841
Views
30
CrossRef citations to date
0
Altmetric
Articles

Brewer’s yeast in controlled and uncontrolled fermentations, with a focus on novel, nonconventional, and superior strains

, , &

References

  • Boulton, C.A. Developments in brewery fermentation. Biotechnol. Gen. Eng. Rev. 1991, 9, 127–181.
  • Dufour, J.-P.; Verstrepen, K.; Derdelinckx, G. Yeasts in Food—Beneficial and Detrimental Aspects. Woodhead Publishing: New York, USA, 2003.
  • Bellver Soto, J.; Fernández-Franzón, M.; Ruiz, M.J.; Juan-García, A. Presence of ochratoxin A (OTA) mycotoxin in alcoholic drinks from southern European countries: Wine and beer. J Agric. Food Chem. 2014, 62, 7643–7651.
  • Nelson, M. The Geography of Beer. Springer: New York, USA, 2014.
  • González, S.S.; Barrio, E.; Querol, A. Molecular characterization of new natural hybrids of Saccharomyces cerevisiae and S. kudriavzevii in brewing. Appl. Environ. Microbiol. 2008, 74, 2314–2320.
  • Bleoanca, I.; Silva, A.R.; Pimentel, C.; Rodrigues-Pousada, C.; Menezes Rde, A. Relationship between ethanol and oxidative stress in laboratory and brewing yeast strains. J. Biosci. Bioeng. 2013, 116, 697–705.
  • Verbelen, P.V.; Delvaux, F.R. Applied Mycology. CAB international: Brighton, UK, 2009.
  • Kodama, Y.; Kielland-Brandt, M.C.; Hansen, J. Comparative Genomics. Springer-Verlag: Berlin, Germany, 2006.
  • Steensels, J.; Meersman, E.; Snoek, T.; Saels, V.; Verstrepen, K.J. Large-scale selection and breeding to generate industrial yeasts with superior aroma production. Appl. Environ. Microbiol. 2014, 80, 6965–6975.
  • Holzapfel, W. 1997. Use of starter cultures in fermentation on a household scale. Food Control 1997, 8, 241–258.
  • Saerens, S.M.G.; Duong, C.T.; Nevoigt, E. Genetic improvement of brewer’s yeast: Current state, perspectives and limits. Appl. Microbiol. Biotechnol. 2010, 86, 1195–1212.
  • Steensels, J.; Snoek, T.; Meersman, E.; Nicolino, M.P.; Aslankoohi, E.; Christiaens, J.F.; Gemayel, R.; Meert, W.; New, A.M.; Pougach, K.; Saels, V.; van der Zande, E.; Voordeckers, K.; Verstrepen. K.J. Selecting and generating superior yeasts or the brewing industry. Cerevisia 2012, 37, 63–67.
  • Lodolo, E.J.; Kock, J.L.F.; Axcell, B.C.; Brooks, M. The yeast Saccharomyces cerevisiae—The main character in beer brewing. FEMS Yeast Res. 2008, 8, 1018–1036.
  • Stewart, G.G.; Hill, A.E.; Russell, I. 125th Anniversary Review: Developments in brewing and distilling yeast strains. J. Inst. Brew. 2013, 119, 202–220.
  • Stewart, G.G.; Russel, I. Food Biotechnology. VCH Publishers, New York, USA, 1995.
  • Dequin, S. The potential of genetic engineering for improving brewing, wine-making and baking yeasts. Appl. Microbiol. Biotechnol. 2001, 56, 577–588.
  • Smart, K.A. Brewing yeast genomes and genome-wide expression and proteome profiling during fermentation. Yeast 2007, 24, 993–1013.
  • Brányik, T.; Vicente, A.A.; Dostálek, P.; Teixeira, J.A. A review of flavour formation in continuous beer fermentations. J. Inst. Brew. 2008, 114, 3–13.
  • Pires, E.J.; Teixeira, J.A.; Brányik, T.; Vicente A.A. Yeast: The soul of beer’s aroma—A review of flavour-active esters and higher alcohols produced by the brewing yeast. Appl. Microbiol. Biotechnol. 2014, 98, 1937–1949.
  • Smart, K.A. Brewing Yeast Fermentation Performance. Blackwell Science: New York, USA, 2003.
  • Matoulková, D.; Sigler, K. Impact of the long-term maintenance method of brewer’s yeast on fermentation course, yeast vitality and beer characteristics. J. Inst. Brew. 2011, 117, 383–388.
  • Bokulich, N.A.; Bamforth, C.W. The microbiology of malting and brewing. Microbiol. Mol. Biol. Rev. 2013, 77, 157–172.
  • van der Aa Kühle, A.; Jespersen, L. Detection and identification of wild yeasts in lager breweries. Int. J. Food Microbiol. 1998, 43, 205–213.
  • Bertrand, S.; Bohni, N.; Schnee, S.; Schumpp, O.; Gindro, K.; Wolfender, J.L. Metabolite induction via microorganism co-culture: A potential way to enhance chemical diversity for drug discovery. Biotechnol. Adv. 2014, 32, 1180–1204.
  • Yeo, S.K.; Ewe, J.A. Advances in Fermented Foods and Beverage. Elsevier: Amsterdam, The Netherlands, 2015.
