979
Views
28
CrossRef citations to date
0
Altmetric
Articles

Bacteriological properties and health-related biochemical components of fermented fish sauce: An overview

, &

References

  • Gildberg, A. Utilization of male Arctic capelin and Atlantic cod intestines for fish sauce production. Bioresour. Technol. 2001, 76, 119–123.
  • Shahidi, F.; Janak-Kamil, Y.V.A. Enzymes from fish and aquatic invertebrates and their application in the food industry. Trends Food Sci. Technol. 2001, 12, 435–464.
  • Visessanguan, W.; Benjakul, S.; Riebroy, S.; Thepkasikul, P. Changes in composition and functional properties of proteins and their contributions to Nham characteristics. Food Chem. 2004, 66, 579–588.
  • Ishige, N. Cultural aspects of fermented fish products in Asia. In Fish Fermentation Technology; Lee, C.-H., Steinkraus, K.H., Reilly, P.J.A., Eds.; Yu Rim Publishing: Seoul, Korea, 1992; pp 21–36.
  • Paludan-Muller, C.; Madsen, M.; Sophanodora, P.; Gram, L.; Moller, P.L. Fermentation and microflora of Plaa-som, a Thai fermented fish product prepared with different salt concentrations. Int. J. Food Microbiol. 2002, 73, 61–70.
  • Riebroy, S.; Benjakul, S.; Visessanguan, W.; Kijrongrojana, K.; Tanaka, M. Some characteristics of commercial som-fak produced in Thailand. Food Chem. 2004, 88, 527–535.
  • Gelman, A.; Drabkin, V.; Glatman, L. Evaluation of lactic acid bacteria, isolated from lightly preserved fish products as starter cultures for new fish based food products. Innov. Food Sci. Emerg. Technol. 2000, 1, 219–226.
  • Visessanguan, W.; Benjakul, S.; Smitinont, T.; Kittikun, C.; Thepkasikul, P.; Panya, A. Changes in microbiological, biochemical and physic-chemical properties of Nham inoculated with different inoculums levels of Lactobacillus curvatus. LWT Food Sci. Technol. 2006, 39, 814–826.
  • Callewaert, R.; Hugas, M.; De Vuyst, L. Competitiveness and bacteriocin production of enterococci in the production of Spanish-style dry fermented sausages. Int. J. Food Microbiol. 2000, 57, 33–42.
  • Huss, H.H.; Valdimarsson, G. Microbiology of salted fish. Fish Tech News: FAO/DANIDA Training projects on Fish Technology and Quality Control 1990, 10, 3–5.
  • Longfils, P.; Monchy, D.; Weinheimer, H.; Chavasit, V.; Nakanishi, Y.; Schumann, K. A comparative intervention trail on fish sauce fortified with NaFe-EDTA and FeSO4 + Citrate in iron deficiency anemic school children in Kampot, Cambodia. Asia Pacific J. Clin. Nutr. 2008, 17, 250–257.
  • Vidanarachchi, J.K.; Ranadheera, C.S.; Wijarathen, T.D.; Udayangani, R.M.C.; Himali, S.M.C.; Pickova, J. Application of seafoods byproducts in the food industry and human nutrition. In Seafood Processing By-products: Trends and Applications; Kim, S.K., Ed.; Springer: New York, 2014; pp 463–528.
  • Curtis, R.I. Umami and the foods of classical antiquity. Am. J. Clin. Nutr. 2009, 90, 712s–718s.
  • Taira, W.; Funatsu, Y.; Satomi, M.; Jakano, T.; Abe, H. Changes in extractive components and microbial proliferation during fermentation of fish sauce from underutilized fish species and quality of final products. Fish. Sci. 2007, 73, 913–923.
  • Yongsawatidigul, J.; Rodtong, S.; Raksakulthai, N. Acceleration of Thai fish sauce fermentation using proteinases and bacterial starter culture. J. Food Sci. 2007, 72, M382–M390.
  • Sanceda, N.; Kurata, T.; Arakawa, N. Accelerated fermentation process for the manufacture of fish sauce using histidine. J. Food Sci. 1996, 61, 220–225.
  • Sanceda, N.; Suzuki, E.; Kurata, T. Quality and sensory acceptance of fish sauce partially substituting sodium chloride or natural salt with potassium chloride during the fermentation process. Int. J. Food Sci. Technol. 2003, 38, 435–443.
  • Xu, W.; Yu, G.; Xue, C.; Xue, Y.; Ren, Y. Biochemical changes associated with fast fermentation of squid processing by-products for low salt fish sauce. Food Chem. 2008, 107, 1597–1604.
  • Olubunmi, F,; Suleman, S.; Uche, I.; Olumide, B. Preliminary production of sauce from Clupeids. N. Y. Sci. J. 2010, 3, 45–49.
  • Ibrahim, S.M. Utilization of Gambusia (Affinis affinis) for fish sauce production. Turk. J. Fish. Aquat. Sci. 2010, 10, 169–172.
  • Hjalmarsson, G.H.; Park, J.W.; Kristbergsson, K. Seasonal effects on the physicochemical characteristics of fish sauce made from capelin (Mallotus villosus). Food Chem. 2007, 103, 495–504.
