1,222
Views
46
CrossRef citations to date
0
Altmetric
Articles

Susceptibility of Listeria monocytogenes to high pressure processing: A review

, , , &

References

  • Raso, J.; Barbosa-Cánovas, G.V. Nonthermal preservation of foods using combined processing techniques. Crit. Rev. Food Sci. Nutr. 2003, 43, 265–285.
  • Dogan, C.; Erkmen, O. High pressure inactivation kinetics of Listeria monocytogenes inactivation in broth, milk, and peach and orange juices. J. Food Eng. 2004, 62, 47–52.
  • Castro, S.M.; Loey, A.V.; Saraiva, J.A.; Smout, C.; Hendrickx, M. Inactivation of pepper (Capsicum annuum) pectin methylesterase by combined high-pressure and temperature treatments. J. Food Eng. 2006, 75, 50–58
  • Chapleau, N.; Ritz, M.; Delépine, S.; Jugiau, F.; Federighi, M.; de Lamballerie, M. Influence of kinetic parameters of high pressure processing on bacterial inactivation in a buffer system. Int. J. Food Microbiol. 2006, 106, 324–330.
  • Hugas, M.; Garriga, M.; Monfort, J.M. New mild technologies in meat processing: High pressure as a model technology. Meat Sci. 2002, 62, 359–371.
  • Lado, B.H.; Yousef, A.E. Alternative food-preservation technologies: Efficacy and mechanisms. Microbes Infect. 2002, 4, 433–440.
  • Mañas, P.; Pagán, R. Microbial inactivation by new technologies of food preservation. J. Appl. Microbiol. 2005, 98, 1387–1399.
  • Barba, F.J.; Criado, M.N.; Belda-Galbis, C.M.; Esteve, M.J.; Rodrigo, D. Stevia rebaudiana Bertoni as a natural antioxidant/antimicrobial for high pressure processed fruit extract: Processing parameter optimization. Food Chem. 2014, 148, 261–267.
  • Bajovic, B.; Bolumar, T.; Heinz, V. Quality considerations with high pressure processing of fresh and value added meat products. Meat Sci. 2012, 92, 280–289.
  • Bondi, M.; Messi, P.; Halami, P.M.; Papadopoulou, C.; de Niederhausern, S. Emerging microbial concerns in food safety and new control measures. BioMed Res. Int. 2014, 2014, 1–3.
  • Forsythe, S.J.; Dickins, B.; Jolley, K.A. Cronobacter, the emergent bacterial pathogen Enterobacter sakazakii comes of age; MLST and whole genome sequence analysis. BMC Genomics 2014, 15, 1121.
  • Tauxe, R.V. Emerging foodborne pathogens. Int. J. Food Microbiol. 2002, 78, 31–41.
  • Cartwright, E.J.; Jackson, K.A.; Johnson, S.D.; Graves, L.M.; Silk, B.J.; Mahon, B.E. Listeriosis outbreaks and associated food vehicles, United States, 1998–2008. Emerg. Infect. Dis. 2013, 19, 1–9.
  • EFSA and ECDC (European Food Safety Authority and European Centre for Disease Prevention and Control). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2013. EFSA J. 2015, 13, 3991.
  • Valderrama, W.B.; Cutter, C.N. An ecological perspective of Listeria monocytogenes biofilms in food processing facilities. Crit. Rev. Food Sci. Nutr. 2013, 53, 801–817.
  • Ratani, S.S.; Siletzky, R.M.; Dutta, V.; Yilidrim, S.; Osborne, J.A.; Lin, W.; Hitchins, A.D.; Ward, T.J.; Kathariou, S. Heavy metal and disinfectant resistance of Listeria monocytogenes from foods and food processing plants. Appl. Environ. Microb. 2012, 78, 6938–6945.
  • Gomes, C.S.; Izar, B.; Pazan, F.; Mohamed, W.; Mraheil, M.A.; Mukherjee, K.; Billion, A.; Aharonowitz, Y.; Chakraborty, T.; Hain, T. Universal stress proteins are important for oxidative and acid stress resistance and growth of Listeria monocytogenes EGD-e in vitro and in vivo. PLoS ONE 2011, 6, e24965.
  • Kostaki, M.; Chorianopoulos, N.; Braxou, E.; Nychas, G.-J.; Giaouris, E. Differential biofilm formation and chemical disinfection resistance of sessile cells of Listeria monocytogenes strains under monospecies and dual-species (with Salmonella enterica) conditions. Appl. Environ. Microb. 2012, 78, 2586–2595.