  • Vieira-Dalodé, G.; Madodé, Y.E.; Hounhouigan, J.; Jespersen, L.; Jakobsen, M. Use of starter cultures of lactic acid bacteria and yeasts as inoculum enrichment for the production of Gowé, a sour beverage from Benin. Afr. J. Microbiol. Res. 2008, 2, 179–186.
  • Bokulich, N.A.; Bamforth, C.W.; Mills, D.A. Brewhouse-resident microbiota are responsible for multi-stage fermentation of American coolship ale. PLoS ONE 2012, 7, e35507.
  • Verachtert, H.; Derdelinckx, G. Belgian acidic beers: Daily reminiscences of the past. Cerevisia 2014, 38, 121–128.
  • Thompson Witrick, K.A. Characterization of aroma and flavor compounds present in lambic (gueuze) beer. Ph.D. thesis; Virginia Polytechnic Institute and State University: Blacksburg, VA, USA, 2012.
  • Spitaels, F.; Wieme, A.D.; Janssens, M.; Aerts, M.; Daniel, H.-M.; Van Landschoot, A.; De Vuyst, L.; Vandamme, P. The microbial diversity of traditional spontaneously fermented lambic beer. PLoS ONE 2014, 9, e95384.
  • Verachtert, H.; Debourg, A.; Properties of Belgian acid beers and their microflora. I. The production of gueze and related refreshing acid beers. Cerevisia 1995, 20, 37–41.
  • Vriesekoop, F.; Krahl, M.; Hucker, B.; Menz, G. 125th Anniversary Review: Bacteria in brewing: The good, the bad and the ugly. J. Inst. Brew. 2012, 118, 335–345.
  • Spitaels, F.; Van Kerrebroeck, S.; Wieme, A.D.; Snauwaert, I.; Aerts, M.; Van Landschoot, A.; De Vuyst, L.; Vandamme, P. Microbiota and metabolites of aged bottled gueuze beers converge to the same composition. Food Microbiol. 2015, 47, 1–11.
  • Oliveira, V.A.; Vicente, M.A.; Fietto, L.G.; Castro, I.M.; Coutrim, M.X.; Schüller, D.; Alves, H.; Casal, M.; Santos, J.O.; Araújo, L.D.; da Silva, P.H.; Brandão, R.L. Biochemical and molecular characterization of Saccharomyces cerevisiae strains obtained from sugar-cane juice fermentations and their impact in cachaça production. Appl. Environ. Microbiol. 2008, 74, 693–701.
  • Colehour, A.M.; Meadow, J.F.; Liebert, M.A.; Cepon-Robins, T.J.; Gildner, T.E.; Urlacher, S.S.; Bohannan, B.J.; Snodgrass, J.J.; Sugiyama, L.S. Local domestication of lactic acid bacteria via cassava beer fermentation. PeerJ 2014, 8, e479.
  • Puerari, C.; Magalhães-Guedes, K.T.; Schwan, R.F. Physicochemical and microbiological characterization of chicha, a rice-based fermented beverage produced by Umutina Brazilian Amerindians. Food Microbiol. 2015, 46, 210–217.
  • Jung, M.J.; Nam, Y.D.; Roh, S.W.; Bae, J.W. Unexpected convergence of fungal and bacterial communities during fermentation of traditional korean alcoholic beverages inoculated with various natural starters. Food Microbiol. 2012, 30, 112–123.
  • Rhee, S.J.; Lee, J.E.; Lee, C.H. Importance of lactic acid bacteria in Asian fermented foods. Microb. Cell Fact. 2011, 10 (Suppl. 1), S5.
  • Atter, A.; Obiri-Danso, K.; Amoa-Awua, W.K. Microbiological and chemical processes associated with the production of burukutu a traditional beer in Ghana. Int. Food Res. J. 2014, 21, 1769–1776.
  • Mora, D.; Arioli, S.; Compagno, C. Food environments select microorganisms based on selfish energetic behaviour. Front. Microbiol. 2014, 4, article 348.
  • Manzano, M.; Iacumin, L.; Vendrame, M.; Cecchini, F.; Comi, G.; Buiatti, S. Craft Beer microflora identification before and after a cleaning process. J. Inst. Brew. 2011, 117, 343–351.
  • Badotti, F.; Moreira, A.P.; Tonon, L.A.; de Lucena, B.T.; Gomes Fde, C.; Kruger, R.; Thompson, C.C.; de Morais, M.A., Jr.; Rosa, C.A.; Thompson, F.L. Oenococcus alcoholitolerans sp. nov., a lactic acid bacteria isolated from cachaça and ethanol fermentation processes. Antonie van Leeuwenhoek 2014, 106, 1259–1267.
  • Schwan, R.F.; Mendonça, A.T.; da Silva, J.J., Jr.; Rodrigues, V.; Wheals, A.E. Microbiology and physiology of cachaça (aguardente) fermentations. Antonie van Leeuwenhoek 2001, 79, 89–96.
  • Ulloa, M.; Herrera, T.; Lappe, P. Fermentaciones Tradicionales Indígenas de México; Serie de Investigaciones Sociales; Instituto Nacional Indigenista, Mexico City, Mexico, 1987; Vol. 16, pp 13–20.
  • Aidoo, K.E. Lesser-known fermented plant foods. Tropical Sci. 1986, 26, 249–258.
  • Maoura, N.; Mbaiguinam, M.; Vang Nguyen, H.; Gaillardin, C.; Pourquie, J. Identification and typing of the yeast strains isolated from bili bili, a traditional sorghum beer of Chad. Afr. J. Biotechnol. 2005, 4, 646–656.