  • Jiang, J.-J.; Jeng, Q.-X.; Zhu, Z.-W.; Zhang, L.-Y. Chemical and sensory changes associated Yu-lu fermentation process—A traditional Chinese fish sauce. Food Chem. 2007, 104, 1629–1634.
  • Lopsongphon, N.; Cadwallader, K.R.; Rodtong, S.; Yongsawatdigul, J. Characterization of protein hydrolysis and odor-active compounds of fish sauce inoculated with Virgibacillus sp. SK37 under reduced salt content. J. Agric. Food Chem. 2013, 61, 6604–6613.
  • Ijong, F.G.; Ohta, Y. Amino acid composition of Bakasang, a traditional fish sauce from Indonesia. Ledensm. Wiss. Technol. 1995, 28, 236–237.
  • Beddows, C.G. Fermented fish and fish products. In Microbiology of Fermented Foods; Wood, B.J.B., Ed.; London: Blackei Academic and Professional: London, 1998; Vol. 1, pp 416–440.
  • Wichaphon, J.; Thongthai, C.; Assavanig, A.; Lertsiri, S. Volatile aroma compounds of Thai fish sauce in relation to product categorization. Flavor Fragrance J. 2012, 27, 149–156.
  • Aquerreta, Y.; Astiasaran, I.; Bello, J. Use of exogenous enzymes to elaborate the Roman fish sauce ‘garum’. J. Sci. Food Agric. 2001, 82, 107–112.
  • Zarei, M.; Najafzadeh, H.; Eskandari, M.H.; Pashmforoush, M.; Enayati, A.; Gharibi, D.; Fazlara, A. Chemical and microbial properties of mahyaveh, a traditional Iranian fish sauce. Food Control 2012, 23, 511–514.
  • Lopetcharat, K.; Yeung, J.; Park, J.W.; Daeschel, M.A. Fish sauce products and manufacturing: A review. Food Rev. Int. 2001, 17, 65–88.
  • Chindapan, N.; Devahastin, S.; Chiewchan, N. Electrodialysis desalination of fish sauce: Electrodialysis performance and product quality. J. Food Sci. 2009, 74, E363–E371.
  • Thang, V.H.; Koschuh, W.; Novalin, S. Electrodialysis versus chromatography for de-salting silage juice: Comparison of both processes with regard to energy consumption. J. Membr. Sci. 2005, 256, 78–88.
  • Cros, S.; Lignot, B.; Bourseau, P.; Jaouen, P.; Prost, C. Desalination of muscle cooking juices by electrodialysis: Effect on the aroma profile. J. Food Eng. 2005, 67, 425–436.
  • Atungulu, G.; Koide, S.; Sasaki, S.; Cao, W. Ion-exchange membrane mediated eletrodialysis of scallon broth: Ion free amino acid and heavy metal profiles. J. Food Eng. 2007, 78, 1285–1290.
  • Pham, A.J.; Schilling, M. W.; Yoon, Y.; Kamadia, V.V.; Marshall, D.L. Characterization of fish sauce aroma-impact compounds using GC-MS, SPME-osme-GCO, and Stevens’ power law exponents. J. Food Sci. 2008, 73, C268–C274.
  • Jundee, J.; Devahastin, S.; Chiewchan, N. Development and testing of a pilot-scale electrodialyser for desalination of fish sauce. Proc. Eng. 2012, 32, 97–103.
  • Fukami, K.; Funatsu, Y.; Kawasaki, K.; Watabe, S. Improvement of fish sauce odor by treatment with bacteria isolated from the fish-sauce mush (moromi) made from frigate mackerel. J. Food Sci. 2004, 69, 45–49.
  • Thongthai, C.; McGenity, T.J.; Suntinanalert, P.; Grant, W.D. Isolation and characterization of extremely halophilic Archeaebacterium from fermented Thai fish sauce (nam-pla). Lett. Appl. Microbiol. 1992, 14, 111–114.
  • Hanagata, H.; Shida, O.; Takagi, H. Taxonomic homogeneity of a salt tolerant lactic acid bacteria isolated from shoyu mash. J. Gen. Appl. Microbiol. 2003, 49, 95–100.
  • Thongsanit, J.; Tanasupawat, S.; Keeratibibul, S.; Jitikavanich, S. Characterization and identification of Tetragenococcus halophilus and Tetragenococcus muriaticus strains from fish sauce (nam-pla). Japn. J. Lactic Acid Bact. 2002, 13, 46–52.
  • Saisithi, P. Traditional fermented fish: Fish sauce production. In Fisheries processing: Biotechnological applications; Martin, A.M., Ed.; Chapman and Hall: London, 1994; pp 111–131.
  • Kopermsub, P.; Yunchalard, S. Identification of lactic acid bacteria associated with the production of plaa-som, a traditional fermented fish product of Thailand. Int. J. Syst. Evol. Microbiol. 2010, 138, 200–204
  • Srionnual, S.; Yanagida, F.; Lin, L.H.; Hsiao, K.N.; Chen, Y.S. Weissellicin 110, a newly discovered bacteriocin from Weissella cibaria 110, isolated from plaa-som, a fermented fish product from Thailand. Appl. Environ. Microbiol. 2007, 73, 2247–2250.
