1,212
Views
38
CrossRef citations to date
0
Altmetric
Reviews

Raisin processing: physicochemical, nutritional and microbiological quality characteristics as affected by drying process

, &

References

  • FAO-OIV. Table and Dried grapes-FAO-OIV Focus 2016. http://www.fao.org/3/a-i7042e.pdf (accessed Apr 17, 2018).
  • OIV. Statistical Report on World Vitiviniculture-2017. World Vitiviniculture Situation. http://www.oiv.int/public/medias/5479/oiv-en-bilan-2017.pdf (accessed Apr 17, 2018).
  • Zemni, H.; Sghaier, A.; Khiari, R.; Chebil, S.; Ben Ismail, H.; Nefzaoui, R.; Hamdi, Z.; Lasram, S. Physicochemical, Phytochemical and Mycological Characteristics of Italia Muscat Raisins Obtained Using Different Pre-Treatment and Drying Techniques. Food Bioprocess. Technol. 2017, 10, 479–490. DOI: 10.1007/s11947-016-1837-4.
  • Bhat, N.R.; Desai, B.B.; Suleiman, M.K. Grapes and Raisins. In Handbook of Fruits and Fruit Processing; Sinha, N.K., Sidhu, J.S., Barta, J., Wu, J.S.B., Cano, M.P., Eds.; Wiley-Blackwell: New York, 2012; pp 447–459.
  • Araya-Farias, M.; Ratti, C. Dehydration of Foods. In Advances in Food Dehydration; Ratti, C.; CRC Press, Taylor & Francis Group: New York, 2008; pp 1–36.
  • Carughi, A.; Lamkinv, T.; Perelman, D. Health Benefits of Sun-Dried Raisins; Review of the Scientific Literature, California, 2008.
  • Wang, J.; Mujumdar, A.S.; Mu, W.; Feng, J.; Zhang, X.; Zhang, Q.; Fang, X.-M.; Gao, Z.-J.; Xiao, H.-W. Grape Drying: Current Status and Future Trends. In Grape and Wine Biotechnology; Morata, A., Loira, I., Eds.; InTech, London, UK, 2016; pp 145–165.
  • USDA. United States Department of Agriculture. Raisins: WorldMarkets and Trade. https://apps.fas.usda.gov/psdonline/circulars/raisins.pdf (accessed Apr 18, 2018).
  • Williamson, G.; Carughi, A. Polyphenol Content and Health Benefits of Raisins. Nutr. Res. 2010, 30, 511–519. DOI: 10.1016/j.nutres.2010.07.005.
  • Bell, S.J.A.;. Review of Dietary Fiber and Health: Focus on Raisins. J. Med. Food. 2011, 14, 877–883. DOI: 10.1089/jmf.2010.0215.
  • Wong, A.; Young, D.A.; Emmanouil, D.E.; Wong, L.M.; Waters, A.R.; Booth, M.T. Raisins and Oral Health. J. Food Sci. 2013, 78, A26–A29. DOI: 10.1111/1750-3841.12152.
  • Restani, P.; Frigerio, G.; Colombo, F.; de Sousa, L.P.; Altindişli, A.; Pastor, R.F.; Lorenzo, C.D. Raisins in Human Health: A Review. BIO Web Conf. 2016, 7, 1–6. DOI: 10.1051/bioconf/20160704005.
  • Carranza-Concha, J.; Benlloch, M.; Camacho, M.M.; Martínez-Navarrete, N. Effects of Drying and Pretreatment on the Nutritional and Functional Quality of Raisins. Food Bioprod. Process. 2012, 90, 243–248. DOI: 10.1016/j.fbp.2011.04.002.
  • Kumar Thakur, A.; Saharan, V.K.; Gupta, R.K. Drying of ‘Perlette’ Grape under Different Physical Treatment for Raisin Making. ‎J. Food Sci. Technol. 2010, 47, 626–631. DOI: 10.1007/s13197-010-0095-0.