  • Blandino, A.; Al-Aseeri, M.E.; Pandiella, S.S.; Canetro, D.; Webb, C. Cereal-based fermented foods and beverages. Food Res. Int. 2003, 36, 527–547.
  • van der Aa Kühle, A.; Jesperen, L.; Glover, R.L.; Diawara, B.; Jakobsen, M. Identification and characterization of Saccharomyces cerevisiae strains isolated from West African sorghum beer. Yeast 2001, 18, 1069–1079.
  • Katongole, J.N. The Microbial Succession in Indigenous Fermented Maize Products; Magister Scientiae Agriculturae. University of Free State, Bloemfontein: Bloemfontein, South Africa, 2008.
  • Muyanja, C.M.B.K.; Narvhus, J.A.; Treimo, J.; Langsrud, T. Isolation, Characterisation and identification of lactic acid bacteria from Bushera: A Ugandan traditional fermented beverage. Int. J. Food Microbiol. 2003, 80, 201–210.
  • Chamunorwa, A.T.; Feresu, S.B.; Mutukumira, A.N. Identification of lactic acid bacteria isolated from opaque beer (chibuku) for potential use as a starter culture. J. Food Technol. Afr. 2002, 7, 93–97.
  • Jespersen, L. Occurrence and taxonomic characteristics of strains Saccharomyces cerevisiae predominant in African indigenous fermented foods and beverages. FEMS Yeast Res. 2003, 3, 191–200.
  • Glover, R.L.K.; Sawadogo-Lingani, H.; Diawara, B.; Jespersen, L.; Jakobsen, M. Utilization of Lactobacillus fermentum and Saccharomyces cerevisiae as starter cultures in the production of “dolo”. J. Appl. Biosci. 2009, 22, 1312–1319.
  • Sawadogo-Lingani, H.; Lei, V.; Diawara, B.; Nielsen, D.S.; Møller, P.L.; Traoré, A.S.; Jakobsen, M. The biodiversity of predominant lactic acid bacteria in dolo and pito wort, for production of sorghum beer. J. Appl. Microbiol. 2007, 103, 765–777.
  • Lyumugabe, L.; Kamaliza, G.; Bajyana, E.; Thonart, P.H. Microbiological and physico-chemical characteristics of Rwandese traditional beer “ikigage”. Afr. J. Biotechnol. 2010, 9, 4241–4246.
  • Novellie, L.; De Schaepdrijver, P. Progres in Industrial Microbiology. Elsevier, Amsterdam, The Netherlands, 1986.
  • Van Der Walt, J.P. Kaffir corn malting and brewing studies: Studies on the microbiology of kaffir neer. J. Sci. Food Agric. 1956, 7, 105–113.
  • Dirar, H.A. A microbiological study of Sudanese merissa brewing. J. Food Sci. 1978, 43, 1683–1686.
  • Sefa-Dedeh, S.; Sanni, A.I.; Tetteh, G.; Sakyi-Dawson, E. Yeasts in the traditional brewing of pito in Ghana. World J. Microbiol. Biotechnol. 1999, 15, 593–597.
  • Ekundayo, J.A. The production of pito, a nigerian fermented beverage. J. Food Technol. 1969, 4, 217–225.
  • N’guessan, K.F.; Brou, K.; Jacques, N.; Casaregola, S.; Dje, K.M. Identification of yeasts during alcoholic fermentation of tchapalo, a traditional sorghum beer from Côte d’Ivoire. Antonie Van Leeuwenhoek 2011, 99, 855–864.
  • Greppi, A.; Rantsiou, K.; Padonou, W.; Hounhouigan, J.; Jespersen, L.; Jakobsen, M.; Cocolin L. Determination of yeast diversity in ogi, mawè, gowé and tchoukoutou by using culture-dependent and -independent methods. Int. J. Food Microbiol. 2013, 165, 84–88.
  • Kayodea, A.P.P.; Adegbidia, A.; Hounhouigana, J.D.; Linnemannb, A.R.; Nout, M.J.R. Quality of farmer’s varieties of sorghum and derived foods as perceived by consumers in Benin. Ecol. Food Nutr. 2005, 44, 271–294.
  • Kayodé, A.P.P.; Hounhouigana, J.D.; Nout, M.J.R.; Niehof A. Household production of sorghum beer in Benin: Technological and socio-economic aspects. Int. J. Consum. Stud. 2007, 31, 258–264.
  • Kim, H.R.; Kim, J.H.; Bae, D.H.; Ahn, B.H. Characterization of yakju brewed from glutinous rice and wild-type yeast strains isolated from nuruks. J. Microbiol. Biotechnol. 2010, 20, 1702–1710.
  • Teramoto, Y.; Yoshida, S.; Ueda, S. Characteristics of a rice beer (zutho) and a yeast isolated from the fermented product in Nagaland, India. World J. Microbiol. Biotechnol. 2002, 18, 813–816.
  • Tamang, J.P.; Thapa, S. Fermentation dynamics during production of bhaati jaanr, a traditional fermented rice beverage of the eastern Himalayas. Food Biotechnol. 2006, 20, 251–261.
  • Steensels, J.; Verstrepen, K.J. Taming wild yeast: Potential of conventional and nonconventional yeasts in industrial fermentations. Annu. Rev. Microbiol. 2014, 68, 61–80.