  • Pal, A.; Ramana, K.V. Purification and characterization of bacteriocin from Weisella paramesenteroides Dfr 8, an isolate from cucumber (Cucumis sativus). J. Food Biochem. 2010, 34, 932–948.
  • Kobayashi, T.; Kajiwara, M.; Wahyuni, M.; Hamada-Sato, N.; Imada, C.; Watanabe, E. Effect of culture conditions on lactic acid production of Tetragenococcus species. J. Appl. Microbiol. 2004, 96, 1215–1221.
  • Toyokawa, Y.; Takahar, H.; Reungsang, A.; Fukuta, M.; Hachimini, Y.; Tachibana, S.; Yasoda, M. Purification and characterization of a halotolerant Bacillus licheniformis RKK-04 isolated from Thai fish sauce. Appl. Microbiol. Biotechnol. 2011, 86, 1867–1875.
  • Sanni, A.I.; Asiedu, M.; Ayernor, G.S. Microflora and chemical composition of momoni, a Ghanaian fermented fish condiment. J. Food Compos. Anal. 2002, 15, 577–583.
  • Noraphat, H.; Buradaleng, S.; Wattanachant, S.; Benjakul, S.; Tani, A.; Maneerat, S. Isolation and screening of lactic acid bacteria from Thai traditional fermented fish (Plasom) and production of plasom from selected strains. Food Control 2011, 22, 401–407.
  • Najjari, A.; Ouzari, H.; Boudabous, A; Zogorec, M. Method for reliable isolation of Lactobacillus sakei strains originating from Tunisian seafood and meat products. Int. J. Food Microbiol. 2008, 121, 342–351.
  • Joffraud, J.J.; Leroi, F.; Roy, C.; Berdague, J.L. Characterization of volatile compounds produced by bacteria isolated from the spoilage flora of cold-smoked salmon. Int. J. Food Microbiol. 2001, 66, 175–184.
  • Lyhs, U.; Korkeala, H.; Bjorkroth, J. Identification of lactic acid bacteria from spoiled, vacuum-packaged “gravid” rainbow trout using ribotyping. Int. J. Food Microbiol. 2002, 72, 147–153.
  • Rapsang, G.F.; Kumar, R.; Joshi, S.R. Identification of Lactobacillus pobuzihii from tungtap: A traditionally fermented fish food, and analysis of its bacteriocingenic potential. Afr. J. Biotechnol. 2011, 10, 12237–12243.
  • Chen, Y.S.; Miyashita, M.; Suzuki, K.; Sato, H.; Hsu, J.S.; Yangida, F. Lactobacillus pobuzihii spp. nov., isolated from pobuzihi (fermented cummingcordia). Int. J. Syst. Evol. Microbiol. 2010, 60, 1914–1917.
  • Chamroensaksri, N.; Akarachranya, A.; Visessanguan, W.; Tanasupawat, S. Characterization of halophilic bacterium NB2-1 from pla-ra and its protease production. J. Food Biochem. 2008, 32, 536–555.
  • Tanasupawat, S.; Namwong, S.; Kudo, T.; Itoh, T. Piscibacillus salipiscarius gen. nov., sp. nov., a moderately halophilic bacterium from fermented fish (pla-ra) in Thailand. J. Syst. Evol. Microbiol. 2007, 57, 1413–1417.
  • Yang, Y.; Cui, H.I.; Zhou, P.J.; Lie, S.J. Halobacterium jilantaiense sp. nov., a halophilic archaeon isolated from a saline lake in Inner Mongolia, China. Int. J. Syst. Evol. Microbiol. 2006, 56, 2353–2355.
  • Yachai, M.; Tanasupawat, S.; Itoh, T.; Benjakul, S.; Visessanguan, W.; Valyasevi, R. Halobacterium piscisalsi sp. nov., from fermented fish (pla-ra) in Thailand. Int. J. Syst. Evol. Microbiol. 2008, 58, 2136–2140.
  • Riebroy, S.; Benjakul, S.; Visessanguan, W.; Tanaka, M. Physical properties and microstructure of commercial som-fug, a fermented fish sausage. Eur. Food Res. Technol. 2005, 220, 520–525.
  • Bernbom, N.; Ng, Y.Y.; Paludan-Muller, C.; Gram, L. Survival and growth of Salmonella and Vibrio in som-fak, a Thai low-salt garlic containing fermented fish product. Int. J. Food Microbiol. 2009, 134, 223–229.
  • Tsai, Y.H.; Kung, H.F.; Lee, T.M.; Chen, H.C.; Chou, S.S.; Wei, C.I.; Hwang, D.F. Determination of histamine in canned mackerel implicated in a food-borne poisoning. Food Control 2005, 16, 579–585.
  • Kim, S.H.; Barros-Velazquez, J.; Ben-Gigirey, B.; Eun, J.B.; Jun, S.H.; Wei, C.I.; An, H. Identification of the main bacteria contributing to histamine formation in seafood to ensure product safety. Food Sci. Biotechnol. 2003, 12, 451–460.
  • Kilinc, B.; Cakli, S.; Tolasa, S.; Dincer, T. Chemical microbiological and sensory changes associated with fish sauce processing. Eur. Food Resour. Technol. 2006, 222, 604–613.
