation and alters cytokinin homeostasis. Plant Mol. Biol. 2006, 61, 195–213.
  • Bouwmeester, H.J.; Gershenzon, J.; Konings, M.C.; Croteau, R. Biosynthesis of the monoterpenes limonene and carvone in the fruit of caraway I. Demonstration of Enzyme activities and their changes with development. Plant Physiol. 1998, 117, 901–912.
  • Turner, G.W.; Croteau, R. Organization of monoterpene biosynthesis in Mentha. Immunocytochemical localizations of geranyl diphosphate synthase, limonene-6-hydroxylase, isopiperitenol dehydrogenase, and pulegone reductase. Plant Physiol. 2004, 136, 4215–4227.
  • Turner, G.W.; Gershenzon, J.; Croteau, R.B. Development of peltate glandular trichomes of peppermint. Plant Physiol. 2000, 124, 665–680.
  • Belingheri, L.; Gleizes, M.; Pauly, G.; Carde, J.P.; Marpeau, A. Isolation of cell compartments involved in the biosynthesis of lower terpenoids of Citrofortunella mitis fruits. In Biological Role of Plant Lipids; Biacs, P.A.; Gruiz, K.; Kremmer, T., Eds.; Springer: US; 1989, pp 303–308.
  • Belingheri, L.; Pauly, G.; Gleizes, M.; Marpeau, A. Isolation by an aqueous two-polymer phase system and identification of endomembranes from Citrofortunella mitis fruits for sesquiterpene hydrocarbon synthesis. J. Plant Physiol. 1988, 132, 80–85.
  • Lee, D.S.; Lee, S.H.; Lee, Y.B. Effect of Environment on growth and quality of peppermint (Mentha piperita L.). In XXVI International Horticultural Congress: Protected Cultivation 2002: In Search of Structures, Systems and Plant Materials for Sustainable Greenhouse Production; Papadopoulos, A.P., Ed.; ISHS Acta Horticulturae 633: Toronto, Canada, 2002; pp 253–258.
  • Abbaszadeh, B.; Teymoori, M.; Pouyanfar, M.; Rezaei, M.B.; Mafakheri, S. Growth and essential oil of Mentha longifolia L. var. amphilema from different ecological conditions. Ann. Biol. Res. 2013, 4, 85–90.
  • Abdelmajeed, N.A.; Danial, E.N.; Ayad, H.S. The effect of environmental stress on qualitative and quantitative essential oil of aromatic and medicinal plants. Arch. Sci. 2013, 66, 100–120.
  • Hassiotisa, C.N.; Ntanab, F.; Lazaric, D.M.; Pouliosb, S.; Vlachonasiosb, K.E. Environmental and developmental factors affect essential oil production and quality of Lavandula angustifolia during flowering period. Ind. Crops Prod. 2014, 62, 359–366.
  • Hu, Z.; Zhang, H.; Leng, P.; Zhao, J.; Wang, W.; Wang, S. The emission of floral scent from Lilium ‘siberia’ in response to light intensity and temperature. Acta Physiol. Plant. 2013, 35, 1691–1700.
  • Salim, E.A.; El Hassan, G.M.; Khalid, H.E.S. Effect of spacing and seasonal variation on growth parameters, yield and oil content of mint plants. J. For. Prod. Ind. 2014, 3, 71–74.
  • Khalid, K.A. Effect of N.P. foliar spray on growth and chemical compositions of some medicinal Apiaceae plants grow in arid regions in Egypt. J. Soil Sci. Plant Nutr. 2012, 12, 581–596.
  • Nurzyńska-Wierdak, R. Does mineral fertilization modify essential oil content and chemical composition in medicinal plants? Acta Sci. Pol. Hort. Cult. 2013, 12, 3–16.
  • Khorasaninejad, S.; Mousavi, A.; Soltanloo, H.; Hemmati, K.; Khalighi, A. The effect of drought stress on growth parameters, essential oil yield and constituent of peppermint (Mentha piperita L.). J. Med. Plants Res. 2011, 5, 5360–5365.
  • Khorasaninejad, S.; Mousavi, A.; Soltanloo, H.; Hemmati, K.; Khalighi, A. The effect of salinity stress on growth parameters, essential oil yield and constituent of peppermint (Mentha piperita L.). World Appl. Sci. J. 2010, 11, 1403–1407.
  • Chang, X.; Alderson, P.G.; Wright, C.J. Enhanced UV-B radiation alters basil (Ocimum basilicum L.) growth and stimulates the synthesis of volatile oils. J. Hortic. For. 2009, 12, 27–31.