  • Vidgren V. Maltose and maltotriose transport into ale and lager brewer’s yeast strains. Ph.D. thesis; University of Helsinki: Helsinki, Finland, 2010.
  • Hellborg, L.; Piškur, J. Beer in Health and Disease Prevention. Elsevier: Amsterdam, The Netherlands, 2009.
  • Gonçalves, P.; Rodrigues de Sousa, H.; Spencer-Martins, I. FSY1, a novel gene encoding a specific fructose/h(+) symporter in the type strain of Saccharomyces carlsbergensis. J. Bacteriol. 2000, 182, 5628–5630.
  • Nakao, Y.; Kanamori, T.; Itoh, T.; Kodama, Y.; Rainieri, S.; Nakamura, N.; Shimonaga, T.; Hattori, M.; Ashikari, T. Genome sequence of the lager brewing yeast, an interspecies hybrid. DNA Res. 2009, 16, 115–129.
  • Querol, A.; Bond, U. The complex and dynamic genomes of industrial yeasts. FEMS Microbiol. Lett. 2009, 293, 1–10.
  • Tornai-Lehoczki, J.; Dlauchy, D. Delimitation of brewing yeast strains using different molecular techniques. Int. J. Food Microbiol. 2000, 62, 37–45.
  • Vidgren, V.; Londesborough, J. 125th Anniversary Review: Yeast flocculation and sedimentation in brewing. J. Inst. Brew. 2011, 117, 475–487.
  • Vaughan-Martini, A.; Martini, A. A taxonomic key for the genus Saccharomyces. Syst. Appl. Microbiol. 1993, 16, 113–119.
  • Zheng, X.; D’Amore, T.; Russell, I.; Stewart, G.G. Transport kinetics of maltotriose in strains of Saccharomyces. J. Ind. Microbiol. 1994, 13, 159–166.
  • Stewart, G.G. The influence of yeast on volatile sulphur compounds in beer. In Proceedings European Brewing Convention and Symposium Monograph VII, Copenhagen, Fachverlag Hans Carl: Nürnberg, Germany, 1981; pp 173–190.
  • Hampsey, M. A Review of phenotypes in Saccharomyces cerevisiae. Yeast 1997, 13, 1099–1133.
  • Bolat, I.C.; Turtoi, M.; Walsh, M.C. Influence of yeast drying process on different lager brewing strains viability. J. Agroaliment. Proc. Technol. 2009, 15, 370–377.
  • Finn, D.; Stewart, G.G. Fermentation characteristics of dried brewers’ yeast, the effect of drying on focculation and fermentation. J. Am. Soc. Brew. Chem. 2005, 60, 135–138.
  • Pérez-Través, L.; Lopes, C.A.; Querol, A.; Barrio, E. On the complexity of the Saccharomyces bayanus taxon: Hybridization and potential hybrid speciation. PLoS ONE 2014, 9, e93729.
  • Wendland, J. Lager yeast comes of age. Eukaryot. Cell. 2014, 13, 1256–1265.
  • Hebly, M.; Brickwedde, A.; Bolat, I.; Driessen, M.R.; de Hulster, E.A.; van den Broek, M.; Pronk, J.T.; Geertman, J.M.; Daran, J.M.; Daran-Lapujade, P. Saccharomyces cerevisiae × Saccharomyces eubayanus interspecific hybrid, the best of both worlds and beyond. FEMS Yeast Res. 2015, 15, fov005.
  • Parker, N.; James, S.; Dicks, J.; Bond, C.; Nueno-Palop, C.; White, C.; Roberts, I.N. Investigating flavour characteristics of British ale yeasts: Techniques, resources and opportunities for innovation. Yeast 2015, 32, 281–287.
  • Boynton, P.J.; Greig, D. The ecology and evolution of non-domesticated Saccharomyces species. Yeast 2014, 31, 449–462.
  • Gibson, B.; Liti, G. Saccharomyces pastorianus: Genomic insights inspiring innovation for industry. Yeast 2015, 32, 17–27.
  • Bing, J.; Han, P.-J.; Liu, W.-Q.; Wang, Q.-M.; Bai, F.-Y. Evidence for a Far East Asian origin of lager beer yeast. Curr. Biol. 2014, 24, R380–R381.
  • Peris, D.; Sylvester, K.; Libkind, D.; Gonçalves, P.; Sampaio, J.P.; Alexander, W.G.; Hittinger, C.T. Population structure and reticulate evolution of Saccharomyces eubayanus and its lager-brewing hybrids. Mol. Ecol. 2014, 23, 2031–2045.
  • Albertin, W.; Marullo, P.; Aigle, M.; Dillmann, C.; de Vienne, D.; Bely, M.; Sicard, D. Population size drives industrial Saccharomyces cerevisiae alcoholic fermentation and is under genetic control. Appl. Environ. Microbiol. 2011, 77, 2772–2784.
  • Legras, J.L.; Merdinoglu, D.; Cornuet, J.M.; Karst, F. Bread, beer and wine: Diversity reflects human history. Mol. Ecol. 2007, 16, 2091–2102.
  • Knight, S.; Goddard, M.R. Quantifying separation and similarity in a Saccharomyces cerevisiae metapopulation. ISME J. 2015, 9, 361–370.
  • Bachmann, H.; Pronk, J.T.; Kleerebezem, M.; Teusink, B. Evolutionary engineering to enhance starter culture performance in food fermentations. Curr. Opin. Biotechnol. 2015, 32, 1–7.