  • Carpentier, B.; Cerf, O. Review—Persistence of Listeria monocytogenes in food industry equipment and premises. Int. J. Food Microbiol. 2011, 145, 1–8.
  • Ludwig, W.; Schleifer, K.-H.. Whitman, W.B. Listeriaceae. In Bergey’s Manual of Systematic Bacteriology, Volume 3: The Firmicutes; De Vos, P.; Garrity, G.M.; Jones, D.; Krieg, N.R.; Ludwig, W.; Rainey, F.A.; Schleifer, K.-H.; Whitman, W.B., Eds.; Springer: New York, 2009; pp 244–268.
  • Sallen, B.; Rajoharison, A.; Desvarenne, S.; Quinn, F.; Mabilat, C. Comparative analysis of 16S and 23S rRNA sequences of Listeria species. Int. J. Syst. Bacteriol. 1996, 46, 669–674.
  • Nufer, U.; Stephan, R.; Tasara, T. Growth characteristics of Listeria monocytogenes, Listeria welshimeri and Listeria innocua strains in broth cultures and a sliced bologna-type product at 4 and 7 °C. Food Microbiol. 2007, 24, 444–451.
  • Weis, J.; Seeliger, H.P. Incidence of Listeria monocytogenes in nature. Appl. Microbiol. 1975, 30, 29–32.
  • Chen, H.; Hoover, D.G. Modeling the combined effect of high hydrostatic pressure and mild heat on the inactivation kinetics of Listeria monocytogenes Scott A in whole milk. Innov. Food Sci. Emerg. 2003, 4, 25–34.
  • Amina, M.; Panagou, E.Z.; Kodogiannis, V.S.; Nychas, G.J.E. Wavelet neural networks for modelling high pressure inactivation kinetics of Listeria monocytogenes in UHT whole milk. Chemometr. Intell. Lab. 2010, 103, 170–183.
  • McLauchlin, J.; Rees, C.D.; Dodd, C.R. Listeria monocytogenes and the genus Listeria. In The Prokaryotes; Rosenberg, E.; DeLong, E.F.; Lory, S.; Stackebrandt, E.; Thompson, F., Eds.; Springer: Berlin, Heidelberg; 2014, pp 241–259.
  • Lakićević, B.; Katić, V.; Lepšanović, Z.; Janković, V.; Rašeta, M. Listeria monocytogenes important foodborne pathogen and causative agent for listeriosis in humans and animals. Med. Data 2014, 6, 171–176.
  • Farber, J.M.; Peterkin, P.I. Listeria monocytogenes, a foodborne pathogen. Microbiol. Rev. 1991, 55, 476–511.
  • Schlech, W.F. Foodborne listeriosis. Clin. Infect. Dis. 2000, 31, 770–775.
  • Vázquez-Boland, J.A.; Domínguez-Bernal, G.; González-Zorn, B.; Kreft, J.; Goebel, W. Pathogenicity islands and virulence evolution in Listeria. Microbes Infect. 2001, 3, 571–584.
  • Mead, P.S.; Slutsker, L.; Dietz, V.; McCaig, L.F.; Bresee, J.S.; Shapiro, C.; Tauxe, R.V. Food-related illness and death in the United States. Emerg. Infect. Dis. 1999, 5, 607–625.
  • Linnan, M.J.; Mascola, L.; Lou, X.D.; Goulet, V.; May, S.; Salminen, C.; Broome, C.V. Epidemic listeriosis associated with Mexican-style cheese. N. Engl. J. Med. 1988, 319, 823–828.
  • Gandhi, M.; Chikindas, M.L. Listeria: A foodborne pathogen that knows how to survive. Int. J. Food Microbiol. 2007, 113, 1–15.
  • Aureli, P.; Fiorucci, G.C.; Caroli, D.; Marchiaro, G.; Novara, O.; Leone, L.; Salmaso, S. An outbreak of febrile gastroenteritis associated with corn contaminated by Listeria monocytogenes. N. Engl. J. Med. 2000, 342, 1236–1241.
  • EFSA (European Food Safety Authority); ECDC (European Centre for Disease Prevention and Control). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2012. EFSA J. 2014, 12, 3547.
  • Rotariu, O.; Thomas, D.J.I.; Goodburn, K.E.; Hutchison, M.L.; Strachan, N.J. Smoked salmon industry practices and their association with Listeria monocytogenes. Food Control 2014, 35, 284–292.
  • van Schothorst, M.; Zwietering, M.H.; Ross, T.; Buchanan, R.L.; Cole, M.B. Relating microbiological criteria to food safety objectives and performance objectives. Food Control 2009, 20, 967–979.
