613
Views
32
CrossRef citations to date
0
Altmetric
Reviews

Amaranth grain as a potential source of biologically active peptides: a review of their identification, production, bioactivity, and characterization

ORCID Icon, &

References

  • De Castro, S.R.J.; Sato, H.H. Biologically Active Peptides: Processes for Their Generation, Purification and Identification and Applications as Natural Additives in the Food and Pharmaceutical Industries. Food Res. Int. 2015, 74, 185–198. DOI: 10.1016/j.foodres.2015.05.013.
  • Gálvez-Mariscal, A.; Flores-Argüello, I.; Farrés-González, A. Proteínas. In Química de los Alimentos, 5ª ed.; Badui-Dergal, S., Ed.; Pearson: Cd. de México, 2013; pp 196–204.
  • Vioque, J.; Alaiz, M.; Girón-Calle, J. Nutritional and Functional Properties of Vicia Faba Protein Isolates and Related Fractions. Food Chem 2012, 132, 67–72. DOI: 10.1016/j.foodchem.2011.10.033.
  • Kim, S.K.; Wijesekara, I. Development and Biological Activities of Marine-Derived Bioactive Peptides: A Review. J. Funct. Foods. 2010, 2, 1–9. DOI: 10.1016/j.jff.2010.01.003.
  • Singh, B.P.; Vij, S.; Hati, S. Functional Significance of Bioactive Peptides Derived from Soybean. Peptides 2014, 54, 171–179. DOI: 10.1016/j.peptides.2014.01.022.
  • Hernández-Ledesma, B.; García-Nebor, M.J.; Fernández-Tomé, S.; Amigo, L.; Recio, I. Dairy Protein Hydrolysates: Peptides for Health Benefits. Int. Dairy J. 2014, 38, 82–100. DOI: 10.1016/j.idairyj.2013.11.004.
  • Ortiz-Martínez, M.; Winkler, R.; García-Lara, S. Preventive and Therapeutic Potential of Peptides from Cereals against Cancer. J. Proteomics. 2014, 111, 165–183. DOI: 10.1016/j.jprot.2014.03.044.
  • Sarmadi, B.H.; Ismail, A. Antioxidative Peptides from Food Proteins: A Review. Peptides 2010, 31, 1949–1956. DOI: 10.1016/j.peptides.2010.06.020.
  • Aphalo, P.; Castellani, O.F.; Nora-Martínez, E.; Añon, M.C. Surface Physicochemical Properties of Globulin-P Amaranth Protein. J. Agric. Food Chem. 2004, 52, 616–622. DOI: 10.1021/jf034672v.
  • Fidantsi, A.; Doxastakis, G. Emulsifying and Foaming Properties of Amaranth Seed Protein Isolates. Colloids Surf 2001, 21, 119–124. DOI: 10.1016/S0927-7765(01)00165-5.
  • Silva-Sánchez, C.; González-Castañeda, J.; De León-Rodríguez, A.; De La Rosa, B.; Functional, A.P. Rheological Properties of Amaranth Albumins Extracted from Two Mexican Varieties. Plant Food Hum. Nutr. 2004, 59, 169–174. DOI: 10.1007/s11130-004-0021-6.
  • Cordero De Los Santos, M.Y.; Osuna-Castro, J.A.; Borodanesko, A.; Paredes-López, O. Physicochemical and Functional Characterisation of Amaranth (Amaranthus Hypochondriacus) Protein Isolates Obtained by Isoelectric Precipitation and Micellisation. Food Sci. Tech. Int 2005, 11, 269–280. DOI: 10.1177/1082013205056491.
  • Tömösközi, S.; Gyenge, L.; Palcéder, Á.; Varga, J.; Abonyi, T.; Lásztity, R. Functional Properties of Protein Preparations from Amaranth Sedes in Model System. Eur. Food Res. Technol. 2008, 226, 1343–1348. DOI: 10.1007/s00217-007-0663-3.
  • Morales-Guerrero, J.F.; Vázquez-Mata, N.; Bressani, R. El Amaranto;(1ª Ed.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán: Cd. De México, 2009; pp 46–71.
  • Kaur, S.; Singh, N.; Rana, J. Amaranthus Hypochondriacus and Amaranthus Caudatus Germplasm: Characteristics of Plants, Grain and Flours. Food Chem 2010, 213, 1227–1234. DOI: 10.1016/j.foodchem.2010.05.091.
