907
Views
17
CrossRef citations to date
0
Altmetric
Articles

Effect of trans–fatty acids on lipid metabolism: Mechanisms for their adverse health effects

References

  • Koletzko, B.; Decsi, T. Metabolic aspects of trans fatty acids. Clin. Nutr. 1997, 16, 229–237.
  • Alonso, L.; Fontecha, J.; Lozada, L.; Fraga, M.J.; Juarez M. Fatty acid composition of caprine milk: Major, branched-chain, and trans fatty acids. J. Dairy Sci. 1999, 82, 878–884.
  • Stender, S.; Astrup, A.; Dyerberg, J. Ruminant and industrially produced trans fatty acids: Health aspects. Food Nutr. Res. 2008, 52.
  • Johnston, P.V.; Johnson, O.C.; Kummerow, F.A. Occurrence of trans fatty acids in human tissue. Science 1957, 126, 698–699.
  • Beare-Rogers, J.L.; Gray, L.M.; Hollywood, R. The linoleic acid and trans fatty acids of margarines. Am. J. Clin. Nutr. 1979, 32, 1805–1809.
  • Kummerow, F.A.; Zhou, Q.; Mahfouz, M.M. Effect of trans fatty acids on calcium influx into human arterial endothelial cells. Am. J. Clin. Nutr. 1999, 70, 832–838.
  • McKeigue, P. Trans fatty acids and coronary heart disease: Weighing the evidence against hardened fat. Lancet 1995, 345, 269–270.
  • Nelson, G.J. Dietary fat, trans fatty acids, and risk of coronary heart disease. Nutr. Rev. 1998, 56, 250–252.
  • Abbey, M.; Nestel, P.J. Plasma cholesteryl ester transfer protein activity is increased when trans-elaidic acid is substituted for cis-oleic acid in the diet. Atherosclerosis 1994, 106, 99–107.
  • Zock, P.L.; Katan, M.B. Hydrogenation alternatives: Effects of trans fatty acids and stearic acid versus linoleic acid on serum lipids and lipoproteins in humans. J. Lipid Res. 1992, 33, 399–410.
  • Doell, D.; Folmer, D.; Lee, H.; Honigfort, M.; Carberry, S. Updated estimate of trans fat intake by the US population. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2012, 29, 861–874.
  • Idris, N.A.; Dian, N.L. Inter-esterified palm products as alternatives to hydrogenation. Asia Pac. J. Clin. Nutr. 2005, 14, 396–401.
  • Ibrahim, A.; Natrajan, S.; Ghafoorunissa, R. Dietary trans-fatty acids alter adipocyte plasma membrane fatty acid composition and insulin sensitivity in rats. Metabolism 2005, 54, 240–246.
  • Roach, C.; Feller, S.E.; Ward, J.A.; Shaikh, S.R.; Zerouga, M.; Stillwell, W. Comparison of cis and trans fatty acid containing phosphatidylcholines on membrane properties. Biochemistry 2004, 43, 6344–6351.
  • Vanden Heuvel, J.P.; Thompson, J.T.; Frame, S.R.; Gillies, P.J. Differential activation of nuclear receptors by perfluorinated fatty acid analogs and natural fatty acids: A comparison of human, mouse, and rat peroxisome proliferator-activated receptor-alpha, -beta, and -gamma, liver X receptor-beta, and retinoid X receptor-alpha. Toxicol. Sci. 2006, 92, 476–489.
  • Coots, R.H. A comparison of the metabolism of elaidic, oleic, palmitic, and stearic acids in the rat. J. Lipid Res. 1964, 5, 468–472.
  • Emken, E.A. Nutrition and biochemistry of trans and positional fatty acid isomers in hydrogenated oils. Annu. Rev. Nutr. 1984, 4, 339–376.
  • Johnston, P.V.; Johnson, O.C.; Kummerow, F.A. Deposition in tissues and fecal excretion of trans fatty acids in the rat. J. Nutr. 1958, 65, 13–23.