  • Anonymous. Risk Assessment of Listeria monocytogenes in Ready-to-Eat Food; JEMRA Technical Report, Microbiological Risk Assessment Series 5; FAO//WHO: Rome, 2004.
  • Hui, Y.H. Meat industries: Characteristics and manufacturing processes. In Handbook of Meat and Meat Processing; Hui, Y.H., Ed.; Taylor & Francis Group: Boca Raton, FL, 2012; pp 3–32.
  • Karabagias, I.; Badeka, A.; Kontominas, M. Shelf life extension of lamb meat using thyme or oregano essential oils and modified atmosphere packaging. Meat Sci. 2011, 88, 109–116.
  • Lehner, Y.; Reich, F.; Klein, G. Influence of process parameter on Campylobacter spp. counts on poultry meat in a slaughterhouse environment. Curr. Microbiol. 2014, 69, 240–244.
  • Boziaris, I.S. Introduction to seafood processing—Assuring quality and safety of seafood. In Seafood Processing—Technology, Quality, and Safety; Boziaris, I.S., Ed.; John Wiley & Sons: Chichester, UK, 2014; pp 1–18.
  • Boylston, T.D. Dairy products. In Food Biochemistry and Food Processing; Hui, Y.H., Ed.; John Wiley & Sons: Chichester, UK, 2012; pp 595–614.
  • Patterson, M.F.; Quinn, M.; Simpson, R.; Gilmour, A. Sensitivity of vegetative pathogens to high hydrostatic pressure treatment in phosphate-buffered saline and foods. J. Food Prot. 1995, 58, 524–529.
  • Cheftel, J.C. Review: High-pressure, microbial inactivation and food preservation. Food Sci. Technol. Int. 1995, 1, 75–90.
  • Mújica-Paz, H.; Valdez-Fragoso, A.; Samson, C.T.; Welti-Chanes, J.; Torres, J.A. High-pressure processing technologies for the pasteurization ans sterilization of foods. Food Bioprocess Technol. 2011, 4, 969–985.
  • Smelt, J.P.P.M. Recent advances in the microbiology of high pressure processing. Trends Food Sci. Technol. 1998, 9, 152–158.
  • Huang, H.-W.; Lung, H.-M.; Yang, B.B.; Wang, C.-Y. Responses of microorganisms to high hydrostatic pressure processing. Food Control 2014, 40, 250–259.
  • Alpas, H.; Kalchayanand, N.; Bozoglu, F.; Ray, B. Interaction of pressure, time and temperature of pressurization on viability loss of Listeria innocua. World J. Microbiol. Biotechnol. 1998, 14, 251–253.
  • Patterson, M.F. Microbiology of pressure-treated foods. J. Appl. Microbiol. 2005, 98, 1400–1409.
  • Olsen, N. V.; Menichelli, E.; Grunert, K. G.; Sonne, A. M.; Szabo, E.; Bánáti, D.; Næs, T. Choice probability for apple juice based on novel processing techniques: Investigating the choice relevance of mean-end-chains. Food Qual. Prefer. 2011, 22, 48–59.
  • San Martín, M.F.; Barbosa-Cánovas, G.V.; Swanson, B.G. Food processing by high hydrostatic pressure. Crit. Rev. Food Sci. Nutr. 2002, 42, 627–645.
  • Drake, M.A.; Harrison, S.L.; Asplund, M.; Barbosa-Canovas, G.; Swanson, B.G. High pressure treatment of milk and effects on microbiological and sensory quality of cheddar cheese. J. Food Sci. 1997, 62, 843–860.
  • Rastogi, N.K.; Raghavarao, K.S.M.S.; Balasubramaniam, V.M.; Niranjan, K.; Knorr, D. Opportunities and challenges in high pressure processing of foods. Crit. Rev. Food Sci. Nutr. 2007, 47, 69–112.
  • Huppertz, T.; Smiddy, M.A.; Kelly, A.L.; Goff, H.D. High pressure processing for better ice cream. Agro. Food Ind. Hi Tech 2012, 23, 21–24.
  • Huppertz, T.; Smiddy, M.A.; Goff, H.D.; Kelly, A.L. Effects of high pressure treatment of mix on ice cream manufacture. Int. Dairy J. 2011, 21, 718–726.
  • Saldo, J.; Sendra, E.; Guamis, B. High hydrostatic pressure for accelerating ripening of goat’s milk cheese: Proteolysis and texture. J. Food Sci. 2000, 65, 636–640.