  • Montoya-Rodríguez, A.; Gómez-Favela, M.A.; Reyes-Moreno, C.; Milán-Carrillo, J.; González-de-Mejia, E. Identification of Bioactive Peptide Sequences from Amaranth (Amaranthus Hypochondriacus) Seed Proteins and Their Potential Role in the Prevention of Chronic Diseases. Compr. Rev. Food Sci. Food Saf. 2015, 14, 139–158. DOI: 10.1111/1541-4337.12125.
  • Noelting, M.C.; Sisterna, M.N.; Lorio, G.; Sandoval, M.C.; Molina, M.C.; Monaco, C.I. First Report of Alternaria Alternata Causing Discoloration on Amaranthus Seeds in Argentina. Australas. Plant Dis. Notes 2011, 6, 1–2. DOI: 10.1007/s13314-011-0001-2.
  • Aguilar, E.G.; Peireti, E.G.; Uñates, M.A.; Marchevsky, E.J.; Camiña, J.M. Amaranth Seed Varieties: A Chemometric Approach. Food Measure 2013, 7, 199–206. DOI: 10.1007/s11694-013-9156-1.
  • Tapia, M.;. Cultivos andinos subexplotados y su aporte a la alimentación, (2a Ed.) ed.; FAO, Oficina Regional para América Latina y el Caribe: Santiago, Chile, 1997.
  • Espitia-Rangel, E.;. Etnología del amaranto; Arqueología Mexicana: Editorial Raíces, S.A. de C.V. Abril, 2016; Vol. 138. pp 64–70
  • Caribbean garden seed. Seeds, plants, bulbs. Amaranthus, Love Lies Bleeding (Amaranthus Caudatus Red) HEIRLOOM Seeds, Matures in 50 days. open pollinated seeds!. https://caribbeangardenseed.com/products/amaranthus-love-lies-bleeding-amaranthus-caudatus-red-heirloom-seeds-matures-in-50-days-open-pollinated-seeds (accessed Jan 7, 2018).
  • Wikimedia commons. File: Amaranthusmantegazzianus.JPG.: 25 March 2012. https://commons.wikimedia.org/wiki/File:Amaranthus_mantegazzianus.JPG (accessed Jan 7, 2018).
  • Irving, D.W.; Betschart, A.A.; Saunders, R.M. Morphological Studies on Amaranthus Cruentus. J. Food Sci. 1981, 46, 1170–1174. DOI: 10.1111/j.1365-2621.1981.tb03017.x.
  • Belton, P.; Taylor, J. Pseudocereals and Less Common Cereals: Grain Properties and Utilization Potential; Springer: New York, 2002.
  • Paredes-López, O.;. Amaranth: Biology, Chemistry and Technology; CRC Press: Boca Raton, 1994.
  • Martínez, C.S.; Ribotta, P.D.; Añon, M.C.; León, A.E. Effect of Amaranth Flour (Amaranthus Mantegazzianus) on the Technological and Sensory Quality of Bread Wheat Pasta. Food Sci Technol Int 2014, 20, 127–135. DOI: 10.1177/1082013213476072.
  • Osborne, T.B.;. The Vegetable Proteins. Monographs in Biochemistry, 2nd Edn ed.; Longmas, Green and Co: New York, 1924.
  • Bressani, R.;. The Proteins of Grain Amaranth. Food Rev. Int. 1989, 5, 13–18. DOI: 10.1080/87559128909540843.
  • Búcaro, M.E.; Bressani, R. Distribución de la proteína en fracciones físicas de la molienda y tamizado del grano de amaranto. Arch. Latinoam. Nutr. 2002, 52, 167–171.
  • Konishi, Y.; Horikawa, K.; Oku, Y.; Azumaya, J.; Nakatani, N. Extraction of Two Albumin Fractions from Amaranth Grains: Comparison of Some Physicochemical Properties and the Putative Localization in the Grains. Agric. Biol. Chem. 1991, 55, 2745–2750.
  • Gorinstein, S.; Drzewiecki, J.; Delgado-Licon, E.; Pawelzik, E.; Martinez, L.; Medina, O.; Haruenkit, R.; Trakhtenberg, S. Relationship between Dicotyledone-Amaranth, Quinoa, Fagopyrum, Soybean and Monocots-Sorghum Ang Rice Based on Protein Analyses and Their Use as Substitution of Each Other. Eur. Food Res. Tech. 2005, 221, 69–77. DOI: 10.1007/s00217-005-1208-2.
