702
Views
5
CrossRef citations to date
0
Altmetric
Articles

Effects of free access to sugar solutions on the control of energy intake

&

References

  • Polednak, A.P. Trends in incidence rates for obesity-associated cancers in the US. Cancer Detect. Prev. 2003, 27, 415–421.
  • Zimmet, P.; Alberti, K.; Shaw, J. Global and societal implications of the diabetes epidemic. Nature. 2001, 414, 782–787.
  • Hall, M.E.; Obesity, hypertension, and chronic kidney disease. International Journal of Nephrology and Renovascular Disease 2014, 7, 75.
  • Lavie, C.J.; McAuley, P.A.; Church, T.S.; Milani, R.V.; Blair, S.N.;do Carmo, J.M.; da Silva, A.A.; Juncos, L.A.; Wang, Z.; Hall, J.E. Obesity and cardiovascular diseases: implications regarding fitness, fatness, and severity in the obesity paradox. J. Am. College Cardiol. 2014, 63, 1345–1354.
  • Ogden, C.L.; Carroll, M.D.; Kit, B.K.; Flegal, K.M. Prevalence of obesity in the United States, 2009-2010. US Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics Hyattsville, MD. 2012.
  • Benicky, J.; Sánchez-Lemus, E.; Honda, M.; Pang, T.; Orecna, M.; Wang, J.; Leng, Y.; Chuang, D.-M.; Saavedra, J.M. Angiotensin II AT1 receptor blockade ameliorates brain inflammation. Neuropsychopharmacology 2011, 36, 857–870.
  • Hinnouho, G.-M.; Czernichow, S.; Dugravot, A.; Batty, G.D.; Kivimaki, M.; Singh-Manoux, A. Metabolically healthy obesity and risk of mortality does the definition of metabolic health matter? Diabetes Care 2013, 36, 2294–2300.
  • Crino, M.; Sacks, G.; Vandevijvere, S.; Swinburn, B.; Neal, B. The influence on population weight gain and obesity of the macronutrient composition and energy density of the food supply. Curr. Obesity Rep. 2015, 4, 1–10.
  • Kral, T.V.; Roe, L.S.; Rolls, B.J. Combined effects of energy density and portion size on energy intake in women. Am. J. Clin. Nutr. 2004, 79, 962–968.
  • Tillman, E.J.; Morgan, D.A.; Rahmouni, K.; Swoap, S.J. Three months of high-fructose feeding fails to induce excessive weight gain or leptin resistance in mice. PloS one 2014, 9, e107206.
  • Frayling, T.M.; Timpson, N.J.; Weedon, M.N.; Zeggini, E.; Freathy, R.M.; Lindgren, C.M.; Perry, J.R.; Elliott, K.S.; Lango, H.; Rayner, N.W. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 2007, 316, 889–894.
  • Clément, K.; Vaisse, C.; Lahlou, N.; Cabrol, S.; Pelloux, V.; Cassuto, D.; Gourmelen, M.; Dina, C.; Chambaz, J.; Lacorte, J.-M. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature 1998, 392, 398–401.
  • Mota, J.; Fidalgo, F.; Silva, R.; Ribeiro, J.C.; Santos, R.; Carvalho, J.; Santos, M.P. Relationships between physical activity, obesity and meal frequency in adolescents. Ann. Hum. Biol. 2008, 35, 1–10.
  • Oishi, K.; Higo-Yamamoto, S. Disrupted daily light–dark cycles induce physical inactivity and enhance weight gain in mice depending on dietary fat intake. NeuroReport 2014, 25, 865–869.
  • Johnson, R.J.; Segal, M.S.; Sautin, Y.; Nakagawa, T.; Feig, D.I.; Kang, D.-H.; Gersch, M.S.; Benner, S.; Sánchez-Lozada, L.G. Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease. Am. J. Clin. Nutr. 2007, 86, 899–906.
  • Gower, B.A.; Goss, A.M.; A Lower-carbohydrate, higher-fat diet reduces abdominal and intermuscular fat and increases insulin sensitivity in adults at risk of type 2 diabetes. J. Nutr. 2015, 145, 177S–183S.
  • Nordmann, A.J.; Nordmann, A.; Briel, M.; Keller, U.; Yancy, W.S.; Brehm, B.J.; Bucher, H.C.; Effects of low-carbohydrate vs low-fat diets on weight loss and cardiovascular risk factors: a meta-analysis of randomized controlled trials. Arch. Int. Med. 2006, 166, 285–293.
  • Ventura, E.E.; Davis, J.N.; Goran, M.I.; Sugar content of popular sweetened beverages based on objective laboratory analysis: focus on fructose content. Obesity. 2011, 19, 868–874.
  • Walker, R.W.; Dumke, K.A.; Goran, M.I.; Fructose content in popular beverages made with and without high-fructose corn syrup. Nutrition 2014, 30, 928–935.
  • Bray, G.A.; Nielsen, S.J.; Popkin, B.M.; Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. The American Journal of Clinical Nutrition. 2004, 79, 537–543.
  • Malik, V.; Hu, F. sweeteners and risk of obesity and type 2 diabetes: the role of sugar-sweetened beverages. Curr. Diabetes Rep. 2012, 12, 195–203.