  • Voigt, D.D.; Chevalier, F.; Donaghy, J.A.; Patterson, M.F.; Qian, M.C.; Kelly, A.L. Effect of high-pressure treatment of milk for cheese manufacture on proteolysis, lipolysis, texture and functionality of Cheddar cheese during ripening. Innovative Food Sci. Emerg. Technol. 2012, 13, 23–30.
  • Volkert, M.; Puaud, M.; Wille, H.-J.; Knorr, D. Effects of high pressure–low temperature treatment on freezing behavior, sensorial properties and air cell distribution in sugar rich dairy based frozen food foam and emulsions. Innov. Food Sci. Emerg. Technol. 2012, 13, 75–85.
  • Devi, A.F.; Buckow, R.; Hemar, Y.; Kasapis, S. Structuring dairy systems through high pressure processing. J. Food Eng. 2013, 114, 106–122.
  • del Olmo, A.; Calzada, J.; Nuñez, M. Effect of high pressure processing and modified atmosphere packaging on the safety and quality of sliced ready-to-eat “lacón”, a cured–cooked pork meat product. Innov. Food Sci. Emerg. Technol. 2014, 23, 25–32.
  • Stratakos, A.C.; Linton, M.; Patterson, M.F.; Koidis, A. Effect of high-pressure processing on the shelf life, safety and organoleptic characteristics of lasagne ready meals during storage at refrigeration and abuse temperature. Innov. Food Sci. Emerg. Technol. 2015, 30, 1–7.
  • Tholozan, J.L.; Ritz, M.; Jugiau, F.; Federighi, M.; Tissier, J.P. Physiological effects of high hydrostatic pressure treatments on Listeria monocytogenes and Salmonella typhimurium. J. Appl. Microbiol. 2000, 88, 202–212.
  • Ritz, M.; Tholozan, J.L.; Federighi, M.; Pilet, M.F. Physiological damages of Listeria monocytogenes treated by high hydrostatic pressure. Int. J. Food Microbiol. 2002, 79, 47–53.
  • Karatzas, K.A.G.; Wouters, J.A.; Gahan, C.G.M.; Hill, C.; Abee, T.; Bennik, M.H.J. The CtsR regulator of Listeria monocytogenes contains a variant glycine repeat region that affects piezotolerance, stress resistance, motility and virulence. Mol. Microbiol. 2003, 49, 1227–1238.
  • Van Boeijen, I.K.H.; Casey, P.G.; Hill, C.; Moezelaar, R.; Zwietering, M.H.; Gahan, C.G.M.; Abee, T. Virulence aspects of Listeria monocytogenes LO28 high pressure-resistant variants. Microb. Pathog. 2013, 59–60, 48–51.
  • Scolari, G.; Zacconi, C.; Busconi, M.; Lambri, M. Effect of the combined treatments of high hydrostatic pressure and temperature on Zygosaccharomyces bailii and Listeria monocytogenes in smoothies. Food Control 2015, 47, 166–174.
  • Chen, H.; Neetoo, H.; Ye, M.; Joerger, R.D. Differences in pressure tolerance of Listeria monocytogenes strains are not correlated with other stress tolerances and are not based on differences in CtsR. Food Microbiol. 2009, 26, 404–408.
  • Saucedo-Reyes, D.; Marco-Celdrán, A.; Pina-Pérez, M.C.; Rodrigo, D.; Martínez-López, A. Modeling survival of high hydrostatic pressure treated stationary- and exponential-phase Listeria innocua cells. Innov. Food Sci. Emerg. 2009, 10, 135–141.
  • Mackey, B.M.; Forestière, K.; Isaacs, N. Factors affecting the resistance of Listeria monocytogenes to high hydrostatic pressure. Food Biotechnol. 1995, 9, 1–11.
  • Doona, C.J.; Feeherry, F.E. High Pressure Processing of Foods; IFT Press & Blackwell Publishing: London, 2007.
  • Wemekamp-Kamphuis, H.H.; Wouters, J.A.; de Leeuw, P.P.L.A.; Hain, T.; Chakraborty, T.; Abee, T. Identification of sigma factor σB-controlled genes and their impact on acid stress, high hydrostatic pressure, and freeze survival in Listeria monocytogenes EGD-e. Appl. Environ. Microb. 2004, 70, 3457–3466.
  • Charoenwong, D.; Andrews, S.; Mackey, B. Role of rpoS in the development of cell envelope resilience and pressure resistance in stationary-phase Escherichia coli. Appl. Environ. Microb. 2011, 77, 5220–5229.