  • Comi; G.; Manzano, M. Molecular Techniques in the Microbial Ecology of Fermented Foods. Springer: New York, USA, 2008.
  • Yang, Y.; Xu, R.-M.; Song, J.; Wang, W.-M. High throughput biotechnology in traditional fermented food industry. Recent Pat. Food Nutr. Agric. 2010, 2, 251–257.
  • Orji, M.U.; Mbata, T.I.; Anich, G.N.; Ahonkhai, I. The use of starter cultures to produce “pito”, a nigerian fermented alcoholic beverage. World J. Microbiol. Biotechnol. 2003, 19, 733–736.
  • Sawadogo-Lingani, H.; Diawara, B.; Traoré, A.S.; Jakobsen, M. Utilisation de souches sélectionnées de Lactobacillus fermentum et un isolate de levure comme cultures starter dans la production du dolo, une boisson fermentée à base de sorgho. Sci. Technol. 2008, 2, 61–84.
  • N’Guessan, F.K.; N’Diri, D.Y.; Camara, F.; Djè, M.K. Saccharomyces cerevisiae and Candida tropicalis as starter cultures for the alcoholic fermentation of Tchapalo, a traditional sorghum beer. World J. Microbiol. Biotechnol. 2010, 26, 693–699.
  • Lyumugabe, F.; Uyisenga J.P.; Songa E.B.; Thonart, P. Production of traditional sorghum beer “ikigage” using Saccharomyces cerevisae, Lactobacillus fermentum and Issatckenkia orientalis as starter cultures. Food Nutr. Sci. 2014, 5, 507–515.
  • Kayodé, A.P.P.; Deloris, C.D.; Baba-Moussa, L.; Kotchoni, S.O.; Hounhouigan, J.D. Stabilization and preservation of probiotic properties of the traditional starter of african opaque sorghum beers. Afr. J. Biotechnol. 2012, 11, 7725–7730.
  • Marini, M.M.; Gomes, F.C.O.; Silva, C.L.C.; Cadete, R.M.; Badotti, F.; Oliveira, E.S.; Cardoso, C.R.; Rosa, C.A. The use of selected starter Saccharomyces cerevisiae strains to produce traditional and industrial cachaça: A comparative study. World J. Microbiol. Biotechnol. 2014, 25, 235–242.
  • Zhu, Y.; Tramper, J. Koji—Where east meets west in fermentation. Biotechnol. Adv. 2013, 31, 1448–1457.
  • Canonico, L.; Comitini, F.; Ciani, M. Dominance and influence of selected Saccharomyces cerevisiae strains on the analytical profile of craft beer refermentation. J. Inst. Brew. 2014, 120, 262–267.
  • Marongiu, A.; Zara, G.; Legras, J.-L.; Del Caro, A.; Mascia, I.; Fadda, C.; Budroni, M. Novel starters for old processes: Use of Saccharomyces cerevisiae strains isolated from artisanal sourdough for craft beer production at a brewery scale. J. Ind. Microbiol. Biotechnol. 2015, 42, 85–92.
  • Mascia, I.; Fadda, C.; Dostálek, P.; Karabín, M.; Zara, G.; Budroni, M.; Del Caro, A. Is it possible to create an innovative craft durum wheat beer with sourdough yeasts? A case study. J. Inst. Brew. 2015, 121, 283–286.
  • Yeo, H.Q.; Liu S.-Q. An overview of selected specialty beers: Developments, challenges and prospects. Int. J. Food Sci. Technol. 2014, 49, 1607–1618.
  • Jolly, N.P.; Varela, C.; Pretorius, I.S. Not your ordinary yeast: Non-Saccharomyces yeasts in wine production uncovered. FEMS Yeast Res. 2014, 14, 215–237.
  • Leisegang, R.; Nevoigt, E.; Spielvogel, A.; Niederhaus, A.; Stahl, U. Genetically Engineered Food. Methods and Detection. 2nd ed.; Wiley-VCH Verlag: Weinheim, Germany, 2006.
  • Schifferdecker, A.J.; Dashko, S.; Ishchuk, O.P.; Piškur, J. The wine and beer yeast Dekkera bruxellensis. Yeast 2014, 31, 323–332.
  • De Francesco, G.; Turchetti, B.; Sileoni, V.; Marconi, O.; Perretti, G. Screening of new strains of Saccharomycodes ludwigii and Zygosaccharomyces rouxii to produce low-alcohol beer. J. Inst. Brew. 2015, 121, 113–121.
  • Li, H.; Liu, Y.; Zhang, W. Method for preparing non-alcoholic beer by Candida shehatae. China Patent No. 102/220/198, 2011.
  • Chr. Hansen A/S; Saerens, S.M.; Swiegcrs, J.H. Enhancement of beer flavor by a combination of pichia yeast and different hop varieties. International Patent No. WO/2013/030398, 2013.
  • Tataridis, P.; Kanellis, A.; Logothetis, S.; Nerantzis, E. Use of non-Saccharomyces Torulaspora delbrueckii yeast strains in winemaking and brewing. J. Nat. Sci. Matica Srpska Novi Sad. 2013, 124, 415–426.
  • Duong C.T. An integrative approach to identify novel target genes for reduction of diacetyl production in lager yeast. Ph.D. thesis; Technische Universität: Berlin, Germany, 2009.
  • Iijima, K.; Ogata, T. Construction and evaluation of self-cloning bottom-fermenting yeast with high SSU1 expression. J. Appl. Microbiol. 2010, 109, 1906–1913.