  • Adiletta, G.; Russo, P.; Senadeera, W.; Di Matteo, M. Drying Characteristics and Quality of Grape under Physical Pretreatment. J. Food Eng. 2016, 172, 9–18. DOI: 10.1016/j.jfoodeng.2015.06.031.
  • Di Matteo, M.; Cinquanta, L.; Galiero, G.; Crescitelli, S. Effect of a Novel Physical Pretreatment Process on the Drying Kinetics of Seedless Grapes. J. Food Eng. 2000, 46, 83–89. DOI: 10.1016/S0260-8774(00)00071-6.
  • Doymaz, İ.; Pala, M. The Effects of Dipping Pretreatments on Air-Drying Rates of the Seedless Grapes. J. Food Eng. 2002, 52, 413–417. DOI: 10.1016/S0260-8774(01)00133-9.
  • Esmaiili, M.; Sotudeh-Gharebagh, R.; Mousavi, M.A.E.; Rezazadeh, G. Influence of Dipping on Thin-Layer Drying Characteristics of Seedless Grapes. Biosys. Eng. 2007, 98, 411–421. DOI: 10.1016/j.biosystemseng.2007.09.024.
  • Deng, L.-Z.; Mujumdar, A.S.; Zhang, Q.; Yang, X.-H.; Wang, J.; Zheng, Z.-A.; Gao, Z.-J.; Xiao, H.-W. Chemical and Physical Pretreatments of Fruits and Vegetables: Effects on Drying Characteristics and Quality Attributes – A Comprehensive Review. Crit. Rev. Food Sci. Nutr. 2017, 57, 1–25. DOI: 10.1080/10408398.2012.716800.
  • St. George, S.D.; Cenkowski, S. Dehydration Processes for Nutraceuticals and Functional Foods. In Advances in Food Dehydration; Ratti, C., Ed.; CRC Press Taylor & Francis Group: New York, 2008; pp 285–314.
  • Bai, J.-W.; Sun, D.-W.; Xiao, H.-W.; Mujumdar, A.S.; Gao, Z.-J. Novel High-Humidity Hot Air Impingement Blanching (HHAIB) Pretreatment Enhances Drying Kinetics and Color Attributes of Seedless Grapes. ‎Innov. Food Sci. Emerg. Technol. 2013, 20, 230–237. DOI: 10.1016/j.ifset.2013.08.011.
  • Pangavhane, D.R.; Sawhney, R.L. Review of Research and Development Work on Solar Dryers for Grape Drying. Energy Convers. Manage. 2002, 43, 45–61. DOI: 10.1016/S0196-8904(01)00006-1.
  • Grebitus, C.; Roosen, J.; Seitz, C. Attention and Choice: A Behavioral Economics Perspective on Food Decisions. J. Agric. Food Ind. Org. 2015, 13, 73–82.
  • Jin, X.; Wu, X.; Liu, X.; Liao, M. Varietal Heterogeneity of Textural Characteristics and Their Relationship with Phenolic Ripeness of Wine Grapes. Sci. Hortic. 2017, 216, 205–214. DOI: 10.1016/j.scienta.2017.01.010.
  • Rustioni, L.; Maghradze, D.; Failla, O. Optical Properties of Berry Epicuticular Waxes in Four Georgian Grape Cultivars (Vitis Vinifera L.). South. Afr. J. Enol. Viticult. 2012, 33, 138–143.
  • Lewicki, P.P.;. Effect of Pre-Drying Treatment, Drying and Rehydration on Plant Tissue Properties: A Review. Int. J. Food Prop. 1998, 1, 1–22. DOI: 10.1080/10942919809524561.
  • Dincer, L.;. Sun Drying of Sultana Grapes. Drying Technol. 1996, 14, 1827–1838.
  • Tulasidas, T.N.; Raghavan, G.S.V.; Norris, E.R. Effects of Dipping and Washing Pre-Treatments on Microwave Drying of Grapes. J. Food Process Eng. 1996, 19, 15–24.