  • Lado, B.H.; Yousef, A.E. Characteristics of Listeria monocytogenes important to food processors. In Listeria, Listeriosis, and Food Safety; Ryser, E.T.; Marth, E.H., Eds.; CRC Press: Boca Raton, FL, 2007; pp 157–213.
  • Annous, B.A.; Becker, L.A.; Bayles, D.O.; Labeda, D.P.; Wilkinson, B.J. Critical role of anteiso-C15:0 fatty acid in the growth of Listeria monocytogenes at low temperatures. Appl. Environ. Microbiol. 1997, 63, 3887–3894.
  • Moorman, M.A.; Thelemann, C.A.; Zhou, S.Y.; Pestka, J.J.; Linz, J.E.; Ryser, E.T. Altered hydrophobicity and membrane composition in stress-adapted Listeria innocua. J. Food Prot. 2008, 71, 182–185.
  • Mastronicolis, S.K.; Arvanitis, N.; Karaliota, A.; Litos, C.; Stavroulakis, G.; Moustaka, H.; Heropoulos, G. Cold dependence of fatty acid profile of different lipid structures of Listeria monocytogenes. Food Microbiol. 2005, 22, 213–219.
  • Chihib, N.-E.; Ribeiro da Silva, M.; Delattre, G.; Laroche, M.; Federighi, M. Different cellular fatty acid pattern behaviours of two strains of Listeria monocytogenes Scott A and CNL 895807 under different temperature and salinity conditions. FEMS Microbiol. Lett. 2003, 218, 155–160.
  • MacDonald, A.G. Effects of high hydrostatic pressure on natural and artificial membranes. In High Pressure and Biotechnology; Balny, C.; Hayashi, R.; Heremans, K.; Masson, P., Eds.; John Libbey and Co.: London, 1992; pp 67–75.
  • Koseki, S.; Yamamoto, K. pH and solute concentration of suspension media affect the outcome of high hydrostatic pressure treatment of Listeria monocytogenes. Int. J. Food Microbiol. 2006, 111, 175–179.
  • Molina-Höppner, A.; Doster, W.; Vogel, R.F.; Gänzle, M.G. Protective effect of sucrose and sodium chloride for Lactococcus lactis during sublethal and lethal high-pressure treatments. Appl. Environ. Microb. 2004, 70, 2013–2020.
  • Koseki, S.; Yamamoto, K. Water activity of bacterial suspension media unable to account for the baroprotective effect of solute concentration on the inactivation of Listeria monocytogenes by high hydrostatic pressure. Int. J. Food Microbiol. 2007, 115, 43–47.
  • Hauben, K.J.A.; Bernaerts, K.; Michiels, C.W. Protective effect of calcium on inactivation of Escherichia coli by high hydrostatic pressure. J. Appl. Microbiol. 1998, 85, 678–684.
  • Black, E.P.; Huppertz, T.; Fitzgerald, G.F.; Kelly, A.L. Baroprotection of vegetative bacteria by milk constituents: A study of Listeria innocua. Int. Dairy J. 2007, 17, 104–110.
  • Gervilla, R.; Capellas, M.; Ferragut, V.; Guamis, B. Effect of high hydrostatic pressure on Listeria innocua 910 CECT inoculated into ewe’s milk. J. Food Prot. 1997, 60, 33–37.
  • Inácio, R.S.; Fidalgo, L.G.; Santos, M.D.; Queirós, R.P.; Saraiva, J.A. Effect of high-pressure treatments on microbial loads and physicochemical characteristics during refrigerated storage of raw milk Serra da Estrela cheese samples. Int. J. Food Sci. Technol. 2014, 49, 1272–1278.
  • Carminati, D.; Gatti, M.; Bonvini, B.; Neviani, E.; Mucchetti, G. High-pressure processing of Gorgonzola cheese: Influence on Listeria monocytogenes inactivation and on sensory characteristics. J. Food Prot. 2004, 67, 1671–1675.
  • Tomasula, P.M.; Renye, J.A.; Van Hekken, D.L.; Tunick, M.H.; Kwoczak, R.; Toht, M.; Leggett, L.N.; Luchansky, J.B.; Porto-Fett, A.C.; Phillips, J.G. Effect of high-pressure processing on reduction of Listeria monocytogenes in packaged Queso Fresco. J. Dairy Sci. 2014, 97, 1281–1295.
  • Morales, P.; Calzada, J.; Rodríguez, B.; de Paz, M.; Gaya, P.; Nuñez, M. Effect of cheese water activity and carbohydrate content on the barotolerance of Listeria monocytogenes Scott A. J. Food Prot. 2006, 69, 1328–1333.