  • Jensen, R.G.; Gordon, D.T.; Heimermann, W.H.; Holman, R.T. Specificity of Geotrichum candidum lipase with respect to double bond position in triglycerides containng cis-octadecenoic acids. Lipids 1972, 7, 738–741.
  • Emken, E.A.; Adlof, R.O.; Rohwedder, W.K.; Gulley, R.M. Incorporation of deuterium-labeled trans- and cis-13-octadecenoic acids in human plasma lipids. J. Lipid Res. 1983, 24, 34–46.
  • Barnard, D.E.; Sampugna, J.; Berlin, E.; Bhathena, S.J.; Knapka, J.J. Dietary trans fatty acids modulate erythrocyte membrane fatty acyl composition and insulin binding in monkeys. J. Nutr. Biochem. 1990, 1, 190–195.
  • Hoy, C.E.; Holmer, G. Incorporation of cis- and trans-octadecenoic acids into the membranes of rat liver mitochondria. Lipids 1979, 14, 727–733.
  • Jackson, R.L.; Morrisett, J.D.; Pownall, H.J.; Gotto, A.M., Jr.; Kamio, A.; Imai, H.; Tracy, R.; Kummerow, F.A. Influence of dietary trans-fatty acids on swine lipoprotein composition and structure. J. Lipid Res. 1977, 18, 182–190.
  • Natarajan, S.; Ibrahim, A.; Ghafoorunissa. Dietary trans fatty acids alter diaphragm phospholipid fatty acid composition, triacylglycerol content and glucose transport in rats. Br. J. Nutr. 2005, 93, 829–833.
  • Reichwald-Hacker, I.; Grosse-Oetringhaus, S.; Kiewitt, I.; Mukherjee, K.D. Incorporation of positional isomers of cis- and trans-octadecenoic acids into acyl moieties of rat tissue lipids. Biochim. Biophys. Acta 1979, 575, 327–334.
  • Reichwald-Hacker, I.; Ilsemann, K.; Mukherjee, K.D. Tissue-specific incorporation of positional isomers of dietary cis- and trans-octadecenoic acids in the rat. J. Nutr. 1979, 109, 1051–1056.
  • Schrock, C.G.; Connor, W.E. Incorporation of the dietary trans fatty acid (C18:1) into the serum lipids, the serum lipoproteins and adipose tissue. Am. J. Clin. Nutr. 1975, 28, 1020–1027.
  • Takatori, T.; Phillips, F.C.; Shimasaki, H.; Privett, O.S. Effects of dietary saturated and trans fatty acids on tissue lipid composition and serum LCAT activity in the rat. Lipids 1976, 11, 272–280.
  • Weber, N.; Richter, I.; Mangold, H.K.; Mukherjee, K.D. Positional specificity in the incorporation of isomeric cis- and trans-octadecenoic acids into glycerolipids of cultured soya cells. Planta 1979, 145, 479–485.
  • Yu, P.H.; Mai, J.; Kinsella, J.E. The effects of dietary trans, trans methyl octadecadienoate acid on composition and fatty acids of rat heart. Am. J. Clin. Nutr. 1980, 33, 598–605.
  • Emken, E.A.; Rohwedder, W.K.; Dutton, H.J.; Dejarlais, W.J.; Adlof, R.O. Incorporation of deuterium-labeled cis- and trans-9-octadecenoic acids in humans: Plasma, erythrocyte, and platelet phospholipids. Lipids 1979, 14, 547–554.
  • Mounts, T.L. Double bond position affects metabolism of cis-octadecenoates. Lipids 1976, 11, 676–679.
  • Katan, M.B.; Deslypere, J.P.; van Birgelen, A.P.; Penders, M.; Zegwaard, M. Kinetics of the incorporation of dietary fatty acids into serum cholesteryl esters, erythrocyte membranes, and adipose tissue: An 18-month controlled study. J. Lipid Res. 1997, 38, 2012–2022.
  • Wood, R.; Chumbler, F.; Wiegand, R. Incorporation of dietary cis and trans isomers of octadecenoate in lipid classes of liver and hepatoma. J. Biol. Chem. 1977, 252, 1965–1970.