  • van Mulders, S.E.; Christianen, E.; Saerens, S.M.; Daenen, L.; Verbelen, P.J.; Willaert, R.; Verstrepen, K.J.; Delvaux, F.R. Phenotypic diversity of Flo protein family-mediated adhesion in Saccharomyces cerevisiae. FEMS Yeast Res. 2009, 9, 178–190.
  • Verstrepen, K.J.; Derdelinckx, G.; Delvaux, F.R.; Winderickx, J.; Thevelein, J.M.; Bauer, F.F.; Pretorius, I.S. Late fermentation expression of FLO1 in Saccharomyces cerevisiae. J. Am. Soc. Brew. Chem. 2001, 59, 69–76.
  • Omura, F.; Fujita, A.; Miyajima, K.; Fukui, N. Engineering of yeast Put4 permease and its application to lager yeast for efficient proline assimilation. Biosci. Biotechnol. Biochem. 2005, 69, 1162–1171.
  • Yoshida, S.; Imoto, J.; Minato, T.; Oouchi, R; Sugihara, M.; Imai, T.; Ishiguro, T.; Mizutani, S.; Tomita, M.; Soga, T.; Yoshimoto, H. Development of bottom-fermenting Saccharomyces strains that produce high SO2 levels, using integrated metabolome and transcriptome analysis. Appl. Environ. Microbiol. 2008, 74, 2787–2796.
  • Duong, C.T.; Strack, L.; Futschik, M.; Katou, Y.; Nakao, Y.; Fujimura, T.; Shirahige, K.; Kodama, Y.; Nevoigt, E. Identification of Sc-type ILV6 as a target to reduce diacetyl formation in lager brewers’ yeast. Metab. Eng. 2011, 13, 638–647.
  • Kutyna, D.R.; Varela, C.; Stanley, G.A.; Borneman, A.R.; Henschke, P.A.; Chambers, P.J. Adaptive evolution of Saccharomyces cerevisiae to generate strains with enhanced glycerol production. Appl. Microbiol. Biotechnol. 2012, 93, 1175–1184.
  • Santos, C.N.S.; Stephanopoulos, G. Combinatorial engineering of microbes for optimizing cellular phenotype. Curr. Opin. Chem. Biol. 2008, 12, 168–176.
  • Huuskonen, A.; Markkula, T.; Vidgren, V.; Lima, L.; Mulder, L.; Geurts, W.; Walsh, M.; Londesborough, J. Selection from industrial lager yeast strains of variants with improved fermentation performance in very-high-gravity worts. Appl. Environ. Microbiol. 2010, 76, 1563–1573.
  • Yu, Z.; Zhao, H.; Li, H.; Zhang, Q.; Lei, H.; Zhao, M. Selection of Saccharomyces pastorianus variants with improved fermentation performance under very high-gravity wort conditions. Biotechnol. Lett. 2012, 34, 365–370.
  • Guadalupe-Medina, V.; Wisselink, H.W.; Luttik, M.A.; de Hulster, E; Daran, J.M.; Pronk, J.T.; van Maris, A.J. Carbon dioxide fixation by Calvin-cycle enzymes improves ethanol yield in yeast. Biotechnol. Biofuels 2013, 6, 125.
  • Gibson, B.R.; Lawrence, S.J.; Leclaire, J.P.R.; Powell, C.D.; Smart, K.A. Yeast responses to stresses associated with industrial brewery handling. FEMS Microbiol. Rev. 2007, 31, 535–569.
  • Shen, N.; Wang, J.; Liu, C.; Li, Y.; Li, Q. Domesticating brewing yeast for decreasing acetaldehyde production and improving beer flavor stability. Eur. Food Res. Technol. 2014, 238, 347–355.
  • Strejc, J.; Siříštova, L.; Karabín, M.; Almedida de Silva, J.B.; Brányik, T. Production of alcohol-free beer with elevated amounts of flavouring compounds using lager yeast mutants. J. Inst. Brew. 2013, 119, 149–155.
  • Steensels, J.; Snoek, T.; Meersman, E.; Picca Nicolino, M.; Voordeckers, K.; Verstrepe, K.J. Improving industrial yeast strains: Exploiting natural and artificial diversity. FEMS Microbiol. Rev. 2014, 38, 947–995.
  • Hou, L. Improved production of ethanol by novel genome shuffling in Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 2010, 160, 1084–1093.
  • Wang, H.; Hou, L. Genome shuffling to improve fermentation properties of top-fermenting yeast by the improvement of stress tolerance. Food Sci. Biotechnol. 2010, 19, 145–150.
  • Liu, J.; Ding, W.; Zhang, G.; Wang, J. Improving ethanol fermentation performance of Saccharomyces cerevisiae in very high-gravity fermentation through chemical mutagenesis and meiotic recombination. Appl. Microbiol. Biotechnol. 2011, 91, 1239–1246.
  • Gao, C.; Wang, Z.; Liang, Q.; Qi, Q. Global transcription engineering of brewer’s yeast enhances the fermentation performance under high-gravity conditions. Appl. Microbiol. Biotechnol. 2010, 87, 1821–1827.
  • Alper, H.; Moxley, J.; Nevoigt, E.; Fink, G.R.; Stephanopoulos, G. 2006. Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 2006, 314, 1565–1568.