  • Macedo, A.; Malcata, F.; Hogg, T. Microbiological profile in Serra ewes’ cheese during ripening. J. Appl. Bacteriol. 1995, 79, 1–11.
  • Hnosko, J.; Gonzalez, M.S.M.; Clark, S. High-pressure processing inactivates Listeria innocua yet compromises Queso Fresco crumbling properties. J. Dairy Sci. 2012, 95, 4851–4862.
  • Smiddy, M.; O’Gorman, L.; Sleator, R.D.; Kerry, J.P.; Patterson, M.F.; Kelly, A.L.; Hill, C. Greater high-pressure resistance of bacteria in oysters than in buffer. Innov. Food Sci. Emerg. 2005, 6, 83–90.
  • Hayman, M.M.; Anantheswaran, R.C.; Knabel, S.J. The effects of growth temperature and growth phase on the inactivation of Listeria monocytogenes in whole milk subject to high pressure processing. Int. J. Food Microbiol. 2007, 115, 220–226.
  • Shearer, A.E.H.; Neetoo, H.S.; Chen, H. Effect of growth and recovery temperatures on pressure resistance of Listeria monocytogenes. Int. J. Food Microbiol. 2010, 136, 359–363.
  • Ferreira, M.; Pereira, S.; Almeida, A.; Queirós, R.; Delgadillo, I.; Saraiva, J.; Cunha, A. Effect of temperature and compression/decompression rates on high pressure inactivation of Listeria. Acta Aliment. Hung. 2015, in press. doi:10.1556/AAlim.2015.4444.
  • Carlez, A.; Rosec, J.-P.; Richard, N.; Cheftel, J.-C. High pressure inactivation of Citrobacter freundii, Pseudomonas fluorescens and Listeria innocua in inoculated minced beef muscle. LWT Food Sci. Technol. 1993, 26, 357–363.
  • Chen, H. Temperature-assisted pressure inactivation of Listeria monocytogenes in turkey breast meat. Int. J. Food Microbiol. 2007, 117, 55–60.
  • Arroyo, G.; Sanz, P.D.; Préstamo, G. Response to high-pressure, low-temperature treatment in vegetables: Determination of survival rates of microbial populations using flow cytometry and detection of peroxidase activity using confocal microscopy. J. Appl. Microbiol. 1999, 86, 544–556.
  • Gervilla, R.; Ferragut, V.; Guamis, B. High pressure inactivation of microorganisms inoculated into ovine milk of different fat contents. J. Dairy Sci. 2000, 83, 674–682.
  • Doona, C.J.; Feeherry, F.E.; Ross, E.W.; Kustin, K. Inactivation kinetics of Listeria monocytogenes by high-pressure processing: Pressure and temperature variation. J. Food Sci. 2012, 77, M458–M465.
  • Buzrul, S.; Alpas, H.; Largeteau, A.; Demazeau, G. Inactivation of Escherichia coli and Listeria innocua in kiwifruit and pineapple juices by high hydrostatic pressure. Int. J. Food Microbiol. 2008, 124, 275–278.
  • Picart, L.; Dumay, E.; Guiraud, J.P.; Cheftel, C. Combined high pressure–sub-zero temperature processing of smoked salmon mince: Phase transition phenomena and inactivation of Listeria innocua. J. Food Eng. 2005, 68, 43–56.
  • Devlieghere, F.; Vermeiren, L.; Debevere, J. New preservation technologies: Possibilities and limitations. Int. Dairy J. 2004, 14, 273–285.
  • García-Graells, C.; Valckx, C.; Michiels, C.W. Inactivation of Escherichia coli and Listeria innocua in milk by combined treatment with high hydrostatic pressure and the lactoperoxidase system. Appl. Environ. Microb. 2000, 66, 4173–4179.
  • Bali, V.; Panesar, P.S.; Bera, M.B.; Kennedy, J.F. Bacteriocins: Recent trends and potential applications. Crit. Rev. Food Sci. Nutr. 2014, in press. doi:10.1080/10408398.2012.729231.
  • Jaouani, I.; Abbassi, M.S.; Alessandria, V.; Bouraoui, J.; Salem, R.B.; Kilani, K.; Mansouri, R.; Messadi, L.; Cocolin, L. High inhibition of Paenibacillus larvae and Listeria monocytogenes by Enterococcus isolated from different sources in Tunisia and identification of their bacteriocin genes. Lett. Appl. Microbiol. 2104, 59, 17–25.