  • Chiavaroli, L.; Ha, V.; de Souza, R.J.; Kendall, C.W.; Sievenpiper, J.L.; Fructose in obesity and cognitive decline: is it the fructose or the excess energy? Nutr. J. 2014, 13, 27.
  • Forshee, R.A.; Storey, M.L.; Allison, D.B.; Glinsmann, W.H.; Hein, G.L.; Lineback, D.R.; Miller, S.A.; Nicklas, T.A.; Weaver, G.A.; White, J.S.; A critical examination of the evidence relating high fructose corn syrup and weight gain. Critical reviews in food science and nutrition. 2007, 47, 561–582.
  • Bray, G.; Popkin, B. Calorie‐sweetened beverages and fructose: what have we learned 10 years later. Pediat. Obesity 2013, 8, 242–248.
  • Nakagawa, T.; Tuttle, K.R.; Short, R.A.; Johnson, R.J.; Hypothesis: fructose-induced hyperuricemia as a causal mechanism for the epidemic of the metabolic syndrome. Nat. Clin. Pract. Neph. 2005, 1, 80–86.
  • Stanhope, K.L.; Role of fructose-containing sugars in the epidemics of obesity and metabolic syndrome. Ann. Rev. Med. 2012, 63, 329–343.
  • Vos, M.B.; Kimmons, J.E.; Gillespie, C.; Welsh, J.; Blanck, H.M.; Dietary fructose consumption among US children and adults: the third national health and nutrition examination survey. Medscape J. Med. 2008, 10, 160–160.
  • Gao, H.; Guan, T.; Li, C.; Zuo, G.; Yamahara, J.; Wang, J.; Li, Y. Treatment with ginger ameliorates fructose-induced Fatty liver and hypertriglyceridemia in rats: modulation of the hepatic carbohydrate response element-binding protein-mediated pathway. Evidence-Based Complementary and Alternative Medicine 2012, 2012, 1–12.
  • Mellor, K.M.; Bell, J.R.; Young, M.J.; Ritchie, R.H.; Delbridge, L.M.D. Myocardial autophagy activation and suppressed survival signaling is associated with insulin resistance in fructose-fed mice. J. Mol. Cell. Cardiol. 2011, 50, 1035–1043.
  • Sánchez-Lozada, L.G.; Tapia, E.; Jiménez, A.; Bautista, P.; Cristóbal, M.; Nepomuceno, T.; Soto, V.; Ávila-Casado, C.; Nakagawa, T.; Johnson, R.J. Fructose-induced metabolic syndrome is associated with glomerular hypertension and renal microvascular damage in rats. Am. J. Physiol.-Renal Physiol. 2007, 292, F423–F429.
  • Iannelli, A.; Anty, R.; Schneck, A.S.; Tran, A.; Gugenheim, J. Inflammation, insulin resistance, lipid disturbances, anthropometrics, and metabolic syndrome in morbidly obese patients: a case control study comparing laparoscopic Roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy. Surgery. 2011, 149, 364–370.
  • Blevins, J.E.; Graham, J.L.; Morton, G.J.; Bales, K.L.; Schwartz, M.W.; Baskin, D.G.; Havel, P.J. Chronic oxytocin administration inhibits food intake, increases energy expenditure, and produces weight loss in fructose-fed obese rhesus monkeys. Am. J. Physiol. Regul. Integ. Compar. Physiol. 2015, 308, R431–R438
  • Nakagawa, T.; Hu, H.; Zharikov, S.; Tuttle, K.R.; Short, R.A.; Glushakova, O.; Ouyang, X.; Feig, D.I.; Block, E.R.; Herrera-Acosta, J. A causal role for uric acid in fructose-induced metabolic syndrome. Am. J. Physiol.-Renal Physiol. 2006, 290, F625–F631.
  • Xu, X.; Zhao, C.X.; Wang, L.; Tu, L.; Fang, X.; Zheng, C.; Edin, M.L.; Zeldin, D.C.; Wang, D.W. Increased CYP2J3 expression reduces insulin resistance in fructose-treated rats and db/db mice. Diabetes 2010, 59, 997–1005.
  • Page, K.A.; Chan, O.; Arora, J.; Belfort-DeAguiar, R.; Dzuira, J.; Roehmholdt, B.; Cline, G.W.; Naik, S.; Sinha, R.; Constable, R.T. Effects of fructose vs glucose on regional cerebral blood flow in brain regions involved with appetite and reward pathwaysfructose consumption and weight gain. JAMA. 2013, 309, 63–70.
  • Erlanson-Albertsson, C.; Lindqvist, A. Fructose affects enzymes involved in the synthesis and degradation of hypothalamic endocannabinoids. Regul. Peptides. 2010, 161, 87–91.
  • Gersch, M.S.; Mu, W.; Cirillo, P.; Reungjui, S.; Zhang, L.; Roncal, C.; Sautin, Y.Y.; Johnson, R.J.; Nakagawa, T. Fructose, but not dextrose, accelerates the progression of chronic kidney disease. Am. J. Physiol.-Renal Physiol. 2007, 293, F1256–F1261.
  • Niewoehner, C.B. Metabolic effects of dietary versus parenteral fructose. J. Am. College Nutr. 1986, 5, 443–450.