  • Konishi, Y.; Fumita, Y.; Ikeda, K.; Okuno, K.; Fuwa, H. Isolation and Characterization of Globulin from Seeds of Amaranthus Hypochondriacus L. Agric. Biol. Chem. 1985, 49, 1453–1458. DOI: 10.1080/00021369.1985.10866912.
  • Marcone, M.F.; Kakuda, Y. A Comparative Study of the Functional Properties of Amaranth and Soybean Globulin Isolates. Nahrung 1999, 43, 368–373. DOI: 10.1002/(ISSN)1521-3803.
  • Luna-Suárez, S.; Medina-Godoy, S.; Cruz-Hernández, A.; Paredes-López, O. Expression and Characterization of the Acidic Subunit from 11S Amaranth Seed Protein. Biotechnol. J. 2008, 3, 209–219. DOI: 10.1002/biot.200800101.
  • Barba De La Rosa, A.P.; Barba-Montoya, A.; Martínez-Cuevas, P.; Hernández-Ledesma, B.; León-Galván, M.F.; De León-Rodriguez, A.; González, C. Tryptic Amaranth Glutelin Digests Induce Endothelial Nitric Oxide Production through Inhibition of ACE: Antihypertensive Role of Amaranth Peptides. Nitric Oxide 2010, 23, 106–111. DOI: 10.1016/j.niox.2010.04.006.
  • Barba De La Rosa, A.P.; Gueguen, J.; Paredes-López, O.; Viroben, G. Fractionation Procedures, Electrophoretic Characterization, and Amino Acid Composition of Amaranth Seed Proteins. J. Agric. Food Chem. 1992, 40, 931–936. DOI: 10.1021/jf00018a002.
  • Meisel, H.;. Biochemical Properties of Peptides Encrypted in Bovine Milk Proteins. Curr. Med. Chem. 2005, 12, 1905–1919. DOI: 10.2174/0929867054546618.
  • González-Aguilar, G.A.; González-Córdova, A.F.; Vallejo-Cordoba, E.; Álvarez-Parrilla, E.; García, H.S. Los Alimentos Funcionales: Un nuevo reto para la industria de alimentos; AGT Editor: S.A. Cd. de Mexico, 2014; pp 128–143.
  • Silva-Sánchez, C.; De La Rosa, B.; León-Galván, A.P.; De Lumen, M.F.; De León-Rodriguez, B.O. A.; González De Mejía, E. Bioactive Peptides in Amaranth (Amaranthus Hypochondriacus) Seed. J. Agric. Food Chem 2008, 56, 1233–1240. DOI: 10.1021/jf072911z.
  • Dziuba, J.; Iwaniak, A.; Minkiewicsz, P. Computer-Aided Characteristics of Proteins as Potential Precursors of Bioactive Peptides. Polymer 2003, 48, 50–53.
  • Vecchi, B.; Añon, M.C. ACE Inhibitory Tetrapeptides from Amaranthus Hypochondriacus 11S Globulin. Phytochemistry 2009, 70, 864–870. DOI: 10.1016/j.phytochem.2009.04.006.
  • Quiroga, A.V.; Aphalo, P.; Ventureira, J.L.; Martínez, E.N.; Añon, M.C. Physicochemical, Functional and Angiotensin Converting Enzyme Inhibitory Properties of Amaranth (Amaranthus Hypochondriacus) 7S Globulin. J. Sci. Food Agric 2012, 92, 397–403. DOI: 10.1002/jsfa.4590.
  • Kristinsson, H.G.; Rasco, B.A. Fish Protein Hydrolysates: Production, Biochemical, and Functional Properties. Crit. Rev. Food Sci. 2000, 40, 43–48. DOI: 10.1080/10408690091189266.
  • Inouye, K.; Nakano, K.; Asaoka, K.; Yasukawa, K. Effects of Thermal Treatment on the Coagulation of Soy Proteins Induced by Subtilisin Carsberg. J. Agric. Food Chem. 2009, 57, 717–723. DOI: 10.1021/jf802693f.
  • Hernández-Ledesma, B.; Del Mar Contreras, M.; Recio, I. Antihypertensive Peptides: Production, Bioavailabity and Incorporation into Foods. Adv. Colloid Interfac. 2011, 165, 23–35. DOI: 10.1016/j.cis.2010.11.001.
  • Luna-Suarez, S.; Medina-Godoy, S.; Cruz-Hernández, A.; Paredes-López, O. Modification of the Amaranth 11S Globulin Storage Protein to Produce an Inhibitory Peptide of the Angiotensin I Converting Enzyme, and Its Expression in Escherichia Coli. J. Biotechnol. 2010, 148, 240–247. DOI: 10.1016/j.jbiotec.2010.06.009.