  • Khorshidi, J.; Tabatabaie, M.F.; Omidbaigi, R.; Sefidkon, F. Effect of densities of planting on yield and essential oil components of Fennel (Foeniculum vulgare Mill Var. Soroksary). J. Agric. Sci. 2009, 1, 152–157.
  • Blande, J.D.; Holopainen, J.K.; Niinemets, Ü. Plant volatiles in polluted atmospheres: Stress responses and signal degradation. Plant Cell Environ. 2014, 37, 1892–1904.
  • Loreto, F.; Schnitzler, J.-P. Abiotic stresses and induced BVOCs. Trends Plant Sci. 2010, 15, 154–166.
  • Adam, D. Scientists discover cloud-thickening chemicals in trees that could offer a new weapon in the fight against global warming. The Guardian 2008. http://www.theguardian.com/environment/2008/oct/31/forests-climatechange
  • Kandi, S.; Godishala, V.; Rao, P.; Ramana, K.V. Biomedical significance of terpenes: An insight. Biomedicine 2015, 3, 8–10.
  • Kesselmeier, J.; Staudt, M. Biogenic volatile organic compounds (VOC): An overview on emission, physiology and ecology. J. Atmos. Chem. 1999, 33, 23–88.
  • Sharkey, T.D.; Wiberley, A.E.; Donohue, A.R. Isoprene emission from plants: Why and how. Ann. Bot. 2008, 101, 5–18.
  • Spinelli, F.; Cellini, A.; Piovene, C.; Nagesh, K.M.; Marchetti, L. Emission and Function Of Volatile Organic Compounds in Response to Abiotic Stress; INTECH Open Access Publisher: Croatia, 2011.
  • Sharkey, T.D. Why plants emit isoprene. Nature 1995, 374, 769.
  • Singsaas, E.; Sharkey, T. The regulation of isoprene emission responses to rapid leaf temperature fluctuations. Plant Cell Environ. 1998, 21, 1181–1188.
  • Rasulov, B.; Hüve, K.; Bichele, I.; Laisk, A.; Niinemets, Ü. Temperature response of isoprene emission in vivo reflects a combined effect of substrate limitations and isoprene synthase activity: A kinetic analysis. Plant Physiol. 2010, 154, 1558–1570.
  • Hanson, D.T.; Swanson, S.; Graham, L.E.; Sharkey, T.D. Evolutionary significance of isoprene emission from mosses. Am. J. Bot. 1999, 86, 634–639.
  • Jun-Wen, C.; Cao K.-F. Plant VOCs emission: A new strategy of thermotolerance. J. For. Res. 2005, 16, 323–326.
  • Keeling, C.I.; Bohlmann, J. Genes,enzymes and chemicals of terpenoid diversity in the constitutive and induced defence of conifers against insects and pathogens. New Phytol. 2006, 170, 657–675.
  • Zulak, K.G.; Bohlmann, J. Terpenoid biosynthesis and specialized vascular cells of conifer defense. J. Integr. Plant Biol. 2010, 52, 86–97.
  • Vuorinen, T.; Reddy, G.; Nerg, A.-M.; Holopainen, JK. Monoterpene and herbivore-induced emissions from cabbage plants grown at elevated atmospheric CO2 concentration. Atmos. Environ. 2004, 38, 675–682.
  • Jardine, K.; Yanez Serrano, A.; Arneth, A.; Abrell, L.; Jardine, A.; van Haren, J.; Artaxo, P.; Rizzo, L.V.; Ishida, F.Y.; Karl, T. Within-canopy sesquiterpene ozonolysis in Amazonia. J. Geophys. Res. Atmos. 2011, 116, D19301.
  • Koul, O.; Walia, S.; Dhaliwal, G.S. Essential oils as green pesticides: Potential and constraints. Biopestic. Int. 2008, 4, 63–84.
  • Kordali, S.; Cakir, A.; Mavi, A.; Kilic, H.; Yildirim, A. Screening of chemical composition and antifungal and antioxidant activities of the essential oils from three Turkish Artemisia species. J. Agric. Food Chem. 2005, 53, 1408–1416.
  • Baser, K.H.C.; Buchbauer, G. Handbook of Essential Oils: Science, Technology, and Applications. CRC Press: Boca Raton, FL, 2009.
  • Fukumoto, S.; Morishita, A.; Furutachi, K.; Terashima, T.; Nakayama, T.; Yokogoshi, H. Effect of flavour components in lemon essential oil on physical or psychological stress. Stress Health 2008, 24, 3–12.