  • Beynen, A.C.; Hermus, R.J.; Hautvast, J.G. A mathematical relationship between the fatty acid composition of the diet and that of the adipose tissue in man. Am. J. Clin. Nutr. 1980, 33, 81–85.
  • Baylin, A.; Kabagambe, E.K.; Siles, X.; Campos, H. Adipose tissue biomarkers of fatty acid intake. Am. J. Clin. Nutr. 2002, 76, 750–757.
  • Fritsche, J.; Steinhart, H.; Kardalinos, V.; Klose, G. Contents of trans-fatty acids in human substernal adipose tissue and plasma lipids: Relation to angiographically documented coronary heart disease. Eur. J. Med. Res. 1998, 3, 401–406.
  • Garland, M.; Sacks, F.M.; Colditz, G.A.; Rimm, E.B.; Sampson, L.A.; Willett, W.C.; Hunter, D.J. The relation between dietary intake and adipose tissue composition of selected fatty acids in US women. Am. J. Clin. Nutr. 1998, 67, 25–30.
  • Ohlrogge, J.B.; Emken, E.A.; Gulley, R.M. Human tissue lipids: Occurrence of fatty acid isomers from dietary hydrogenated oils. J. Lipid Res. 1981, 22, 955–960.
  • Bonaga, C.; Trizzino, M.G.; Pasquariello, M.A.; Biagi, P.L. Nutritional aspects of trans fatty acids. Note I. Their accumulation in tissue lipids of rats fed with normolipidic diets containing margarine. Biochem. Exp. Biol. 1980, 16, 51–54.
  • Stachowska, E.; Dolegowska, B.; Chlubek, D.; Wesolowska, T.; Ciechanowski, K.; Gutowski, P.; Szumilowicz, H.; Turowski, R. Dietary trans fatty acids and composition of human atheromatous plaques. Eur. J. Nutr. 2004, 43, 313–318.
  • Innis, S.M.; King, D.J. trans Fatty acids in human milk are inversely associated with concentrations of essential all-cis n-6 and n-3 fatty acids and determine trans, but not n-6 and n-3, fatty acids in plasma lipids of breast-fed infants. Am. J. Clin. Nutr. 1999, 70, 383–390.
  • Picciano, M.F.; Perkins, E.G. Identification of the trans isomers of octadecenoic acid in human milk. Lipids 1977, 12, 407–408.
  • Kadegowda, A.K.; Connor, E.E.; Teter, B.B.; Sampugna, J.; Delmonte, P.; Piperova, L.S.; Erdman, R.A. Dietary trans fatty acid isomers differ in their effects on mammary lipid metabolism as well as lipogenic gene expression in lactating mice. J. Nutr. 2010, 140, 919–924.
  • Menon, N.K.; Dhopeshwarkar, G.A. Differences in the fatty acid profile and beta-oxidation by heart homogenates of rats fed cis and trans octadecenoic acids. Biochim. Biophys. Acta 1983, 751, 14–20.
  • Arner, P.; Bernard, S.; Salehpour, M.; Possnert, G.; Liebl, J.; Steier, P.; Buchholz, B.A.; Eriksson, M.; Arner, E.; Hauner, H.; Skurk, T.; Ryden, M.; Frayn, K.N.; Spalding, K.L. Dynamics of human adipose lipid turnover in health and metabolic disease. Nature 2011, 478, 110–113.
  • Kohl, M.F.F. A balance sheet of fat absorption: II. The storage of elaidic acid by the rat over periods of several days. J. Biol. Chem. 1938, 126, 721–729.
  • Liang, X.; Le, W.; Zhang, D.; Schulz, H. Impact of the intramitochondrial enzyme organization on fatty acid oxidation. Biochem. Soc. Trans. 2001, 29, 279–282.
  • Lawson, L.D.; Kummerow, F.A. Beta-Oxidation of the coenzyme A esters of elaidic, oleic, and stearic acids and their full-cycle intermediates by rat heart mitochondria. Biochim. Biophys. Acta 1979, 573, 245–254.