  • Gildberg, A.; Thongthai, C. The effect of reduced salt content and addition of halophilic lactic acid bacteria on quality and composition of fish sauce made from sprat, J. Aquat. Food Prod. Technol. 2001, 10, 77–88.
  • Saithong, P.; Panthavee, W.; Boonyaratanakornkit, M.; Sikkhamondhol, C. Use of a starter culture of lactic acid bacteria in plaa-som, a Thai fermented fish. J. Biosci. Bioeng. 2010, 110, 553–557.
  • Chaiyanan, S.; Chaiyanan, S.; Maugel, T.; Huq, A.; Robb, F. T.; Colwell, R.R. Polyphasic taxonomy of a novel Halobacillus, Halobacillus thailandensis sp. nov. isolated from fish sauce. Syst. Appl. Microbiol. 1999, 22, 360–365.
  • Sinsuwan, S.; Rodtong, S.; Yongsawatdigul, J. Hydrolytic activity of Virgibacillus sp. SK37, a starter culture of fish sauce fermentation and its cell-bound proteinases. World J. Microbiol. Biotechnol. 2012, 28, 2651–2659.
  • Yashikawa, S.; Kurihara, H.; Kawai, Y.; Yamazaki, K.; Tanaka, A.; Nishikiori, T.; Ohta, T. Effect of halotolerant starter microorganisms on chemical characteristics of fermented chum salmon (Oncorhynchus keta) sauce. J. Agric. Food Chem. 2010, 58, 6410–6417.
  • Udomsil, N.; Rodtong, S.; Tanasupawat, S.; Yongsawatdigul, J. Proteinase producing halophilic lactic acid bacteria isolated from fish sauce fermentation and their ability to produce volatile compounds. Int. J. Food Microbiol. 2010, 141, 186–194.
  • Zaman, M.Z.; Bakar, F.A.; Jinap, S.; Bakar, J. Novel starter cultures to inhibit biogenic amines accumulation during fish sauce fermentation. Int. J. Food Microbiol. 2011, 145, 84–91.
  • Arnold, S.H.; Brown, W.D. Histamine toxicity from fish products. Adv. Food Res. 1978, 24, 113–154
  • Latorre-Moratalla, M.L.; Veciana-Nogues, T.; Bover-Cid, S.; Garriga, M.; Aymerich, T.; Zanardi, E.; Ianieri, A.; Fraqueza, M.J.; Patarata, L.; Drosinos, E.H.; Laukova, A.; Talon, R.; Vidal-Carou, M.C. Biogenic amines in traditional fermented sausages produced in selected European countries. Food Chem. 2008, 107, 912–921.
  • Mah, J.H.; Han, H.K.; Oh, Y.J.; Kim, M.J. Biogenic amines in Jeotkals, Korean salted and fermented fish products. Food Chem. 2002, 79, 239–243.
  • Moret, S.; Smela, D.; Populin, T.; Conte, S.L. A survey on free biogenic amine content of fresh and preserved vegetables. Food Chem. 2005, 89, 355–361.
  • Preostos, C.; Loukatos, P.; Komaitis, M. Determination of biogenic amines in wines by HPLC with precolumn dansylation and fluorimetric detection. Food Chem. 2008, 106, 1218–1224.
  • Valsamaki, K.; Michaelidou, A.; Polychroniadou, A. Biogenic amine production in Feta cheese. Food Chem. 2000, 71, 259–266.
  • Moreno, R.B.; Torres, E.A. Histamine levels in fresh fish, a quality index. Presented at the 2001 Institute of Food Technologist (IFT) meeting, New Orleans, LA, June 23–27 2001.
  • Chen, H.C.; Kung, H.F.; Chen, W.C.; Lin, W.F.; Hwang, D.F.; Lee, Y.C.; et al. Determination of histamine and histamine-forming bacteria in tuna dumpling implicated in a food-borne poisoning, Food Chem. 2008, 106, 612–618.
  • Zhai, H.; Yang, X.; Li, L.; Xia, G.; Cen, J.; Huang, H.; Hao, S. Biogenic amines in commercial fish and fish products sold in southern China. Food Control 2012, 25, 303–308.
  • Tsai, T.H.; Lin, C.Y.; Chien, L.T.; Lee, J.M.; Wei, C.I.; Hwang, P.F. Histamine contents of fermented fish products in Taiwan and isolation of histamine-forming bacteria. Food Chem. 2006, 98, 64–70.
  • Tome, E.; Pereira, V.L.; Lopes, C.I.; Gibbs, P.A.; Teixeira, P.C. In vitro tests of suitability of bacteriocin producing lactic acid bacteria, as potential biopreservation cultures in vacuum packaged cold-smoked salman. Food Control 2008, 19, 535–543.
  • Mah, J.H.; Hwang, H.J. Inhibition of biogenic amines formation in a salted and fermented anchovy by Staphylococcus xylosus as a protective culture. Food Control 2009, 20, 796–801.
  • Liu, Z.Y.; Zhang, M.L.; Deng, X.P. Effect of fermentation with mixed starter cultures on biogenic amines in bighead carps surimi. Int. J. Food Sci. Technol. 2010, 45, 930–936.
  • Ozogul, F. Effects of specific lactic acid bacteria species on biogenic amine production by food-borne pathogen. Int. J. Food Sci. Technol. 2011, 46, 478–484.