  • Alexandrovich, I.; Rakovitskaya, O.; Kolmo, E.; Sidorova, T.; Shushunov, S. The effect of fennel (Foeniculum vulgare) seed oil emulsion in infantile colic: A randomized, placebo-controlled study. Altern. Ther. Health Med. 2003, 9, 58–61.
  • Edris, A.E. Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: A review. Phytother. Res. 2007, 21, 308–323.
  • Djilani, A.; Dicko, A. The Therapeutic Benefits of Essential Oils. INTECH Open Access Publisher: Croatia, 2012.
  • Tisserand, R.; Young, R. Essential Oil Safety: A Guide for Health Care Professionals; Elsevier Health Sciences: United Kingdom, 2013.
  • Johnson, S.; Boren, K. Topical and oral administration of essential oils—Safety issues. Aromatopia 2013, 22, 43–48.
  • Angelucci, F.L.; Silva, V.V.; Dal Pizzol, C.; Spir, L.G.; Praes, C.; Maibach, H. Physiological effect of olfactory stimuli inhalation in humans: An overview. Int. J. Cosmet. Sci. 2014, 36, 117–123.
  • Anchisi, C.; Meloni, M.C.; Maccioni, A.M. Chitosan beads loaded with essential oils in cosmetic formulations. Int. J. Cosmet. Sci. 2006, 29, 205–214.
  • Muyima, N.; Zulu, G.; Bhengu, T.; Popplewell, D. The potential application of some novel essential oils as natural cosmetic preservatives in an aqueous cream formulation. Flavour Fragr. J. 2002, 17, 258–266.
  • Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475.
  • Kim, S.H.; Lee, S.Y.; Hong, C.Y.; Gwak, K.S.; Park, M.J.; Smith, D.; Choi, I.G. Whitening and antioxidant activities of bornyl acetate and nezukol fractionated from Cryptomeria japonica essential oil. Int. J. Cosmet. Sci. 2013, 35, 484–490.
  • Dreger, M.; Wielgus, K. Application of essential oils as natural cosmetic preservatives. Herba Pol. 2013, 59, 142–156.
  • El Abed, N.; Kaabi, B.; Smaali, M.I.; Chabbouh, M.; Habibi, K.; Mejri, M.; Marzouki, M.N.; Ben Hadj Ahmed, S. Chemical composition, antioxidant and antimicrobial activities of Thymus capitata essential oil with its preservative effect against Listeria monocytogenes inoculated in minced beef meat. Evid. Based Complementary Altern. Med. 2014, 2014, 1–11.
  • Candan, F.; Unlu, M.; Tepe, B.; Daferera, D.; Polissiou, M.; Sökmen, A.; Akpulat, H.A. Antioxidant and antimicrobial activity of the essential oil and methanol extracts of Achillea millefolium subsp. millefolium Afan. (Asteraceae). J. Ethnopharmacol. 2003, 87, 215–220.
  • Prabuseenivasan, S.; Jayakumar, M.; Ignacimuthu, S. In vitro antibacterial activity of some plant essential oils. BMC Complementary Altern. Med. 2006, 6, 39.
  • Soković, M.; Marin, P.D.; Brkić, D.; Van Griensven, L. Chemical composition and antibacterial activity of essential oils of ten aromatic plants against human pathogenic bacteria. Food 2007, 1, 220–226.
  • Sartoratto, A.; Machado, A.L.M.; Delarmelina, C.; Figueira, G.M.; Duarte, M.C.T.; Rehder, V.L.G. Composition and antimicrobial activity of essential oils from aromatic plants used in Brazil. Braz. J. Microbiol. 2004, 35, 275–280.
  • Garcia, C.C.; Talarico, L.; Almeida, N.; Colombres, S.; Duschatzky, C.; Damonte, E.B. Virucidal activity of essential oils from aromatic plants of San Luis, Argentina. Phytother. Res. 2003, 17, 1073–1075.
  • Turina, A.dV.; Nolan, M.; Zygadlo, J.; Perillo, M. Natural terpenes: Self-assembly and membrane partitioning. Biophys. Chem. 2006, 122, 101–113.
  • Di Pasqua, R.; Hoskins, N.; Betts, G.; Mauriello, G. Changes in membrane fatty acids composition of microbial cells induced by addiction of thymol, carvacrol, limonene, cinnamaldehyde, and eugenol in the growing media. J. Agric. Food Chem. 2006, 54, 2745–2749.