  • Willebrands, A.F.; van der Veen, K.J. The metabolism of elaidic acid in the perfused rat heart. Biochim. Biophys. Acta 1966, 116, 583–585.
  • Yu, W.; Liang, X.; Ensenauer, R.E.; Vockley, J.; Sweetman, L.; Schulz, H. Leaky beta-oxidation of a trans-fatty acid: Incomplete beta-oxidation of elaidic acid is due to the accumulation of 5-trans-tetradecenoyl-CoA and its hydrolysis and conversion to 5-trans-tetradecenoylcarnitine in the matrix of rat mitochondria. J. Biol. Chem. 2004, 279, 52160–52167.
  • Zacherl, J.R.; Mihalik, S.J.; Chace, D.H.; Christensen, T.C.; Robinson, L.J.; Blair, H.C. Elaidate, an 18-carbon trans-monoenoic fatty acid, inhibits beta-oxidation in human peripheral blood macrophages. J. Cell. Biochem. 2014, 115, 62–70.
  • Vahmani, P.; Meadus, W.J.; Turner, T.D.; Duff, P.; Rolland, D.C.; Mapiye, C.; Dugan, M.E. Individual trans 18:1 isomers are metabolised differently and have distinct effects on lipogenesis in 3T3-L1 adipocytes. Lipids 2015, 50, 195–204.
  • Chegary, M.; Brinke, H.; Ruiter, J.P.; Wijburg, F.A.; Stoll, M.S.; Minkler, P.E.; van Weeghel, M.; Schulz, H.; Hoppel, C.L.; Wanders, R.J.; Houten, S.M. Mitochondrial long chain fatty acid beta-oxidation in man and mouse. Biochim. Biophys. Acta 2009, 1791, 806–815.
  • Goetzman, E.S.; Alcorn, J.F.; Bharathi, S.S.; Uppala, R.; McHugh, K.J.; Kosmider, B.; Chen, R.; Zuo, Y.Y.; Beck, M.E.; McKinney, R.W.; Skilling, H.; Suhrie, K.R.; Karunanidhi, A.; Yeasted, R.; Otsubo, C.; Ellis, B.; Tyurina, Y.Y.; Kagan, V.E.; Mallampalli, R.K.; Vockley, J. Long-chain acyl-CoA dehydrogenase deficiency as a cause of pulmonary surfactant dysfunction. J. Biol. Chem. 2014, 289, 10668–10679.
  • Mahfouz, M.M.; Valicenti, A.J.; Holman, R.T. Desaturation of isomeric trans-octadecenoic acids by rat liver microsomes. Biochim. Biophys. Acta 1980, 618, 1–12.
  • Aaes-Jorgensen, E.; Holman, R.T. Effects of trans fatty acid isomers upon essential fatty acid deficiency in rats. Proc. Soc. Exp. Biol. Med. 1956, 93, 175–179.
  • Koletzko, B. Trans fatty acids may impair biosynthesis of long-chain polyunsaturates and growth in man. Acta Paediatr. 1992, 81, 302–306.
  • Privett, O.S.; Phillips, F.; Shimasaki, H.; Nozawa, T.; Nickell, E.C. Studies of effects of trans fatty acids in the diet on lipid metabolism in essential fatty acid deficient rats. Am. J. Clin. Nutr. 1977, 30, 1009–1017.
  • Hill, E.G.; Johnson, S.B.; Holman, R.T. Intensification of essential fatty acid deficiency in the rat by dietary trans fatty acids. J. Nutr. 1979, 109, 1759–1765.
  • Anderson, R.L.; Fullmer, C.S., Jr.;Hollenbach, E.J. Effects of the trans isomers of linoleic acid on the metabolism of linoleic acid in rats. J. Nutr. 1975, 105, 393–400.
  • Kummerow, F.A.; Zhou, Q.; Mahfouz, M.M.; Smiricky, M.R.; Grieshop, C.M.; Schaeffer, D.J. Trans fatty acids in hydrogenated fat inhibited the synthesis of the polyunsaturated fatty acids in the phospholipid of arterial cells. Life Sci. 2004, 74, 2707–2723.