  • Liu, G.; Wang, Y.; Gui, M.; Zheng, H.; Dai, R.; Li, P. Combined effect of high hydrostatic pressure and enterocin LM-2 on the refrigerated shelf life of ready-to-eat sliced vacuum-packed cooked ham. Food Control 2012, 24, 64–71.
  • Joo, N.E.; Ritchie, K.; Kamarajan, P.; Miao, D.; Kapila, Y.L. Nisin, an apoptogenic bacteriocin and food preservative, attenuates HNSCC tumorigenesis via CHAC1. Cancer Med. 2012, 1, 295–305.
  • Davies, E.A.; Falahee, M.B.; Adams, M.R. Involvement of the cell envelope of Listeria monocytogenes in a acquisition of nisin resistance. J. Appl. Bacteriol. 1996, 81, 139–146.
  • Jofré, A.; Garriga, M.; Aymerich, T. Inhibition of Salmonella sp., Listeria monocytogenes and Staphylococcus aureus in cooked ham by combining antimicrobials, high hydrostatic pressure and refrigeration. Meat Sci. 2008, 78, 53–59.
  • Kalchayanand, N.; Sikes, A.; Dunne, C.P.; Ray, B. Factors influencing death and injury of foodborne pathogens by hydrostatic pressure-pasteurization. Food Microbiol. 1998, 15, 207–214.
  • Evrendilek, G.A.; Balasubramaniam, V.M. Inactivation of Listeria monocytogenes and Listeria innocua in yogurt drink applying combination of high pressure processing and mint essential oils. Food Control 2011, 22, 1435–1441.
  • Karatzas, A.K.; Kets, E.P.W.; Smid, E.J.; Bennik, M.H.J. The combined action of carvacrol and high hydrostatic pressure on Listeria monocytogenes Scott A. J. Appl. Microbiol. 2001, 90, 463–469.
  • Rendueles, E.; Omer, M.K.; Alvseike, O.; Alonso-Calleja, C.; Capita, R.; Prieto, M. Microbiological food safety assessment of high hydrostatic pressure processing: A review. LWT Food Sci. Technol. 2011, 44, 1251–1260.
  • Gudbjornsdottir, B.; Jonsson, A.; Hafsteinsson, H.; Heinz, V. Effect of high-pressure processing on Listeria spp. and on the textural and microstructural properties of cold smoked salmon. LWT Food Sci. Technol. 2010, 43, 366–374.
  • Balasubramaniam, V.M.; Farkas, D.; Turek, E.J. Preserving foods through high-pressure processing. Food Technol. Chicago 2008, 62, 32–38.
  • Rasanayagam, V.; Balasubramaniam, V.M.; Ting, E.; Sizer, C.E.; Bush, C.; Anderson, C. Compression heating of selected fatty food materials during high-pressure processing. J. Food Sci. 2003, 68, 254–259.
  • Morris, C.; Brody, A.L.; Wicker, L. Non-thermal food processing/preservation technologies: A review with packaging implications. Packag. Technol. Sci. 2007, 20, 275–286.
  • Hayakawa, I.; Furukawa, S.; Midzunaga, A.; Horiuchi, H.; Nakashima, T.; Fujio, Y.; Sasaki, K. Mechanism of inactivation of heat-tolerant spores of Bacillus stearothermophilus IFO 12550 by rapid decompression. J. Food Sci. 1998, 63, 371–374.
  • Syed, Q.-A.; Reineke, K.; Saldo, J.; Buffa, M.; Guamis, B.; Knorr, D. Effect of compression and decompression rates during high hydrostatic pressure processing on inactivation kinetics of bacterial spores at different temperatures. Food Control 2012, 25, 361–367.
  • Rademacher, B.; Werner, F.; Pehl, M. Effect of the pressurizing ramp on the inactivation of Listeria innocua considering thermofluiddynamical processes. Innov. Food Sci. Emerg. 2002, 3, 19–24.
  • Noma, S.; Shimoda, M.; Hayakawa, I. Inactivation of vegetative bacteria by rapid decompression treatment. J. Food Sci. 2002, 67, 3408–3411.
  • Syed, Q.-A.; Buffa, M.; Guamis, B.; Saldo, J. Effect of compression and decompression rates of high hydrostatic pressure on inactivation of Staphylococcus aureus in different matrices. Food Bioprocess Technol. 2013, 7, 1202–1207.
  • Syed, Q.-A.; Buffa, M.; Guamis, B.; Saldo, J. Lethality and injuring the effect of compression and decompression rates of high hydrostatic pressure on Escherichia coli O157: H7 in different matrices. High Pressure Res. 2013, 33, 64–72.