  • Epstein, L.H.; Gordy, C.C.; Raynor, H.A.; Beddome, M.; Kilanowski, C.K.; Paluch, R. Increasing fruit and vegetable intake and decreasing fat and sugar intake in families at risk for childhood obesity. Obesity Res. 2001, 9, 171–178.
  • He, K.; Hu, F.B.; Colditz, G.A.; Manson, J.E.; Willett, W.C.; Liu, S. Changes in intake of fruits and vegetables in relation to risk of obesity and weight gain among middle-aged women. Int. J. Obes. Relat. Metab. Disord. 2004, 28, 1569–1574.
  • DiNicolantonio, J.J.; Lucan, S.C. The wrong white crystals: not salt but sugar as aetiological in hypertension and cardiometabolic disease. Open Heart 2014, 1, e000167.
  • van Buul, V.J.; Tappy, L.; Brouns, F.J. Misconceptions about fructose-containing sugars and their role in the obesity epidemic. Nutr. Res. Rev. 2014, 27, 119–130.
  • Varady, K.A.; Dam, V.T.; Klempel, M.C.; Horne, M.; Cruz, R.; Kroeger, C.M.; Santosa, S. Effects of weight loss via high fat vs. low fat alternate day fasting diets on free fatty acid profiles. Sci. Rep. 2015, 5.
  • Wojnicki, F.; Stine, J.; Corwin, R. Liquid sucrose bingeing in rats depends on the access schedule, concentration and delivery system. Physiol. Behav. 2007, 92, 566–574.
  • Gaby, A.R. Adverse effects of dietary fructose. Alt. Med. Rev. 2005, 10, 294–306.
  • Goldin, A.; Beckman, J.A.; Schmidt, A.M.; Creager, M.A. Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation. 2006, 114, 597–605.
  • Born, P.; Zech, J.; Lehn, H.; Classen, M.; Lorenz, R. Colonic bacterial activity determines the symptoms in people with fructose-malabsorption. Hepato-Gastroenterol. 1994, 42, 778–785.
  • Lê, K.-A.; Faeh, D.; Stettler, R.; Ith, M.; Kreis, R.; Vermathen, P.; Boesch, C.; Ravussin, E.; Tappy, L. A 4-wk high-fructose diet alters lipid metabolism without affecting insulin sensitivity or ectopic lipids in healthy humans. Am. J. Clin. Nutr. 2006, 84, 1374–1379.
  • Stanhope, K.L.; Schwarz, J.M.; Keim, N.L.; Griffen, S.C.; Bremer, A.A.; Graham, J.L.; Hatcher, B.; Cox, C.L.; Dyachenko, A.; Zhang, W.; McGahan, J.P.; Seibert, A.; Krauss, R.M.; Chiu, S.; Schaefer, E.J.; Ai, M.; Otokozawa, S.; Nakajima, K.; Nakano, T.; Beysen, C.; Hellerstein, M.K.; Berglund, L.; Havel, P.J. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J. Clin. Invest. 2009, 119, 1322–1334.
  • Ackroff, K.; Sclafani, A. Rats’ preferences for high fructose corn syrup vs. sucrose and sugar mixtures. Physiol. Behav. 2011, 102, 548–552.
  • Rumessen, J.J. Fructose and related food carbohydrates: sources, intake, absorption, and clinical implications. Scand. J. Gastroenterol. 1992, 27, 819–828.
  • Le, M.T.; Frye, R.F.; Rivard, C.J.; Cheng, J.; McFann, K.K.; Segal, M.S.; Johnson, R.J.; Johnson, J.A. Effects of high-fructose corn syrup and sucrose on the pharmacokinetics of fructose and acute metabolic and hemodynamic responses in healthy subjects. Metabolism 2012, 61, 641–651.
  • Sánchez-Lozada, L.G.; Mu, W.; Roncal, C.; Sautin, Y.Y.; Abdelmalek, M.; Reungjui, S.; Le, M.; Nakagawa, T.; Lan, H.Y.; Yu, X. Comparison of free fructose and glucose to sucrose in the ability to cause fatty liver. Eur. J. Nutr. 2010, 49, 1–9.
  • Castonguay, T.W.; Hirsch, E.; Collier, G. Palatability of sugar solutions and dietary selection? Physiol. Behav. 1981, 27, 7–12.
  • Soto, M.; Chaumontet, C.; Even, P.C.; Nadkarni, N.; Piedcoq, J.; Darcel, N.; Tomé, D.; Fromentin, G. Intermittent access to liquid sucrose differentially modulates energy intake and related central pathways in control or high-fat fed mice. Physiol. Behav. 2014
  • Thorburn, A.W.; Storlien, L.H.; Jenkins, A.B.; Khouri, S.; Kraegen, E. Fructose-induced in vivo insulin resistance and elevated plasma triglyceride levels in rats. Am. J. Clin. Nutr. 1989, 49, 1155–1163.
  • Bocarsly, M.E.; Powell, E.S.; Avena, N.M.; Hoebel, B.G. High-fructose corn syrup causes characteristics of obesity in rats: Increased body weight, body fat and triglyceride levels. Pharmacol. Biochem. Behav. 2010, 97, 101–106.