  • Scow, T.D.; Smith, G.E.; Shaughnessy, F.A. Combination Therapy with ACE Inhibitors and Angiotensin-Receptor Blockers in Heart Failure. Clin. Pharmacol. 2003, 68, 1795–1798.
  • Wang, S.; De Mejía, G. E. A New Frontier in Soy Bioactive Peptides that May Prevent Age-Related Chronic Diseases. Compr. Rev. Food Sci. F 2005, 4, 63–78. DOI: 10.1111/j.1541-4337.2005.tb00075.x.
  • Tovar-Pérez, E.G.; Guerrero-Legarreta, I.; Farrés-González, A.; Soriano-Santos, J. Angiotensin I-Converting Enzyme-Inhibitory Peptide Fractions from Albumin 1 and Globulin as Obtained of Amaranth Grain. Food Chem 2009, 116, 437–444. DOI: 10.1016/j.foodchem.2009.02.062.
  • Tiengo, A.; Faria, M.; Netto, F.M. Characterization and ACE-Inhibitory Activity of Amaranth Proteins. J. Food Sci. 2009, 74, H121–H126. DOI: 10.1111/j.1750-3841.2009.01145.x.
  • Medina-Godoy, S.; Rodríguez-Yáñez, S.K.; Bobadilla, N.M.; Pérez-Villalva, R.; Valdes-Ortiz, R.; Hong, E.; Luna-Suárez, S.; Paredes-López, O.; Valdes-Ortiz, A. Antihypertensive Activity of AMC3, an Engineered 11S Amaranth Globulin Expressed in Escherichia Coli, in Spontaneously Hypertensive Rats. J. Funct. Foods. 2013, 5, 1441–1449. DOI: 10.1016/j.jff.2013.06.001.
  • Fritz, M.; Vecchi, B.; Rinaldi, G.; Añon, M.C. Amaranth Seed Protein Hydrolysates Have in Vivo and in Vitro Antihypertensive Activity. Food Chem 2011, 126, 878–884. DOI: 10.1016/j.foodchem.2010.11.065.
  • Soriano-Santos, J.; Escalona-Buendía, H. Angiotensin I-Converting Enzyme Inhibitory and Antioxidant Activities and Surfactant Properties of Protein Hydrolysates as Obtained of Amaranthus Hypochondriacus L. Grain. J. Food Sci. Technol. 2013, 52, 2073–2082. DOI: 10.1007/s13197-013-1223-4.
  • Undenigwe, C.U.; Aluko, R.E. Food Protein-Derived Bioactive Peptides: Production Processing and Potential Health Benefits. J. Food Sci. 2012, 77, R11–R24. DOI: 10.1111/j.1750-3841.2011.02455.x.
  • Tironi, V.A.; Añon, M.C. Amaranth Proteins as a Source of Antioxidant Peptides: Effect of Proteolysis. Food Res. Int. 2010, 43, 315–322. DOI: 10.1016/j.foodres.2009.10.001.
  • Orsini-Delgado, M.C.; Tironi, V.A.; Añon, M.C. Antioxidant Activity of Amaranth Protein or Their Hydrolysates under Simulated Gastrointestinal Digestion. LWT-Food Sci. Technol. 2011, 44, 1752–1760. DOI: 10.1016/j.lwt.2011.04.002.
  • Orsini-Delgado, M.C.; Nardo, A.; Pavlovic, M.; Rogniaux, H.; Añon, M.C.; Tironi, V.A. Identification and Characterization of Antioxidant Peptides Obtained by Gastrointestinal Digestion of Amaranth Proteins. Food Chem 2016, 197, 1160–1167. DOI: 10.1016/j.foodchem.2015.11.092.
  • Orsini-Delgado, M.C.; Galleano, M.; Añon, M.C.; Tironi, V.A. Amaranth Peptides from Simulated Gastrointestinal Digestion: Antioxidant Activity against Reactive Species. Plant Foods Hum. Nutr. 2015, 70, 27–34. DOI: 10.1007/s11130-014-0457-2.
  • Sabbione, A.C.; Ibañez, S.M.; Nora-Martínez, E.; Añon, M.C.; Scilingo, A.A. Antithrombotic and Antioxidant Activity of Amaranth Hydrolysate Obtained by Activation of an Endogenous Protease. Plant Foods Hum Nutr 2016, 71, 174–182. DOI: 10.1007/s11130-016-0540-y.