  • Kagawa, Y., Ed. Standard Table of Food Composition in Japan [in Japanese]; Tokyo: Kagawa Nutrition University Publishing Division: Tokyo, 2000; pp 316–335.
  • Brillantes, S.; Samsorn, W. Determination of histamine in fish sauce from Thailand using a solid extraction and high-performance liquid chromatography. Fish. Sci. 2001, 67, 1163–1168.
  • Kobayashi, T.; Kajiwara, M.; Wahyuni, M.; Hamada-Sato, N.; Imada, C.; Watanabe, E. Effect of culture conditions on lactic acid production of Tetragenococcus species. J. Appl. Microbiol. 2004, 96, 1215–1221.
  • Zaman, M.Z.; Abdulamir, A.S.; Bakar, F.A.; Selamat, J.; Bakar, J. A review: Microbiological, physicochemical and high impact of high level of biogenic amines in fish sauce. Am. J. Appl. Sci. 2009, 6, 1199–1211.
  • Jiang, W.; Xu, Y.; Li, C.; Dond, X.; Wang, D. Biogenic amines in commercially produced Yulu, a Chinese fermented fish sauce. Food Addit. Contam. Part B 2014, 7, 25–29.
  • Ishizuka, H.; Horinouchi, S.; Beppu, T. Putrescine oxidase of Micrococcus rubens: Primary structure and Escherichia coli. J. Gen. Microbiol. 1993, 139, 425–432.
  • Martuscelli, M.; Crudele, M.A.; Gardini, F.; Suzzi, G. Biogenic amine formation and oxidation by Staphylococcus xylosus strains from artisanal fermented sausages. Lett. Applied Microbiol. 2000, 31, 228–232.
  • Zaman, M.J.; Bakar, F.A.; Selamat, J.; Bakar, J.; Ang, J.J.; Chong, C.Y. Degradation of histamine by the halotolerant Staphylococcus carnosus FS19 isolate obtained from fish sauce. Food Control 2014, 40, 58–63.
  • Zaman, M.Z.; Bakar, F.A.; Selamat, J.; Bakar, J. Occurrence of biogenic amines and amines degrading bacteria in fish sauce. Czech J. Food Sci. 2010, 28, 440–449.
  • Dapkevicius, M.L.N.E.; Nout, M.J.R.; Rambouts, F.M.; Houben, J.H.; Wimenga, W. Biogenic amine formation and degradation by potential fish silage starter microorganisms. Int. J. Food Microbiol. 2000, 57, 107–114.
  • Leuschner, R.G.; Hammes, W.P. Tyramine degradation by Micrococci during ripening of fermented sausages. Meat Sci. 1998, 49, 289–296.
  • Parrot, S.; Jones, S.; Cooper, R. 2-Phenylethylamine catabolism by Escherichia coli K12. J. Gen. Microbiol. 1987, 133, 347–351.
  • Becker, K.; Southwick, K.; Reardon, J.; Berg, R.; MacCormack, J.N. Histamine poisoning associated with eating tuna burgers. JAMA 2001, 285, 1327–1330.
  • Haast, H.L.; Sergeeva, O.A.; Sebach, O. Histamine in the nervous system. Physiol. Rev. 2007, 88, 1183–1241.
  • Suzzi, G.; Gardini, F. Biogenic amines in dry fermented sausages: A review. Int. J. Food Microbiol. 2003, 88, 41–54.
  • Lucas, P.M.; Claisse, O.; Lonvaud-Funel, A. High frequency of histamine producing bacteria in the enological environment and instability of the histidine decarboxylase production phenotype. Appl. Environ. Microbiol. 2008, 74, 811–817.
  • Kung, H.F.; Tsai, Y.H.; Wei, C.I. Histamine and other biogenic amines and histamine-forming bacteria from miso products. Food Chem. 2007, 101, 351–356.
  • Maintz, L.; Navak, N. Histamine and histamine intolerance. Am. J. Clin. Nutr. 2007, 85, 1185–1196.
  • Lehane, L.; Olley, J. Histamine fish poisoning revisited. Int. J. Food Microbiol. 2000, 58, 1–37.
  • Michihata, T.; Kato, D.; Yano, T.; Enomoto, T. Contents of polyamines in ishiru (fish sauce). Nippon Shokuhin Kagaku Kaishi 2006, 53, 337–343.
  • Kuda, T.; Mihara, T.; Yano, T. Detection of histamine and histamine-related bacteria in fish-nukazuke, a salted and fermented fish with rice-bran, by simple colorimetric microplate assay. Food Control 2007, 18, 677–681.
  • Kuda, T.; Miyawaki, M. Reduction of histamine in fish sauces by rice bran nuka. Food Control 2010, 21, 1322–1326.
  • Tapingkae, W.; Tanasupawat, S.; Parkin, K.L.; Benjakul, S.; Visessanguan, W. Degradation of histamine by extremely halophilic archaea isolated from high salt-fermented fishery products. Enzyme Microb. Technol. 2010, 46, 92–99.
  • Kim, W.J.; Kim, S.M. Purification and characterization of Bacillus subtilis JM-3 protease from anchovy sauce. J. Food Biochem. 2005, 29, 591–610.