  • Decsi, T.; Koletzko, B. Do trans fatty acids impair linoleic acid metabolism in children? Ann. Nutr. Metab. 1995, 39, 36–41.
  • Kinsella, J.E.; Bruckner, G.; Mai, J.; Shimp, J. Metabolism of trans fatty acids with emphasis on the effects of trans, trans-octadecadienoate on lipid composition, essential fatty acid, and prostaglandins: An overview. Am. J. Clin. Nutr. 1981, 34, 2307–2318.
  • Mahfouz, M.M.; Johnson, S.; Holman, R.T. The effect of isomeric trans-18:1 acids on the desaturation of palmitic, linoleic and eicosa-8,11,14-trienoic acids by rat liver microsomes. Lipids 1980, 15, 100–107.
  • Rosenthal, M.D.; Whitehurst, M.C. Selective effects of isomeric cis and trans fatty acids on fatty acyl delta 9 and delta 6 desaturation by human skin fibroblasts. Biochim. Biophys. Acta 1983, 753, 450–459.
  • Brenner, R.R.; Peluffo, R.O. Regulation of unsaturated fatty acids biosynthesis. I. Effect of unsaturated fatty acid of 18 carbons on the microsomal desaturation of linoleic acid into gamma-linolenic acid. Biochim. Biophys. Acta 1969, 176, 471–479.
  • Larque, E.; Perez-Llamas, F.; Puerta, V.; Giron, M.D.; Suarez, M.D.; Zamora, S.; Gil, A. Dietary trans fatty acids affect docosahexaenoic acid concentrations in plasma and liver but not brain of pregnant and fetal rats. Pediatr. Res. 2000, 47, 278–283.
  • Privett, O.S.; Stearns, E.M., Jr.; Nickell, E.C. Metabolism of the geometric isomers of linoleic acid in the rat. J. Nutr. 1967, 92, 303–310.
  • Obara, N.; Fukushima, K.; Ueno, Y.; Wakui, Y.; Kimura, O.; Tamai, K.; Kakazu, E.; Inoue, J.; Kondo, Y.; Ogawa, N.; Sato, K.; Tsuduki, T.; Ishida, K.; Shimosegawa, T. Possible involvement and the mechanisms of excess trans-fatty acid consumption in severe NAFLD in mice. J. Hepatol. 2010, 53, 326–334.
  • Jeyakumar, S.M.; Prashant, A.; Rani, K.S.; Laxmi, R.; Vani, A.; Kumar, P.U.; Vajreswari, A. Chronic consumption of trans-fat-rich diet increases hepatic cholesterol levels and impairs muscle insulin sensitivity without leading to hepatic steatosis and hypertriglyceridemia in female Fischer rats. Ann. Nutr. Metab. 2011, 58, 272–280.
  • Shao, F.; Ford, D.A. Elaidic acid increases hepatic lipogenesis by mediating sterol regulatory element binding protein-1c activity in HuH-7 cells. Lipids 2014, 49, 403–413.
  • Vendel Nielsen, L.; Krogager, T.P.; Young, C.; Ferreri, C.; Chatgilialoglu, C.; Norregaard, Jensen O.; Enghild, J.J. Effects of elaidic acid on lipid metabolism in HepG2 cells, investigated by an integrated approach of lipidomics, transcriptomics and proteomics. PLoS ONE 2013, 8, e74283.
  • Kraft, J.; Spiltoir, J.I.; Salter, A.M.; Lock, A.L. Differential effects of the trans-18:1 isomer profile of partially hydrogenated vegetable oils on cholesterol and lipoprotein metabolism in male F1B hamsters. J. Nutr. 2011, 141, 1819–1826.
  • Collins, J.M.; Neville, M.J.; Hoppa, M.B.; Frayn, K.N. De novo lipogenesis and stearoyl-CoA desaturase are coordinately regulated in the human adipocyte and protect against palmitate-induced cell injury. J. Biol. Chem. 2010, 285, 6044–6052.