  • Harold, E.L.; Simone, H.G.; Geraldine, W. Antimicrobial activity of multipurpose essential oil blends. Health 2012, 4, 443–447.
  • Kunicka-Styczyńska, A.; Sikora, M.; Kalemba, D. Lavender, tea tree and lemon oils as antimicrobials in washing liquids and soft body balms. Int. J. Cosmet. Sci. 2011, 33, 53–61.
  • Dudareva, N.; Pichersky, E. Biology of Floral Scent; CRC Press: Boca Raton, FL, 2010.
  • Degenhardt, J.; Gershenzon, J.; Baldwin, I.T.; Kessler, A. Attracting friends to feast on foes: Engineering terpene emission to make crop plants more attractive to herbivore enemies. Curr. Opin. Biotechnol. 2003, 14, 169–176.
  • Khan, Z.R.; Pickett, J.A.; Berg, J.vd.; Wadhams, L.J.; Woodcock, C.M. Exploiting chemical ecology and species diversity: Stem borer and striga control for maize and sorghum in Africa. Pest Manage. Sci. 2000, 56, 957–962.
  • Aharoni, A.; Giri, A.P.; Deuerlein, S.; Griepink, F.; de Kogel, W.-J.; Verstappen, F.W.A.; Verhoeven, H.A.; Jongsma, M.A.; Schwab, W.; Bouwmeester, H.J. Terpenoid metabolism in wild-type and transgenic Arabidopsis plants. Plant Cell Online 2003, 15, 2866–2884.
  • Aharoni, A.; Jongsma, M.A.; Kim, T.Y.; Ri, M.B.; Giri, A.P.; Verstappen, F.W.A.; Schwab, W.; Bouwmeester, H.J. Metabolic engineering of terpenoid biosynthesis in plants. Phytochem. Rev. 2006, 5, 49–58.
  • Stockhorst, U.; Pietrowsky, R. Olfactory perception, communication, and the nose-to-brain pathway. Physiol. Behav. 2004, 83, 3–11.
  • Lücker, J.; Schwab, W.; van Hautum, B.; Blaas, J.; van der Plas, L.H.W.; Bouwmeester, H.J.; Verhoeven, H.A. Increased and altered fragrance of tobacco plants after metabolic engineering using three monoterpene synthases from lemon. Plant Physiol. 2004, 134, 510–519.
  • Aranovich, D.; Lewinsohn, E.; Zaccai, M. Post-harvest enhancement of aroma in transgenic lisianthus (Eustoma grandiflorum) using the Clarkia breweri benzyl alcohol acetyltransferase (BEAT) gene. Postharvest Biol. Technol. 2007, 43, 255–260.
  • Lucker, J.; Bouwmeester, H.J.; Schwab, W.; Blaas, J.; Van Der Plas, L.H.W.; Verhoeven, H.A. Expression of Clarkia S-linalool synthase in transgenic petunia plants results in the accumulation of S-linalyl-β-d-glucopyranoside. Plant J. 2001, 27, 315–324.
  • Lavy, M.; Zuker, A.; Lewinsohn, E.; Larkov, O.; Ravid, U.; Vainstein, A.; Weiss, D. Linalool and linalool oxide production in transgenic carnation flowers expressing the Clarkia breweri linalool synthase gene. Mol. Breed. 2002, 9, 103–111.
  • Lewinsohn, E.; Schalechet, F.; Wilkinson, J.; Matsui, K.; Tadmor, Y.; Nam, K.H.; Amar, O.; Lastochkin, E.; Larkov, O.; Ravid, U. Enhanced levels of the aroma and flavor compound S-linalool by metabolic engineering of the terpenoid pathway in tomato fruits. Plant Physiol. 2001, 127, 1256–1265.
  • Davidovich-Rikanati, R.; Sitrit, Y.; Tadmor, Y.; Iijima, Y.; Bilenko, N.; Bar, E.; Carmona, B.; Fallik, E.; Dudai, N.; Simon, J.E. Enrichment of tomato flavor by diversion of the early plastidial terpenoid pathway. Nat. Biotechnol. 2007, 25, 899–901.
  • Mahmoud, S.S.; Williams, M.; Croteau, R. Cosuppression of limonene-3-hydroxylase in peppermint promotes accumulation of limonene in the essential oil. Phytochemistry 2004, 65, 547–554.
  • Lange, B.M.; Ahkami, A. Metabolic engineering of plant monoterpenes, sesquiterpenes and diterpenes—Current status and future opportunities. Plant Biotechnol. J. 2013, 11, 169–196.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.