  • Siringan, P.; Raksakulthai, N.; Yongsawatdigul, J. Autolytic activity and biochemical characteristics of endogenous proteinases in Indian anchovy (Stolephorus indicus). Food Chem. 2006, 98, 678–684.
  • El-Beltagy, A.E.; El-Adawy, T.A.; Rahma, E.H.; El-Bedawey, A.A. Purification and characterization of an acidic protease from viscera of bolti fish (Tilapia nilotica). Food Chem. 2004, 86, 33–39.
  • Nilsang, S.; Lertsiri, S.; Saphantharika, M.; Assavanig, A. Optimization of enzymatic hydrolysis of fish soluble concentrate by commercial protease. J. Food Eng. 2005, 70, 571–578.
  • Oetterer, M.; Perujo, S.D.; Gallo, C.R.; Arruda, L.F.; Borghesi, R.; Cruz, A.M.P. Monitoring the sardine (Sardinella brasiliensis) fermentation process to obtain anchovies. Sci. Agric. 2003, 60, 511–517.
  • Kimuru, B.; Konagaya, Y.; Fujii, T. Histamine formation by Tetragenococcus muriaticus, a halophilic lactic acid bacterium isolated from fish sauce. Int. J. Food Microbiol. 2001, 70, 71–77.
  • Siringan, P.; Raksakulthai, N.; Yongsawatdigul, J. Source and changes of proteinase activities of Indian anchovy (Stolephorus spp.) during fish sauce fermentation. J. Sci. Food Agric. 2006, 86, 1970–1976.
  • Hernandez-Herrero, M.M.; Roig-Sages, A.X.; Rodrigez-Jerez, J.J.; Mora-Ventura, M.T. Halotolerant and halophilic histamine-forming bacteria isolated during the ripening of salted anchovies (Engraulis encrasicholus). J. Food Prot. 1999, 62, 509–514.
  • Choi, Y.T.; Heu, M.S.; Kim, H.R.; Pyeun, J.H. Properties of proteases responsible for degradation of muscle proteins during anchovy sauce fermentation. In More Efficient Utilization of Fish and Fisheries Products; Sakaguchiu, M., Ed.; Elsevier: New York, 2004; pp 425–439.
  • Haard, N.F. Protein hydrolysis in sea foods. In Seafoods Chemistry, Processing Technology and Quality; Shahidi, F., Botta, J.R., Eds.; Chapman and Hall: London, 1994; pp 10–26.
  • Simpson, B.K. Digestive proteinases from marine animals. In Seafood Enzymes: Utilization and Influence on Postharvest Seafood Quality; Haard, N.F., Simpson, B.K., Eds.; Mercel Dekker: New York, 2000; pp 531–540.
  • Klomklao, S.; Benjakul, S.; Visessanguan, W. Comparative studies on proteolytic activity of spleen extracts from three tuna species commonly used in Thailand. J. Food Biochem. 2004, 28, 355–372.
  • Klomklao, S.; Benjakul, S.; Visessanguan, W.; Kishmura, H.; Simpson, B.K. Proteolytic degradation of sardine (Sardinella gibbosa) proteins by trypsin from skipjack tuna (Katsuwonus pelamis) spleen. Food Chem. 2006, 98, 14–22.
  • Klomklao, S.; Benjakul, S.; Visessanguan, W.; Kishmura, H. Effect of skipjack tuna spleen on the liquefaction and characteristics of sardine fish sauce. Food Chem. 2006, 98, 440–452.
  • Castillo-Yanez, F.J.; Pacheco-Aguilar, R.; Garcia-Carreno, F.L.; Toro, M.A.N. Characterization of acidic proteolytic enzymes from Monterey sardine (Sardinops sagax caerulea) viscera. Food Chem. 2004, 85, 343–350.
  • Kishimura, H.; Hayashi, K.; Miyashita, Y.; Nonami, Y. Characteristics of trypsins from the viscera of true sardine (Sardinops melanostictus) and the pyloric caeca of arabesque greenling (Pleuroprammus azonus). Food Chem. 2006, 97, 65–70.
  • Klomklao, S.; Kishimura, H.; Benjakul, S. Endogenous proteinases in true sardine (Sardinops melanostictus). Food Chem. 2008, 107, 213–220.
  • Xiao, Y.-Z.; Zhao, S.-Y.; Wu, D.-K.; Lin, W.-M.; Zhang, X.-Y.; Gao, X.-Y. Real-time PCR quantification of protease-producing bacteria in traditional Chinese fish sauce. Food Anal. Methods 2014, 7, 1634–1642.
  • Hiraga, K.; Nishikata, Y.; Nam Wong, S.; Tanasupawat, S.; Takada, K.; Oda, K. Purification and characterization of serine proteinase from a halophilic bacterium, Filobacillus sp. RF2-5. Biosci. Biotechnol. Biochem. 2005, 69, 360–365.
  • Namwong, S.; Hiraga, K.; Takada, K.; Tsunemi, M.; Tanasupawat, S.; Oda, K. A halophilic serine protease from Halobacillus sp. SR 5-3 isolated from fish sauce; purification and characterization. Biosci. Biotechnol. Biochem. 2006, 70, 1395–1401.