  • Kavanagh, K.; Jones, K.L.; Sawyer, J.; Kelley, K.; Carr, J.J.; Wagner, J.D.; Rudel, L.L. Trans fat diet induces abdominal obesity and changes in insulin sensitivity in monkeys. Obesity (Silver Spring) 2007, 15, 1675–1684.
  • Bendsen, N.T.; Chabanova, E.; Thomsen, H.S.; Larsen, T.M.; Newman, J.W.; Stender, S.; Dyerberg, J.; Haugaard, S.B.; Astrup, A. Effect of trans fatty acid intake on abdominal and liver fat deposition and blood lipids: A randomized trial in overweight postmenopausal women. Nutr. Diabetes 2011, 1, e4.
  • Dorfman, S.E.; Laurent, D.; Gounarides, J.S.; Li, X.; Mullarkey, T.L.; Rocheford, E.C.; Sari-Sarraf, F.; Hirsch, E.A.; Hughes, T.E.; Commerford, S.R. Metabolic implications of dietary trans-fatty acids. Obesity (Silver Spring) 2009, 17, 1200–1207.
  • Westphal, S.A. Obesity, abdominal obesity, and insulin resistance. Clin. Cornerstone. 2008, 9, 23–29; discussion 30–21.
  • Brownell, K.D.; Pomeranz, J.L. The trans-fat ban–food regulation and long-term health. N. Engl. J. Med. 2014, 370, 1773–1775.
  • Mozaffarian, D.; Katan, M.B.; Ascherio, A.; Stampfer, M.J.; Willett, W.C. Trans fatty acids and cardiovascular disease. N. Engl. J. Med. 2006, 354, 1601–1613.
  • Lichtenstein, A.H. Trans fatty acids and cardiovascular disease risk. Curr. Opin. Lipidol. 2000, 11, 37–42.
  • Mensink, R.P.; Katan, M.B. Effect of dietary trans fatty acids on high-density and low-density lipoprotein cholesterol levels in healthy subjects. N. Engl. J. Med. 1990, 323, 439–445.
  • Matthan, N.R.; Ausman, L.M.; Lichtenstein, A.H.; Jones, P.J. Hydrogenated fat consumption affects cholesterol synthesis in moderately hypercholesterolemic women. J. Lipid Res. 2000, 41, 834–839.
  • Laine, D.C.; Snodgrass, C.M.; Dawson, E.A.; Ener, M.A.; Kuba, K.; Frantz, I.D., Jr. Lightly hydrogenated soy oil versus other vegetable oils as a lipid-lowering dietary constituent. Am. J. Clin. Nutr. 1982, 35, 683–690.
  • Aro, A.; Jauhiainen, M.; Partanen, R.; Salminen, I.; Mutanen, M. Stearic acid, trans fatty acids, and dairy fat: Effects on serum and lipoprotein lipids, apolipoproteins, lipoprotein(a), and lipid transfer proteins in healthy subjects. Am. J. Clin. Nutr. 1997, 65, 1419–1426.
  • Sundram, K.; Ismail, A.; Hayes, K.C.; Jeyamalar, R.; Pathmanathan, R. Trans (elaidic) fatty acids adversely affect the lipoprotein profile relative to specific saturated fatty acids in humans. J. Nutr. 1997, 127, 514S–520S.
  • Nicolosi, R.J. Dietary fat saturation effects on low-density-lipoprotein concentrations and metabolism in various animal models. Am. J. Clin. Nutr. 1997, 65, 1617S–1627S.
  • Woollett, L.A.; Spady, D.K.; Dietschy, J.M. Regulatory effects of the saturated fatty acids 6:0 through 18:0 on hepatic low density lipoprotein receptor activity in the hamster. J. Clin. Invest. 1992, 89, 1133–1141.
  • Hayashi, K.; Hirata, Y.; Kurushima, H.; Saeki, M.; Amioka, H.; Nomura, S.; Kuga, Y.; Ohkura, Y.; Ohtani, H.; Kajiyama, G. Effect of dietary hydrogenated corn oil (trans-octadecenoate rich oil) on plasma and hepatic cholesterol metabolism in the hamster. Atherosclerosis 1993, 99, 97–106.