  • Yuste, J.; Mor-Mur, M.; Capellas, M.; Pla, R. Listeria innocua and aerobic mesophiles during chill storage of inoculated mechanically recovered poultry meat treated with high hydrostatic pressure. Meat Sci. 1999, 53, 251–257.
  • Alemán, G.D.; Walker, M.; Farkas, D.F.; Torres, J.A.; Ting, E.Y.; Mordre, S.C.; Hawes, A.C.O. Pulsed ultra high pressure treatments for pasteurization of pineapple juice. J. Food Sci. 1996, 61, 388–390.
  • Buzrul, S.; Alpas, H.; Largeteau, A.; Demazeau, G. Efficiency of pulse pressure treatment for inactivation of Escherichia coli and Listeria innocua in whole milk. Eur. Food Res. Technol. 2009, 229, 127–131.
  • Shao, Y.; Ramaswamy, H.S.; Zhu, S. High-pressure destruction kinetics of spoilage and pathogenic bacteria in raw milk cheese. J. Food Process. Eng. 2007, 30, 357–374.
  • Bull, M.K.; Hayman; M.M.; Stewart, C.M.; Szabo, E.A.; Knabel, S.J. Effect of prior growth temperature, type of enrichment medium, and temperature and time of storage on recovery of Listeria monocytogenes following high pressure processing of milk. Int. J. Food Microbiol. 2005, 101, 53–61.
  • Cheftel, J.C.; Culioli, J. Effects of high pressure on meat: A review. Meat Sci. 1997, 46, 211–236.
  • Han, Y.; Jiang, Y.; Xu, X.; Sun, X.; Xu, B.; Zhou, G. Effect of high pressure treatment on microbial populations of sliced vacuum-packed cooked ham. Meat Sci. 2011, 88, 682–688.
  • Bozoglu, F.; Alpas, H.; Kaletunç, G. Injury recovery of foodborne pathogens in high hydrostatic pressure treated milk during storage. FEMS Immunol. Med. Microbiol. 2004, 40, 243–247.
  • Garriga, M.; Grèbol, N.; Aymerich, M.T.; Monfort, J.M.; Hugas, M. Microbial inactivation after high-pressure processing at 600 MPa in commercial meat products over its shelf life. Innov. Food Sci. Emerg. 2004, 5, 451–457.
  • Yuste, J.; Mor-Mur, M.; Capellas, M.; Guamis, B.; Pla, R. Microbiological quality of mechanically recovered poultry meat treated with high hydrostatic pressure and nisin. Food Microbiol. 1998, 15, 407–414.
  • Koseki, S.; Mizuno, Y.; Yamamoto, K. Predictive modelling of the recovery of Listeria monocytogenes on sliced cooked ham after high pressure processing. Int. J. Food Microbiol. 2007, 119, 300–307.
  • Aymerich, T.; Jofré, A.; Garriga, M.; Hugas, M. Inhibition of Listeria monocytogenes and Salmonella by natural antimicrobials and high hydrostatic pressure in sliced cooked ham. J. Food Prot. 2005, 68, 173–177.
  • López-Pedemonte, T.; Roig-Sagués, A.; De Lamo, S.; Hernández-Herrero, M.; Guamis, B. Reduction of counts of Listeria monocytogenes in cheese by means of high hydrostatic pressure. Food Microbiol. 2007, 24, 59–66.
  • EFSA (European Food Safety Authority); ECDC (European Centre for Disease Prevention and Control). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2011. EFSA J. 2013, 11, 3129.
  • EFSA (European Food Safety Authority); ECDC (European Centre for Disease Prevention and Control). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2010. EFSA J. 2012, 10, 2597.
  • EFSA (European Food Safety Authority); ECDC (European Centre for Disease Prevention and Control). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2009. EFSA J. 2011, 9, 2090.
  • EFSA (European Food Safety Authority); ECDC (European Centre for Disease Prevention and Control). The Community summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in the European Union in 2008. EFSA J. 2010, 8, 1496.
  • EFSA (European Food Safety Authority); ECDC (European Centre for Disease Prevention and Control). The Community summary report on trends and sources of zoonoses, zoonotic agents, antimicrobial resistance and foodborne outbreaks in the European Union in 2006. EFSA J. 2007, 130. doi: 10.2903/j.efsa.2007.130r
  • EFSA (European Food Safety Authority); ECDC (European Centre for Disease Prevention and Control). The Community summary report on trends and sources of zoonoses, zoonotic agents, antimicrobial resistance and foodborne outbreaks in the European Union in 2005. EFSA J. 2006, 94. doi:10.2903/j.efsa.2006.94r.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.