  • Yossan, S.; Reungsang, A.; Yasuda, M. Purification and characterization of alkaline protease from Bacillus megaterium isolated from Thai fish sauce fermentation process. Sci. Asia 2006, 32, 377–383.
  • Christensen, J.E.; Dudley, E.G.; Pedersen, J.A.; Steele, J.L. Peptidases and amino acid catabolism in lactic acid bacteria. In Lactic Acid Bacteria: Genetics Metabolism and Applications; Konings, W.N., Kuipers, O.P., Huis Veld, J.H.J., Eds.; Kluwer Academic: Dordrecht, The Netherlands, 1999; pp 217–146.
  • Smit, G.; Smit, B.A.; Engels, W.J.M. Flavor formation by lactic acid bacteria and biochemical flavor profiling of cheese products. FEMS Microbiol. 2005, 29, 591–610.
  • Sanz, Y.; Toldra, F. Purification and characterization of aminopeptidase from Lactobacillus sake. J. Agric. Food Chem. 1997, 45, 1552–1558.
  • Sinsuwan, S.; Rodtong, S.; Yongsawatdigul, J. NaCl-activated extracellular proteinase from Virgibacillus sp. Sk37 isolated from fish sauce fermentation. J. Food Sci. 2007, 72, 264–269.
  • Sinsuwan, P.; Rodtong, S.; Yongsawatdigiul, J. Characterization of Ca2+-activated cell-bound protease from Vigibacillus sp. SK37 isolated from fish sauce fermentation. Food Sci. Technol. 2008, 41, 2166–2174.
  • Fernandez-Espla, M.D.; Garault, P.; Monnet, V.; Rul, F. Streptococcus thermophilus cell wall-anchored protease: Release, purification and biochemical and genetic characterization. Appl. Environ. Microbiol. 2000, 66, 4772–4597.
  • Exterkate, F.A. Structural changes and interactions involved in the Ca2+ triggered stabilization of the cell-bound cell envelope proteinase in Lactococcus lactis subsp. Cremoris SK11. Appl. Environ. Microbiol. 2000, 66, 2021–2028.
  • Gupta, A.; Roy, I.; Patel, R.K.; Singh, S.P.; Khare, S.K.; Gupta, M.N. One-step purification and characterization of an alkaline protease from haloalkaliphilic Bacillus sp. J. Chromatogr. A 2005, 1075, 103–108.
  • Sinsuwan, S.; Rodtong, S.; Yongsawatdigul, J. A NaCl-stable serine proteinase from Virgibacillus sp. SK33 isolated from Thai fish sauce. Food Chem. 2010, 119, 573–579.
  • Fu, X.T.; You, S.G.; Kim, S.M. Characterization of salt-tolerant acid protease produced by Bacillus megatarium KLP-98 and its potential as a fermentation starter for the manufacture of fish sauce. J. Food Biochem. 2008, 32, 279–298.
  • Satomi, M.; Furushita, M.; Oikawa, H.; Yano, Y. Diversity of plasmids encoding histidine decarboxylase gene in Tetragenococcus spp. Isolated from Japanese fish sauce. Int. J. Food Microbiol. 2011, 148, 60–65.
  • Peralta, R.; Shimoda, M.; Osajima, Y. Further identification of volatile compounds in fish sauce. J. Agric. Food Chem. 1996, 44, 3606–3610.
  • Konagaya, Y.; Kimura, B.; Ishida, M.; Fujii, T. Purification and properties of a histidine decarboxylase from Tetragenococcus muriaticus, a halophilic lactic acid bacteria. J. Appl. Microbiol. 2002, 92, 1136–1142.
  • Lee, Y.G.; Kim, J.Y.; Lee, K.W.; Kim, K.H.; Lee, H.J. Peptides from anchovy sauce induce apoptosis in a human lymphoma cell (U937) through the increase of caspase-3 and -8 activities. Ann. N. Y. Acad. Sci. 2003, 1010, 399–404.
  • Uchida, H.; Kondo, D.; Yamashita, S.; Tanaka, T.; Tran, L.H.; Nagona, H.; Uwajima, T. Purification and properties of a protease produced by Bacillus subtilis CN2 isolated from Vietnamese fish sauce. World J. Microbiol. Biotechnol. 2004, 20, 579–582.
  • Yachai, M.; Tanasupawat, S.; Itoh, T.; Benjakul, S.; Visessanguan, W.; Valyasevi, R. Halobacterium piscisalsi sp. nov., from fermented fish (pla-ra) in Thailand. Int. J. Syst. Evol. Microbiol. 2008, 58, 2136–2140.
  • Nishiyama, Y.; Maeda, H.; Nagashima, T.; Watanabe, T.; Mura, K. Partial amino acid sequence of protease-I produced by Bacillus sp. 11-4 isolated from Vietnamese fish sauces. Food Preserv. Sci. 2003, 29, 25–31.
  • Watanabe, F.; Michihata, T.; Takenaka, S.; Kittaka-Katsura, H.; Enomota, T.; Miyamota, E.; Adachi, S. Purification and characterization of corrinoid compounds from a Japanese fish sauce. J. Liq. Chromatogr. Relat. Technol. 2005, 27, 2113–2119.