  • Woollett, L.A.; Daumerie, C.M.; Dietschy, J.M. Trans-9-octadecenoic acid is biologically neutral and does not regulate the low density lipoprotein receptor as the cis isomer does in the hamster. J. Lipid Res. 1994, 35, 1661–1673.
  • Mensink, R.P.; Katan, M.B. Trans monounsaturated fatty acids in nutrition and their impact on serum lipoprotein levels in man. Prog. Lipid Res. 1993, 32, 111–122.
  • Lee, J.Y.; Carr, T.P. Dietary fatty acids regulate acyl-CoA:cholesterol acyltransferase and cytosolic cholesteryl ester hydrolase in hamsters. J. Nutr. 2004, 134, 3239–3244.
  • Matthan, N.R.; Welty, F.K.; Barrett, P.H.; Harausz, C.; Dolnikowski, G.G.; Parks, J.S.; Eckel, R.H.; Schaefer, E.J.; Lichtenstein, A.H. Dietary hydrogenated fat increases high-density lipoprotein apoA-I catabolism and decreases low-density lipoprotein apoB-100 catabolism in hypercholesterolemic women. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 1092–1097.
  • Matthan, N.R.; Cianflone, K.; Lichtenstein, A.H.; Ausman, L.M.; Jauhiainen, M.; Jones, P.J. Hydrogenated fat consumption affects acylation-stimulating protein levels and cholesterol esterification rates in moderately hypercholesterolemic women. J. Lipid Res. 2001, 42, 1841–1848.
  • Zock, P.L.; Mensink, R.P.; Harryvan, J.; de Vries, J.H.; Katan, M.B. Fatty acids in serum cholesteryl esters as quantitative biomarkers of dietary intake in humans. Am. J. Epidemiol. 1997, 145, 1114–1122.
  • Liu, M.; Bagdade, J.D.; Subbaiah, P.V. Specificity of lecithin:cholesterol acyltransferase and atherogenic risk: Comparative studies on the plasma composition and in vitro synthesis of cholesteryl esters in 14 vertebrate species. J. Lipid Res. 1995, 36, 1813–1824.
  • Berard, A.M.; Dabadie, H.; Palos-Pinto, A.; Dumon, M.F.; Darmon, M. Reduction of dietary saturated fatty acids correlates with increased plasma lecithin cholesterol acyltransferase activity in humans. Eur. J. Clin. Nutr. 2004, 58, 881–887.
  • Subbaiah, P.V.; Subramanian, V.S.; Liu, M. Trans unsaturated fatty acids inhibit lecithin: Cholesterol acyltransferase and alter its positional specificity. J. Lipid Res. 1998, 39, 1438–1447.
  • Adelman, S.J.; Glick, J.M.; Phillips, M.C.; Rothblat, G.H. Lipid composition and physical state effects on cellular cholesteryl ester clearance. J. Biol. Chem. 1984, 259, 13844–13850.
  • Huang, X.; Fang, C. Dietary trans fatty acids increase hepatic acyl-CoA:cholesterol acyltransferase activity in hamsters. Nutr. Res. 2000, 20, 547–558.
  • Lagrost, L. Differential effects of cis and trans fatty acid isomers, oleic and elaidic acids, on the cholesteryl ester transfer protein activity. Biochim. Biophys. Acta 1992, 1124, 159–162.
  • van Tol, A.; Zock, P.L.; van Gent, T.; Scheek, L.M.; Katan, M.B. Dietary trans fatty acids increase serum cholesterylester transfer protein activity in man. Atherosclerosis 1995, 115, 129–134.
  • Lichtenstein, A.H.; Jauhiainen, M.; McGladdery, S.; Ausman, L.M.; Jalbert, S.M.; Vilella-Bach, M.; Ehnholm, C.; Frohlich, J.; Schaefer, E.J. Impact of hydrogenated fat on high density lipoprotein subfractions and metabolism. J. Lipid Res. 2001, 42, 597–604.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.