  • Ishimoto, T.; Lanaspa, M.A.; Le, M.T.; Garcia, G.E.; Diggle, C.P.; MacLean, P.S.; Jackman, M.R.; Asipu, A.; Roncal-Jimenez, C.A.; Kosugi, T. Opposing effects of fructokinase C and A isoforms on fructose-induced metabolic syndrome in mice. Proc. Natl. Acad. Sci. 2012, 109, 4320–4325.
  • Kawasaki, T.; Kashiwabara, A.; Sakai, T.; Igarashi, K.; Ogata, N.; Watanabe, H.; Ichiyanagi, K.; Yamanouchi, T. Long-term sucrose-drinking causes increased body weight and glucose intolerance in normal male rats. Br. J. Nutr. 2005, 93, 613–618.
  • Zheng, M.; Rangan, A.; Olsen, N.J.; Andersen, L.B.; Wedderkopp, N.; Kristensen, P.; Grøntved, A.; Ried-Larsen, M.; Lempert, S.M.; Allman-Farinelli, M.; Heitmann, B.L. Substituting sugar-sweetened beverages with water or milk is inversely associated with body fatness development from childhood to adolescence. Nutrition 2015, 31, 38–44.
  • Schwartz, M.W.; Woods, S.C.; Porte, D.; Seeley, R.J.; Baskin, D.G. Central nervous system control of food intake. Nature 2000, 404, 661–671.
  • Morton, G.J.; Meek, T.H.; Schwartz, M.W. Neurobiology of food intake in health and disease. Nat. Rev. Neurosci. 2014, 15, 367–378.
  • Tappy, L.; Lê, K.A.; Tran, C.; Paquot, N. Fructose and metabolic diseases: New findings, new questions. Nutrition (Burbank, Los Angeles County, Calif.). 2010, 26, 1044–1049.
  • London, E.; Castonguay, T.W. High fructose diets increase 11β-hydroxysteroid dehydrogenase type 1 in Liver and visceral adipose in rats within 24-h exposure. Obesity. 2011, 19, 925–932.
  • Swarbrick, M.M.; Stanhope, K.L.; Elliott, S.S.; Graham, J.L.; Krauss, R.M.; Christiansen, M.P.; Griffen, S.C.; Keim, N.L.; Havel, P.J. Consumption of fructose-sweetened beverages for 10 weeks increases postprandial triacylglycerol and apolipoprotein-B concentrations in overweight and obese women. Br. J. Nutr. 2008, 100, 947–952.
  • Schultz, A.; Neil, D.; Aguila, M.; Mandarim-de-Lacerda, C. Hepatic Adverse Effects of Fructose Consumption Independent of Overweight/Obesity. Int. J. Mol. Sci. 2013, 14, 21873–21886.
  • Zavaroni, I.; Chen, Y.-D.I.; Reaven, G.M. Studies of the mechanism of fructose-induced hypertriglyceridemia in the rat. Metabolism 1982, 31, 1077–1083.
  • Campbell, E.S.; Castonguay, T.W. Fructose intake and circulating triglycerides: an examination of the roles of APOC 3 and FOXO1. FASEB J. 2013, 27, 1074.1078.
  • Stanhope, K.L.; Bremer, A.A.; Medici, V.; Nakajima, K.; Ito, Y.; Nakano, T.; Chen, G.; Fong, T.H.; Lee, V.; Menorca, R.I.; Keim, N.L.; Havel, P.J. Consumption of Fructose and High Fructose Corn Syrup Increase Postprandial Triglycerides, LDL-Cholesterol, and Apolipoprotein-B in Young Men and Women. J. Clin. Endocrinol. Metabol. 2011, 96, E1596–E1605.
  • Bista, B.; Beck, N. Cushing Syndrome. Indian J. Pediat. 2013, 1–7.
  • Castonguay, T.W.; Dallman, M.; Stern, J.S. Corticosterone prevents body weight loss and diminished fat appetite following adrenalectomy. Nutr. Behav. 1984
  • Bujalska, I.J.; Draper, N.; Michailidou, Z.; Tomlinson, J.W.; White, P.C.; Chapman, K.E.; Walker, E.A.; Stewart, P.M. Hexose-6-phosphate dehydrogenase confers oxo-reductase activity upon 11β-hydroxysteroid dehydrogenase type 1. J. Mol. Endocrinol. 2005, 34, 675–684.
  • Chapman, K.; Holmes, M.; Seckl, J. 11β-Hydroxysteroid Dehydrogenases: Intracellular Gate-Keepers of Tissue Glucocorticoid Action. Physiol. Rev. 2013, 93, 1139–1206.
  • Masuzaki, H.; Paterson, J.; Shinyama, H.; Morton, N.M.; Mullins, J.J.; Seckl, J.R.; Flier, J.S. A transgenic model of visceral obesity and the metabolic syndrome. Science 2001, 294, 2166–2170.
  • Rask, E.; Olsson, T.; Soderberg, S.; Andrew, R.; Livingstone, D.E.; Johnson, O.; Walker, B.R. Tissue-specific dysregulation of cortisol metabolism in human obesity. J. Clin. Endocrinol. Metabol. 2001, 86, 1418–1421.