  • Fischer, S.; Procopio, S.; Becker, T. Self-cloning brewing yeast: A new dimension in beverage production. Eur. Food Res. Technol. 2013, 237, 851–863.
  • Wang, Z.Y.; He, X.P.; Zhang, B.R. Over-expression of GSH1 gene and disruption of PEP4 gene in self-cloning industrial brewer’s yeast. Int. J. Food Microbiol. 2007, 119, 192–199.
  • Wang, Z.Y.; He, X.P.; Liu, N.; Zhang, B.R. Construction of self-cloning industrial brewing yeast with high-glutathione and low-diacetyl production. Int. J. Food Sci. Technol. 2008, 43, 989–994.
  • Ishida-Fujii, K.; Goto, S.; Sugiyama, H.; Takagi, Y.; Saiki, T.; Takagi, M. Breeding of flocculent industrial alcohol yeast strains by self-cloning of the flocculation gene FLO1 and repeated batch fermentation by transformants. J. Gen. Appl. Microbiol. 1998, 44, 347–353.
  • Wang, Z.Y.; Wang, J.J.; Liu, X.F.; He, X.P.; Zhang, B.R. Recombinant industrial brewing yeast strains with ADH2 interruption using self-cloning GSH1+CUP1 cassette. FEMS Yeast Res. 2009, 9, 574–581.
  • Kusunoki, K.; Ogata, T. Construction of self-cloning bottom-fermenting yeast with low vicinal diketone production by the homo-integration of ILV5. Yeast 2012, 29, 435–442.
  • Perry, C.; Meaden, P. Properties of a genetically-engineered dextrin-fermenting strain of brewers’ yeast. J. Inst. Brew. 1988, 94, 64–67.
  • Steyn, J.C.; Pretorius, I.S. Co-expression of a Saccharomyces diastaticus glucoamylase-encoding gene and a Bacillus amyloliquefaciens alpha-amylase-encoding gene in Saccharomyces cerevisiae. Gene 1991, 100, 85–93.
  • Hirata, D.; Aoki, S.; Watanabe, K.; Tsukioka, M.; Suzuki, T. Stable overproduction of isoamylalcohol by Saccharomyces cerevisiae with chromosome-integrated multicopy LEU4 genes. Biosci. Biotechnol. Biochem. 1992, 56, 1682–1683.
  • Liu, X.F.; Wang, Z.Y.; Wang, J.J.; Lu, Y.; He, X.P.; Zhang, B.R. Expression of GAI gene and disruption of PEP4 gene in an industrial brewer’s yeast strain. Lett. Appl. Microbiol. 2009, 49, 117–123.
  • Zhang, Y.; Wang, Z.-Y.; He, X.-P.; Liu, N.; Zhang, B.-R. New Industrial brewing yeast strains with ILV2 disruption and LSD1 expression. Int. J. Food Microbiol. 2008, 123, 18–24.
  • Hansen, J.; Bruun, S.V.; Bech, L.M.; Gjermansen, C. The level of MXR1 gene expression in brewing yeast during beer fermentation is a major determinant for the concentration of dimethyl sulfide in beer. FEMS Yeast Res. 2002, 2, 137–149.
  • Nevoigt, E.; Pilger, R.; Mast-Gerlash, E.; Shmidt, U.; Freihammer, S.; Eschenbrenner, M.; Garbe, L.; Stahl, U. Genetic engineering of brewing yeast to reduce the content of ethanol in beer. FEMS Yeast Res. 2002, 2, 225–232.
  • Vidgren, V.; Huuskonen, A.; Virtanen, H.; Ruohonen, L.; Londesborough, J. Improved fermentation performance of a lager yeast after repair of its AGT1 maltose and maltotriose transporter genes. Appl. Environ. Microbiol. 2009, 75, 2333–2345.
  • Blasco, L.; Veiga-Crespo, P.; Sánchez-Pérez, A.; Villa, T.C. Cloning and characterization of the beer foaming gene CFG1 from Saccharomyces pastorianus. J. Agric. Food Chem. 2012, 60, 10796–10807.
  • Erratt, J.A.; Stewart, G.G. Fermentation studies using Saccharomyces diastaticus yeast strains. Dev. Ind. Microbiol. 1981, 22, 577–586.
  • Russel, I.; Stewart, G.G. Sheroplast fusion of brewer’s yeast strains. J. Inst. Brew. 1979, 85, 95–98.
  • Legmann, R.; Magalith, P. Interspecific protoplast fusion of Saccharomyce cerevisiae and Saccharomyces mellis. Eur. J. Appl. Microbiol. Biotechnol. 1983, 18, 320–322.
  • Limtong, S.; Deejing, S.; Yongmanitchai, W.; Santisopasri, W. Construction of high ethanol fermenting halotolerant hybrid by intergeneric protoplast fusion of Saccharomyces cerevisiae and Zygosaccharomyces rouxii. Kasetsart J. (Nat. Sci.) 1998, 32, 213–223.
  • Janderová, B.; Davaasurengijn, T.; Bendová, O. Hybrid strains of brewer’s yeast obtained by protoplast fusion. Folia Microbiol. 1986, 31, 339–343.
  • Sanchez, R.G.; Solodovnikova, N.; Wendland, J. Breeding of lager yeast with Saccharomyces cerevisiae improves stress resistance and fermentation performance. Yeast 2012, 29, 343–355.