  • Takenaka, S.; Enomoto, T.; Tsuyama, S.; Watanabe, F. TLC analysis of corrinoid compounds in fish sauce. J. Liq. Chromatogr. Relat. Technol. 2003, 26, 2703–2707.
  • Je, J.Y.; Qian, Z.J.; Lee, S.H.; Byun, H.G.; Kim, S.K. Purification and antioxidant properties of bigeye tuna (Thunnus obesus) dark muscle peptide on free radical-mediated oxidation systems. J. Med. Food 2008, 11, 629–637.
  • Slizyte, R.; Mozuraityte, R.; Martinez-Alvarez, O.; Falch, E.; Fouchereau-Peron, M.; Rustad, T. Functional, bioactive and antioxidative properties of hydrolysates obtained from cod (Gadus morhua) bachbones. Process Biochem. 2009, 44, 668–677.
  • Je, J.Y.; Park, J.Y.; Jung, W.K.; Park, P.J.; Kim, S.K. Isolation of angiotensin I converting enzyme (ACE) inhibitor from fermented oyster sauce, Crassostrea gigas. Food Chem. 2005, 90, 809–814.
  • Clare, D.A.; Swaisgood, H.E. Bioactive milk peptides: A prospectus. J. Dairy Sci. 2000, 83, 1187–1195.
  • Elias, R.J.; Kellerby, S.S.; Decker, E.A. Antioxidant activity of proteins and peptides. Crit. Rev. Food Sci. Nutr. 2008, 48, 430–441.
  • Shin, Z.I.; Yu, R.; Park, S.A. His-His-Leu, an angiotensin I converting enzyme inhibitory peptide derived from Korean soybean paste, exerts anti-hypertensive activity in vivo. J. Agric. Food Chem. 2001, 49, 3004–3009.
  • Kim, S.E.; Kim, H.H.; Kim, J.Y. Anticancer activity of hydrophobic peptides from soy proteins. Biofactors 2000, 12, 151–155.
  • Kim, S.K.; Choi, Y.R.; Park, P.J.; Choi, J.H.; Moon, S.H. Screening of biofunctional peptides from cod processing wastes. J. Korean Soc. Agric. Chem. Biotechnol. 2000, 33, 198–204.
  • Cho, S.S.; Lee, H.K.; Yu, C.Y.; Kim, M.J.; Seong, E.S.; Ghimire, B.K.; Son, E.H.; Choung, M.G.; Lim, J.D. Isolation and characterization of bioactive peptides from Hwangtae (yellowish dried Alaska Pollack) protein hydrolysate. J. Food Sci. Nutr. 2008, 13, 196–203.
  • Shahidi, F.; Zhong, Y. Bioactive peptides. J. AOAC Int. 2008, 91, 914–931.
  • Erdmann, K.; Cheung, B.W.Y.; Schroder, H. The possible roles of food-derived bioactive peptides in reducing the risk of cardiovascular diseases. J. Nutr. Biochem. 2008, 19, 643–654.
  • Heu, M.S.; Kim, H.R.; Cho, D.M.; Godber, J.S.; Pyeun, J.H. Purification and characterization of Cathepsin L- like enzyme from the muscle of anchovy, Engraulis japonica. Comp. Biochem. Physiol. 1997, 118B, 523–229.
  • Kuroda, M.; Kato, Y.; Yamazaki, J.; Kai, Y.; Mizukoshi, T.; Miyano, H.; Eto, Y. Determination and quantification of γ-glutamyl-valyl-glycine in commercial fish sauces. J. Agric. Food Chem. 2012, 60, 7291–7296.
  • Schindler, A.; Dunkel, A.; Stahler, F.; Backes, M.; Ley, J.; Meyerhof, W.; Hofmann, T. Discovery of salt taste enhancing arginyl dipeptides in protein digest of fermented fish sauce by means of a sensomics apporch. J. Agric. Food Chem. 2011, 59, 12578–12588.
  • Sasaki, T.; Koudou, M.; Michihata, T.; Nakamura, S.; Aburatani, M; Tokuda, K.; Koyanagi, T.; Enomoto, Y. Purification and antihypertensive activity of a novel angiotensin-I converting enzyme inhibitory peptide from fish sauce, Ishiru. Japanese J. Complementary Altern. Med. 2013, 10, 45–49.
  • Seifried, H.E.; Anderson, D.E.; Fisher, E.I.; Milner, J.A. A review of the interaction among dietary antioxidants and reactive oxygen species. J. Nutr. Biochem. 2007, 18, 567–579.
  • Lambert, J.D.; Yang, C.S. Mechanisms of cancer prevention by tea constituents. J. Nutr. 2003, 133, 3262S–3267S.
  • Aoshima, H.; Ooshima, S. Anti-hydrogen peroxide activity of fish and soy sauce. Food Chem. 2009, 112, 339–343.
  • Thongthai, C.; Gildberg, A. Asian fish sauce as a source of nutrition. In Asian Functional Foods; Shi, J., Ho, C.T., Shahidi, F., Eds.; Marcel Dekker, CRC Press: Boca Raton, FL, 2003; pp 215–266.
  • Kim, D.C.; In, M.-J. Existence of stable fibrin-clotting inhibitor in salt fermented anchovy sauce. J. Food Compos. Anal. 2004, 17, 113–118.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.