  • Livingstone, D.E.W.; Walker, B.R. Is 11β-hydroxysteroid dehydrogenase type 1 a therapeutic target? effects of carbenoxolone in lean and obese zucker rats. J. Pharmacol. Exp. Therap. 2003, 305, 167–172.
  • Holmes, M.C.; Carter, R.N.; Noble, J.; Chitnis, S.; Dutia, A.; Paterson, J.M.; Mullins, J.J.; Seckl, J.R.; Yau, J.L. 11β-hydroxysteroid dehydrogenase type 1 expression is increased in the aged mouse hippocampus and parietal cortex and causes memory impairments. J. Neurosci. 2010, 30, 6916–6920.
  • Masuzaki, H.; Yamamoto, H.; Kenyon, C.J.; Elmquist, J.K.; Morton, N.M.; Paterson, J.M.; Shinyama, H.; Sharp, M.G.F.; Fleming, S.; Mullins, J.J.; Seckl, J.R.; Flier, J.S. Transgenic amplification of glucocorticoid action in adipose tissue causes high blood pressure in mice. J. Clin. Invest. 2003, 112, 83–90.
  • Morton, N.M.; Holmes, M.C.; Fiévet, C.; Staels, B.; Tailleux, A.; Mullins, J.J.; Seckl, J.R. Improved lipid and lipoprotein profile, hepatic insulin sensitivity, and glucose tolerance in 11β-hydroxysteroid dehydrogenase type 1 null mice. J. Biol. Chem. 2001, 276, 41293–41300.
  • Morton, N.M.; Paterson, J.M.; Masuzaki, H.; Holmes, M.C.; Staels, B.; Fievet, C.; Walker, B.R.; Flier, J.S.; Mullins, J.J.; Seckl, J.R. Novel Adipose Tissue–Mediated Resistance to Diet-Induced Visceral Obesity in 11β-Hydroxysteroid Dehydrogenase Type 1–Deficient Mice. Diabetes. 2004, 53, 931–938.
  • Stewart, P.M.; Tomlinson, J.W. Cortisol, 11β-hydroxysteroid dehydrogenase type 1 and central obesity. Trend. Endocrinol. Metabol. 2002, 13, 94–96.
  • Fietta, P.; Fietta, P.; Delsante, G. Central nervous system effects of natural and synthetic glucocorticoids. Psychiat. Clin. Neurosci. 2009, 63, 613–622.
  • Verma, M.; Zhang, Z.; Mackellar, A.; Seckl, J.; Holmes, M.; Chapman, K. Decreased brain 11β-HSD1 expression following inflammation; a role in regulating brain energy homeostasis? Endo. Abst. 2014, 34, 243.
  • Zakrzewska, K.E.; Cusin, I.; Stricker-Krongrad, A.; Boss, O.; Ricquier, D.; Jeanrenaud, B.; Rohner-Jeanrenaud, F. Induction of obesity and hyperleptinemia by central glucocorticoid infusion in the rat. Diabetes 1999, 48, 365–370.
  • Cusin, I.; Rouru, J.; Rohner‐Jeanrenaud, F. Intracerebroventricular glucocorticoid infusion in normal rats: induction of parasympathetic‐mediated obesity and insulin resistance. Obesity Res. 2001, 9, 401–406.
  • Yi, C.-X.; Foppen, E.; Abplanalp, W.; Gao, Y.; Alkemade, A.; la Fleur, S.E.; Serlie, M.J.; Fliers, E.; Buijs, R.M.; Tschöp, M.H.; Kalsbeek, A. Glucocorticoid signaling in the arcuate nucleus modulates hepatic insulin sensitivity. Diabetes 2012, 61, 339–345.
  • Hwang, I.-S.; Ho, H.; Hoffman, B.B.; Reaven, G.M. Fructose-induced insulin resistance and hypertension in rats. Hypertension 1987, 10, 512–516.
  • Drake, A.J.; Livingstone, D.E.; Andrew, R.; Seckl, J.R.; Morton, N.M.; Walker, B.R. Reduced adipose glucocorticoid reactivation and increased hepatic glucocorticoid clearance as an early adaptation to high-fat feeding in Wistar rats. Endocrinology 2005, 146, 913–919.
  • Morton, N.M.; Ramage, L.; Seckl, J.R. Down-regulation of adipose 11β-hydroxysteroid dehydrogenase type 1 by high-fat feeding in mice: a potential adaptive mechanism counteracting metabolic disease. Endocrinology 2004, 145, 2707–2712.
  • Bursać, B.N.; Djordjevic, A.D.; Vasiljević, A.D.; Milutinović, D.D.V.; Veličković, N.A.; Nestorović, N.M.; Matić, G.M. Fructose consumption enhances glucocorticoid action in rat visceral adipose tissue. J. Nutr. Biochem. 2013, 24, 1166–1172.
  • Zhao, C.; Tschiffely, A.E.; Castonguay, T.W. Effect of sugars on mRNA expression of 11β-HSD1 in the hypothalamus of rats after 24 hour exposure. J. Agric. Life Sci. 2015, 2, 1–6.