  • Montoya-Rodríguez, A.; González De Mejía, E.; Dia, V.P.; Reyes-Moreno, C.; Milán-Carrillo, J. Extrusion Improved the Anti-Inflammatory Effect of Amaranth (Amaranthus Hypochondriacus) Hydrolysates in LPS-induced Human THP-1 Macrophage-Like and Mouse RAW 264.7 Macrophages by Preventing Activation of NF-κB Signaling. Mol. Nutr. Food Res. 2014, 54, 1028–1041. DOI: 10.1002/mnfr.201300764.
  • Alcántara-Quintana, L.E.; Ortiz-Hernández, A.; Rivera, M.P.; Soriano-Santos, J. The Antioxidant Activity of Peptides Isolated from Amaranthus on Normal Human Skyn in Vitro and Inflammatory Cytokines Detection. J. Nutr. Food Sci. 2015, 5, 419.
  • Baggio, L.L.; Drucker, D.J. Biology of Incretins: GLP-1 and GIP. Gastroenterol 2007, 132, 2131–2157. DOI: 10.1053/j.gastro.2007.03.054.
  • Oseguera-Toledo, M.E.; González De Mejía, E.; Reynoso-Camacho, R.; Cardador-Martínez, A.; Amaya-Llano, S.L. Proteins and Bioactive Peptides: Mechanisms of Action on Diabetes Management. Nutrafoods 2014, 13, 147–157. DOI: 10.1007/s13749-014-0052-z.
  • Velarde-Salcedo, A.J.; Barrera-Pacheco, A.; Lara-González, A.; Montero-Morán, G.M.; Díaz-Gois, A.; De Mejia, G. E.; Barba De La Rosa, A.P. In Vitro Inhibition of Dipeptidyl Peptidase IV by Peptides Derived from the Hydrolysis of Amaranth (Amaranthus Hypochondriacus L.) Proteins. Food Chem 2013, 136, 758–764. DOI: 10.1016/j.foodchem.2012.08.032.
  • Van Lanker, F.; Adams, A.; De Kimpe, N. Chemical Modifications of Peptides and Their Impact on Food Properties. Chem. Rev. 2011, 111, 7876–7903. DOI: 10.1021/cr200032j.
  • Soriano-Santos, J.; Reyes-Bautista, R.; Guerrero-Legarreta, I.; Ponce-Alquicira, E.; Escalona-Buendía, H.B.; Almanza-Pérez, J.C.; Díaz-Godinez, G.; Román-Ramos, R. Dipeptidyl Peptidase IV Inhibitory Activity of Protein Hydrolysates from Amaranthus Hypochondriacus L. Grain and Their Influence on Postprandial Glycemia in Streptozotocin-Induced Diabetic Mice. Afr. J. Tradit. Complement Altern. Med 2015, 12, 90–98. DOI: 10.4314/ajtcam.v12i1.13.
  • De Mejia, G.; Dia, E. The Role of Nutraceutical Proteins and Peptides in Apoptosis, Angiogenesis, and Metastasis of Cancel Cells. Cancer Metastasis Rev 2010, 29, 511–528. DOI: 10.1007/s10555-010-9241-4.
  • Maldonado-Cervantes, E.; Hyung, J.J.; León-Galván, F.; Barrera-Pacheco, A.; De León-Rodriguez, A.; De Mejia, G.; Lumen, E. B.O.; Barba De La Rosa, A.P. Amaranth Lunasin-Like Peptide Internalizes into the Cell Nucleus and Inhibits Chemical Carcinogen-Induced Transformation of NIH-3T3 Cells. Peptides 2010, 31, 1635–1642. DOI: 10.1016/j.peptides.2010.06.014.
  • Barrio, D.A.; Añon, M.C. Potential Antitumor Properties of a Protein Obtained from the Seeds of Amaranthus Mantegazzianus. Eur. J. Nutr. 2010, 49, 73–82. DOI: 10.1007/s00394-009-0051-9.
  • Quiroga, A.V.; Barrio, D.A.; Añon, M.C. Amaranth Lectin Presents Potential Antitumor Properties. LWT – Food Sci. Technol. 2015, 60, 478–485. DOI: 10.1016/j.lwt.2014.07.035.
  • Zhang, S.B.;. In Vitro Antithrombotic Activities of Peanut Protein Hydrolysates. Food Chem 2016, 202, 1–8. DOI: 10.1016/j.foodchem.2016.02.004.