  • Sasaki, T.; Watari, J.; Kohgo, M.; Nishikawa, N.; Matsui, Y. Breeding of a brewer’s yeast possessing anticontaminant properties. J. Am. Soc. Brew. Chem. 1984, 42, 164–167.
  • Urano, N.; Sahara, H.; Koshino, S. Electrofusion of brewers’ yeast protoplasts and enrichment of the fusants using a flow cytometer. Enzyme Microb. Technol. 1993, 15, 959–964.
  • Mukai, N.; Nishimori, C.; Fujishige, I.W.; Mizuno, A.; Takahashi, T.; Sato, K. Beer brewing using a fusant between a sake yeast and a brewer’s yeast. J. Biosci. Bioeng. 2001, 91, 482–486.
  • Vezinhet, F.; Barre, P. Introduction of flocculation into an industrial yeast strain by transfer of a single chromosome. J. Inst. Brew. 1992, 98, 315–319.
  • Lee, S.; Villa, K.; Patino, H. Yeast strain development for enhanced production of desirable alcohols/esters in beer. J. Am. Soc. Brew. Chem. 1995, 53, 153–156.
  • Mizuno, A.; Tabei, H.; Iwahuti, M. Characterization of low-acetic-producing yeast isolated from 2-deoxyglucoseresistant mutants and its application to high-gravity brewing. J. Biosci. Bioeng. 2006, 101, 31–37.
  • Liu, Z.; Zhang, G.; Sun, Y. Mutagenizing brewing yeast strain for improving fermentation property of beer. J Biosci. Bioeng. 2008, 106, 33–38.
  • Silhankova, L. Yeast mutants excreting vitamin B1 and their use in the production of thiamine rich beers. J. Inst. Brew. 1985, 91, 78–81.
  • Ekberg, J.; Rautio, J.; Mattinen, L.; Vidgren, V.; Londesborough, J.; Gibson, B.R. Adaptive evolution of the lager brewing yeast Saccharomyces pastorianus for improved growth under hyperosmotic conditions and its influence on fermentation performance. FEMS Yeast Res. 2013, 13, 335–349.
  • James, T.C.; Usher, J.; Campbell, S.; Bond, U. Lager yeasts possess dynamic genomes that undergo rearrangements and gene amplication in response to stress. Curr. Genet. 2008, 53, 139–152.
  • Blieck, L.; Toye, G.; Dumortier, F.; Verstrepen, K.J.; Delvaux, F.R.; Thevelein, J.M.; Van Dijck, P. Isolation and characterization of brewer’s yeast variants with improved fermentation performance under high-gravity conditions. Appl. Environ. Microbiol. 2007, 73, 815–824.
  • Gibson, B.; Krogerus. K.; Ekberg, J.; Monroux, A.; Mattinen, L.; Rautio, J.; Vidgren, V. Variation in α-acetolactate production within the hybrid lager yeast group Saccharomyces pastorianus and affirmation of the central role of the ILV6 gene. Yeast 2015, 32, 301–316.
  • Procopio, S.; Brunner, M.; Becker, T. Differential transcribed yeast genes involved in flavour formation and its associated amino acid metabolism during brewery fermentation. Eur. Food Res. Technol. 2014, 239, 421–439.
  • Ogata, T.; Kobayashi, M.; Gibson, B.R. Pilot-scale brewing using self-cloning bottom-fermenting yeast with high SSU1 expression. J. Inst. Brew. 2013, 119, 17–22.
  • Haggblade, S.; Holzapfel, W.H. Industrialization of Africa's indigenous beer brewing. In Industrialization of Indigenous Fermented Foods; CRC Press Book: Boca Raton, FL, USA, 2004; pp 271–361.
  • Dunn, B.; Richter, C.; Kvitek, D.J.; Pugh, T.; Sherlock, G. Analysis of the Saccharomyces cerevisiae pan-genome reveals a pool of copy number variants distributed in diverse yeast strains from differing industrial environments. Genome Res. 2012, 22, 908–924.
  • Zheng, D.Q.; Wang, P.M.; Chen, J.; Zhang, K.; Liu, T.Z.; Wu, X.C.; Li, Y.D.; Zhao, Y.H. Genome sequencing and genetic breeding of a bioethanol Saccharomyces cerevisiae strain YJS329. BMC Genomics 2012, 13, 479.
  • Murakami, N.; Miyoshi, S.; Yokoyama, R.; Hoshida, H.; Akada, R.; Ogata, T. Construction of a URA3 deletion strain from the allotetraploid bottom-fermenting yeast Saccharomyces pastorianus. Yeast 2012, 29, 155–165.
  • Akinterinwa, O.; Cirin, P.C. Catabolism and metabolic fueling processes. In The Metabolic Pathway Engineering Handbook: Fundamentals; Taylor & Francis Group: Florence, KY, USA, 2010; pp 2/1–2/36.
  • Carlquist, M.; Gibson, B.; Yuceer, Y.K.; Paraskevopoulou, A.; Sandell, M.; Angelov, A.I.; Gotcheva, V.; Angelov, A.D.; Etschmann, M.; de Billerbeck, G.M.; Lidén, G. Process engineering for bioflavour production with metabolically active yeasts—A mini-review. Yeast 2015, 32, 123–143.
  • Biggs, B.W.; De Paepe, B.; Santos, C.N.; De Mey, M.; Kumaran Ajikumar, P. Multivariate modular metabolic engineering for pathway and strain optimization. Curr. Opin. Biotechnol. 2014, 29, 156–162.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.