  • Baskin, D.G.; Lattemann, D.F.; Seeley, R.J.; Woods, S.C.; Porte, D.; Schwartz, M.W. Insulin and leptin: dual adiposity signals to the brain for the regulation of food intake and body weight. Brain Res. 1999, 848, 114–123.
  • Schwartz, M.W. Central nervous system of food intake. Nature 2000, 404, 661–671.
  • Sipols, A.J.; Baskin, D.G.; Schwartz, M.W. Effect of Intracerebroventricular Insulin Infusion on Diabetic Hyperphagia and Hypothalamic Neuropeptide Gene Expression. Diabetes 1995, 44, 147–151.
  • Brüning, J.C.; Gautam, D.; Burks, D.J.; Gillette, J.; Schubert, M.; Orban, P.C.; Klein, R.; Krone, W.; Müller-Wieland, D.; Kahn, C.R. Role of brain insulin receptor in control of body weight and reproduction. Science 2000, 289, 2122–2125.
  • Campbell, E.; Castonguay, T.W. Fructose Intake and Circulating Triglycerides: An Examination of the Role of APOC 3. J. Diabetes Obes. 2014, 1, 1–8.
  • West, D.B.; Fey, D.; Woods, S.C. Cholecystokinin persistently suppresses meal size but not food intake in free-feeding rats. Am. J. Physiol. 1984, 246, R776–R787.
  • Mehran, A.E.; Templeman, N.M.; Brigidi, G.S.; Lim, G.E.; Chu, K.-Y.; Hu, X.; Botezelli, J.D.; Asadi, A.; Hoffman, B.G.; Kieffer, T.J. Hyperinsulinemia drives diet-induced obesity independently of brain insulin production. Cell Metabol. 2012, 16, 723–737.
  • Suga, A.; Hirano, T.; Kageyama, H.; Osaka, T.; Namba, Y.; Tsuji, M.; Miura, M.; Adachi, M.; Inoue, S. Effects of fructose and glucose on plasma leptin, insulin, and insulin resistance in lean and VMH-lesioned obese rats. AJP Endo and Metab. 2000, 278 (4), E677–E683.
  • Lindqvist, A.; Baelemans, A.; Erlanson-Albertsson, C. Effects of sucrose, glucose and fructose on peripheral and central appetite signals. Regulat. Peptides 2008, 150, 26–32.
  • Teff, K.L.; Elliott, S.S.; Tschöp, M.; Kieffer, T.J.; Rader, D.; Heiman, M.; Townsend, R.R.; Keim, N.L.; D’Alessio, D.; Havel, P.J. Dietary fructose reduces circulating insulin and leptin, attenuates postprandial suppression of ghrelin, and increases triglycerides in women. J. Clin. Endocrinol. Metabol. 2004, 89, 2963–2972.
  • Aeberli, I.; Hochuli, M.; Gerber, P.A.; Sze, L.; Murer, S.B.; Tappy, L.; Spinas, G.A.; Berneis, K. Moderate Amounts of Fructose Consumption Impair Insulin Sensitivity in Healthy Young Men A randomized controlled trial. Diabetes Care 2013, 36, 150–156.
  • Faeh, D.; Minehira, K.; Schwarz, J.-M.; Periasamy, R.; Park, S.; Tappy, L. Effect of fructose overfeeding and fish oil administration on hepatic de novo lipogenesis and insulin sensitivity in healthy men. Diabetes 2005, 54, 1907–1913.
  • Lê, K.-A.; Ith, M.; Kreis, R.; Faeh, D.; Bortolotti, M.; Tran, C.; Boesch, C.; Tappy, L. Fructose overconsumption causes dyslipidemia and ectopic lipid deposition in healthy subjects with and without a family history of type 2 diabetes. Am. J. Clin. Nutr. 2009, 89, 1760–1765.
  • Lana, A.; Rodríguez-Artalejo, F.; Lopez-Garcia, E. Consumption of sugar-sweetened beverages is positively related to insulin resistance and higher plasma leptin concentrations in men and nonoverweight women. J. Nutr. 2014, 144, 1099–1105.
  • Hallfrisch, J.; Lazar, F.; Jorgensen, C.; Reiser, S. Insulin and glucose responses in rats fed sucrose or starch. Am. J. Clin. Nutr. 1979, 32, 787–793.
  • Bantle, J.P.; Raatz, S.K.; Thomas, W.; Georgopoulos, A. Effects of dietary fructose on plasma lipids in healthy subjects. Am. J. Clin. Nutr. 2000, 72, 1128–1134.
  • Holzl, B.; Paulweber, B.; Sandhofer, F.; Patsch, J. Hypertriglyceridemia and insulin resistance. J. Int. Med. 1998, 243, 79–82.
  • Samuel, V.T. Fructose induced lipogenesis: from sugar to fat to insulin resistance. Trend. Endocrinol. Metabol. 2011, 22, 60–65.
  • Huang, B.W.; Chiang, M.T.; Yao, H.T.; Chiang, W. The effect of high‐fat and high‐fructose diets on glucose tolerance and plasma lipid and leptin levels in rats. Diabetes Obesity Metabol. 2004, 6, 120–126.