  • Sabbione, A.C.; Scilingo, A.; Añon, M.C. Potential Antithrombotic Activity Detected in Amaranth Proteins and Its Hydrolysates. LWT – Food Sci. Technol. 2015, 60, 171–177. DOI: 10.1016/j.lwt.2014.07.015.
  • Sabbione, A.C.; Nardo, A.E.; Añon, M.C.; Scilingo, A. Amaranth Peptides with Antithrombotic Activity Released by Simulated Gastrointestinal Digestion. J. Funct. Foods. 2016, 20, 204–214. DOI: 10.1016/j.jff.2015.10.015.
  • George, M.; Rajaram, M.; Shanmugam, E.; VijayaKumar, T.M. Novel Drugs Targets in Clinical Development for Heart Failure. Eur. J. Clin. Pharmacol. 2014, 70, 765–774. DOI: 10.1007/s00228-014-1743-5.
  • Montoya-Rodríguez, A.; Milán-Carrillo, J.; Dia, V.P.; Reyes-Moreno, C.; González De Mejía, E. Pepsin-Pancreatin Protein Hydrolysates from Extruded Amaranth Inhibit Markers of Atherosclerosis in LPS-induced THP-1 Macrophages-Like Human Cells by Reducing Expression of Proteins in LOX-1 Signaling Pathway. Proteome Sci 2014, 12, 30. DOI: 10.1186/1477-5956-12-30.
  • Montoya-Rodriguez, A.; González De Mejia, E. Pure Peptides from Amaranth (Amaranthus Hypochondriacus) Proteins Inhibit LOX-1 Receptor and Cellular Markers Associated with Atherosclerosis Development in Vitro. Food Res. Int. 2015, 77, 204–214. DOI: 10.1016/j.foodres.2015.06.032.
  • Soares, R.A.; Mendonça, S.; De Castro, L.Í.; Menezes, A.C.; Arêas, J.A. Major Peptides from Amaranth (Amaranthus Cruentus) Protein Inhibit HMG-CoA Reductase Activity. Int. J. Mol. Sci. 2015, 16, 4150–4160. DOI: 10.3390/ijms16024150.
  • Vaughan, C.J.; Gotto, A.M.; Basson, P.C.T. The Evolving Role of Statins in the Management of Atherosclerosis. Am. Coll. Cardiol. 2000, 35, 1–10. DOI: 10.1016/S0735-1097(99)00525-2.
  • García-Fillería, S.F.; Tironi, V.A. Prevention of in Vitro Oxidation of Low Density Lipoproteins (LDL) by Amaranth Peptides Released by Gastrointestinal Digestion. J. Funct. Foods. 2017, 34, 197–206. DOI: 10.1016/j.jff.2017.04.032.
  • Moronta, J.; Smaldini, P.L.; Docena, G.H.; Añon, M.C. Peptides of Amaranth Were Targeted as Containing Sequences with Potential Anti-Inflammatory Properties. J. Funct. Foods. 2016, 21, 463–473. DOI: 10.1016/j.jff.2015.12.022.
  • Moronta, J.; Smaldini, P.L.; Fossati, C.A.; Añon, M.C.; Docena, G.H. The Anti-Inflammatory SSEDIKE Peptide from Amaranth Seeds Modulates IgE-mediated Food Allergy. J. Funct. Foods. 2016, 25, 579–587. DOI: 10.1016/j.jff.2016.06.031.
  • Slyta, R.; Daukasa, E.; Falch, E.; Storro, I.; Rustad, T. Characteristics of Protein Fractions Generated from Hydrolysed Cod (Gadus Morhua) By-Products. Process Biochem 2005, 40, 2021–2033. DOI: 10.1016/j.procbio.2004.07.016.
  • Spellman, D.; McEvoy, E.; O´Cuinn, G.; FitzGerald, R.J. Proteinase and Exopeptidase Hydrolysis of Whey Protein: Comparison of the TNBS, OPA and pH Stat Methods for Quantification of Degree of Hydrolysis. Int. Dairy J. 2003, 13, 447–453. DOI: 10.1016/S0958-6946(03)00053-0.
  • Ranamukhaarachchi, S.; Meissner, L.; Moresoli, C. Production of Antioxidant Soy Protein Hydrolysates by Sequential Ultrafiltration and Nanofiltration. J. Membr. Sci. 2013, 429, 81–87. DOI: 10.1016/j.memsci.2012.10.040.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.