  • Kinote, A.; Faria, J.A.; Roman, E.A.; Solon, C.; Razolli, D.S.; Ignacio-Souza, L.M.; Sollon, C.S.; Nascimento, L.F.; de Araújo, T.M.; Barbosa, A.P.L. Fructose-induced hypothalamic AMPK activation stimulates hepatic PEPCK and gluconeogenesis due to increased corticosterone levels. Endocrinology 2012, 153, 3633–3645.
  • Calapai, G.; Corica, F.; Allegra, A.; Corsonello, A.; Sautebin, L.; Gregorio, T.; Rosa, M.; Costantino, G.; Buemi, M.; Caputi, A.P. Effects of intracerebroventricular leptin administration on food intake, body weight gain and diencephalic nitric oxide synthase activity in the mouse. Br. J. Pharmacol. 1998, 125, 798–802.
  • Lee, G.-H.; Proenca, R.; Montez, J.; Carroll, K.; Darvishzadeh, J.; Lee, J.; Friedman, J. Abnormal splicing of the leptin receptor in diabetic mice. Nature 1996, 389, 632–635.
  • Erickson, J.C.; Hollopeter, G.; Palmiter, R.D. Attenuation of the obesity syndrome of ob/ob mice by the loss of neuropeptide Y. Science 1996, 274, 1704–1707.
  • Sindelar, D.K.; Havel, P.J.; Seeley, R.J.; Wilkinson, C.W.; Woods, S.C.; Schwartz, M.W. Low plasma leptin levels contribute to diabetic hyperphagia in rats. Diabetes 1999, 48, 1275–1280.
  • Shapiro, A.; Mu, W.; Roncal, C.; Cheng, K.-Y.; Johnson, R.J.; Scarpace, P.J. Fructose-induced leptin resistance exacerbates weight gain in response to subsequent high-fat feeding. Am. J. Physiol.-Regulatory Integr. Comp. Physiol. 2008, 295, R1370–R1375.
  • Briggs, D.I.; Andrews, Z.B. Metabolic status regulates ghrelin function on energy homeostasis. Neuroendocrinology 2011, 93, 48–57.
  • Balthasar, N.; Coppari, R.; McMinn, J.; Liu, S.M.; Lee, C.E.; Tang, V.; Kenny, C.D.; McGovern, R.A.; Chua Jr, S.C.; Elmquist, J.K.; Lowell, B.B. Leptin receptor signaling in POMC neurons is required for normal body weight homeostasis. Neuron. 2004, 42, 983–991.
  • Shi, H.; Sorrell, J.E.; Clegg, D.J.; Woods, S.C.; Seeley, R.J. The roles of leptin receptors on POMC neurons in the regulation of sex-specific energy homeostasis. Physiol. Behav. 2010, 100, 165–172.
  • van de Wall, E.; Leshan, R.; Xu, A.W.; Balthasar, N.; Coppari, R.; Liu, S.M.; Jo, Y.H.; MacKenzie, R.G.; Allison, D.B.; Dun, N.J. Collective and individual functions of leptin receptor modulated neurons controlling metabolism and ingestion. Endocrinology 2008, 149, 1773–1785.
  • Ring, L.E.; Zeltser, L.M. Disruption of hypothalamic leptin signaling in mice leads to early-onset obesity, but physiological adaptations in mature animals stabilize adiposity levels. J. Clin Invest. 2010, 120, 2931–2941.
  • Elias, C.F.; Lee, C.; Kelly, J.; Aschkenasi, C.; Ahima, R.S.; Couceyro, P.R.; Kuhar, M.J.; Saper, C.B.; Elmquist, J.K. Leptin Activates Hypothalamic CART Neurons Projecting to the Spinal Cord. Neuron. 1998, 21, 1375–1385.
  • Hahn, T.M.; Breininger, J.F.; Baskin, D.G.; Schwartz, M.W. Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons. Nat. Neurosci. 1998, 1, 271–272.
  • Satoh, N.; Ogawa, Y.; Katsuura, G.; Hayase, M.; Tsuji, T.; Imagawa, K.; Yoshimasa, Y.; Nishi, S.; Hosoda, K.; Nakao, K. The arcuate nucleus as a primary site of satiety effect of leptin in rats. Neurosci. Lett. 1997, 224, 149–152.
  • Luckett, B.S.; Frielle, J.L.; Wolfgang, L.; Stocker, S.D. Arcuate nucleus injection of an anti-insulin affibody prevents the sympathetic response to insulin. Am. J. Physiol.-Heart Circul. Physiol. 2013, 304, H1538–H1546.
  • Colley, D.L.; Castonguay, T.W. Effects of sugar solutions on hypothalamic appetite regulation. Physiol. Behav. 2014.
  • Purnell, J.Q.; Klopfenstein, B.A.; Stevens, A.A.; Havel, P.J.; Adams, S.H.; Dunn, T.N.; Krisky, C.; Rooney, W.D. Brain functional magnetic resonance imaging response to glucose and fructose infusions in humans. Diabetes, Obesity Metabol. 2011, 13, 229–234.
  • Stellar, E. The physiology of motivation. Psychol. Rev. 1954, 61, 5.
  • Weingarten, H.P.; Chang, P.; McDonald, T. Comparison of the metabolic and behavioral disturbances following paraventricular-and ventromedial-hypothalamic lesions. Brain Res. Bull. 1985, 14, 551–559.
  • Grill, H.J.; Hayes, M.R. Hindbrain neurons as an essential hub in the neuroanatomically distributed control of energy balance. Cell Metabol. 2012, 16, 296–309.
  • Kruse, M.S.; Rey, M.; Vega, M.C.; Coirini, H. Alterations of LXRα and LXRβ expression in the hypothalamus of glucose-intolerant rats. J. Endocrinol. 2012, 215, 51–58.
  • Burmeister, M.A.; Ayala, J.; Drucker, D.J.; Ayala, J.E. Central glucagon-like peptide 1 receptor-induced anorexia requires glucose metabolism-mediated suppression of AMPK and is impaired by central fructose. Am. J. Physiol. - Endocrinol. Metabol. 2013, 304, E677–E685.
  • Cha, S.H.; Wolfgang, M.; Tokutake, Y.; Chohnan, S.; Lane, M.D. Differential effects of central fructose and glucose on hypothalamic malonyl–CoA and food intake. Proc. Natl. Acad. Sci. 2008, 105, 16871–16875.
  • Hu, Z.; Cha, S.H.; Chohnan, S.; Lane, M.D. Hypothalamic malonyl-CoA as a mediator of feeding behavior. Proc. Natl. Acad. Sci. 2003, 100, 12624–12629.
  • Cha, S.H.; Lane, M.D. Central lactate metabolism suppresses food intake via the hypothalamic AMP kinase/malonyl-CoA signaling pathway. Biochem. Biophys. Res. Commun. 2009, 386, 212–216.
  • Zhao, C.; Campbell, E.S.; Tschiffely, A.E.; Castonguay, T.W. Overnight Access to Sugar Solutions Affects mRNA Expression of Several Neuropeptides in Different Hypothalamic Regions in Rats. J. Food Nutr. Res. 2015, 3, 69–76.
  • Chen, H.; Kent, S.; Morris, M.J. Is the CCK2 receptor essential for normal regulation of body weight and adiposity? Eur. J. Neurosci. 2006, 24, 1427–1433.
  • Schwartz, G.J.; Whitney, A.; Skoglund, C.; Castonguay, T.W.; Moran, T.H. Decreased responsiveness to dietary fat in Otsuka Long-Evans Tokushima fatty rats lacking CCK-A receptors. Am. J. Physiol.-Regulatory, Integ. Comp. Physiol. 1999, 277, R1144–R1151.
  • Weiland, T.J.; Voudouris, N.J.; Kent, S. The role of CCK2 receptors in energy homeostasis: insights from the CCK2 receptor-deficient mouse. Physiol. Behav. 2004, 82, 471–476.
  • Chen, J.; Scott, K.A.; Zhao, Z.; Moran, T.H.; Bi, S. Characterization of the feeding inhibition and neural activation produced by dorsomedial hypothalamic cholecystokinin administration. Neuroscience 2008, 152, 178–188.
  • Tebbe, J.; Mönnikes, H.; Pluntke, K.; Bauer, C.; Arnold, R. Cholecystokinin (CCK) microinfused into the paraventricular nucleus of the hypothalamus (PVN) inhibits gastric emptying and stimulates colonic motor activity in the conscious rat. Gastroenterology 1998, 114, A1184–A1185.
  • Zhu, G.; Yan, J.; Smith, W.W.; Moran, T.H.; Bi, S. Roles of dorsomedial hypothalamic cholecystokinin signaling in the controls of meal patterns and glucose homeostasis. Physiol. Behav. 2012, 105, 234–241.
  • Gahete, M.D.; Córdoba-Chacón, J.; Luque, R.M.; Kineman, R.D. The rise in growth hormone during starvation does not serve to maintain glucose levels or lean mass but is required for appropriate adipose tissue response in female mice. Endocrinology 2012, 154, 263–269.
  • Sakharova, A.A.; Horowitz, J.F.; Surya, S.; Goldenberg, N.; Harber, M.P.; Symons, K.; Barkan, A. Role of growth hormone in regulating lipolysis, proteolysis, and hepatic glucose production during fasting. J. Clin. Endocrinol. Metabol. 2008, 93, 2755–2759.
  • De Souza, C.T.; Araujo, E.P.; Bordin, S.; Ashimine, R.; Zollner, R.L.; Boschero, A.C.; Saad, M.J.; Velloso, L.c.A. Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus. Endocrinology 2005, 146, 4192–4199.
  • Swaroop, J.J.; Rajarajeswari, D.; Naidu, J. Association of TNF-α with insulin resistance in type 2 diabetes mellitus. Indian J. Med. Res. 2012, 135, 127.
  • Wang, X.; Ge, A.; Cheng, M.; Guo, F.; Zhao, M.; Zhou, X.; Liu, L.; Yang, N. Increased hypothalamic inflammation associated with the susceptibility to obesity in rats exposed to high-fat diet. Exp. Diabetes Res. 2012, 2012.
  • Bleich, S.N.; Wang, Y.C.; Wang, Y.; Gortmaker, S.L. Increasing consumption of sugar-sweetened beverages among US adults: 1988–1994 to 1999—2004. Am. J. Clin. Nutr. 2009, 89, 372–381.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.