  • Mahmutoğlu, T.; Emír, F.; Saygi, Y.B. Sun/Solar Drying of Differently Treated Grapes and Storage Stability of Dried Grapes. J. Food Eng. 1996, 29, 289–300. DOI: 10.1016/0260-8774(96)00006-4.
  • Pangavhane, D.R.; Sawhney, R.L.; Sarsavadia, P.N. Effect of Various Dipping Pretreatment on Drying Kinetics of Thompson Seedless Grapes. J. Food Eng. 1999, 39, 211–216. DOI: 10.1016/S0260-8774(98)00168-X.
  • Pahlavanzadeh, H.; Basiri, A.; Zarrabi, M. Determination of Parameters and Pretreatment Solution for Grape Drying. Drying Technol. 2001, 19, 217–226.
  • Doymaz, İ.;. Drying Kinetics of Black Grapes Treated with Different Solutions. J. Food Eng.. 2006, 76, 212–217. DOI: 10.1016/j.jfoodeng.2005.05.009.
  • Doymaz, İ.; Altıner, P. Effect of Pretreatment Solution on Drying and Color Characteristics of Seedless Grapes. Food Sci. Biotechnol. 2012, 21, 43–49. DOI: 10.1007/s10068-012-0006-4.
  • Bingol, G.; Roberts, J.S.; Balaban, M.O.; Devres, Y.O. Effect of Dipping Temperature and Dipping Time on Drying Rate and Color Change of Grapes. Drying Technol. 2012, 30, 597–606. DOI: 10.1080/07373937.2011.654020.
  • Singh, S.P.; Jairaj, K.S.; Kalaveerakkanavar, S. Influence of Variation in Temperature of Dipping Solution on Drying Time and Colour Parameters of Thompson Seedless Grapes. Int. J. Agric. Food Sci. 2014, 4, 36–42.
  • Mandal, G.; Thakur, A.K. Preparation of Raisin from Grapes Varieties Grown in Punjab with Different Processing Treatments. Int. J. Bio-Res. Env. Agric. Sci. 2015, 1, 25–31.
  • Senadeera, W.; Adilettta, G.; Di Matteo, M.; Russo, P. Drying Kinetics, Quality Changes and Shrinkage of Two Grape Varieties of Italy. Appl. Mech. Mater. 2014, 553, 362–366. DOI: 10.4028/www.scientific.net/AMM.553.362.
  • Salengke, S.; Sastry, S.K. Effect of Ohmic Pretreatment on the Drying Rate of Grapes and Adsorption Isotherm of Raisins. Drying Technol. 2005, 23, 551–564. DOI: 10.1081/DRT-200054131.
  • Kostaropoulos, A.E.; Saravacos, G.D. Microwave Pre-Treatment for Sun-Dried Raisins. J. Food Sci. 1995, 60, 344–347. DOI: 10.1111/j.1365-2621.1995.tb05669.x.
  • Dev, S.R.S.; Padmini, T.; Adedeji, A.; Gariépy, Y.; Raghavan, G.S.V.; Comparative, A. Study on the Effect of Chemical, Microwave, and Pulsed Electric Pretreatments on Convective Drying and Quality of Raisins. Drying Technol. 2008, 26, 1238–1243. DOI: 10.1080/07373930802307167.
  • Wang, Y.; Tao, H.; Yang, J.; An, K.; Ding, S.; Zhao, D.; Wang, Z. Effect of Carbonic Maceration on Infrared Drying Kinetics and Raisin Qualities of Red Globe (Vitis Vinifera L.): A New Pre-Treatment Technology before Drying. ‎Innov. Food Sci. Emerg. Technol. 2014, 26, 462–468. DOI: 10.1016/j.ifset.2014.09.001.
  • Lydakis, D.; Fysarakis, I.; Papadimitriou, M.; Kolioradakis, G. Optimization Study of Sulfur Dioxide Application in Processing of Sultana Raisins. Int. J. Food Prop. 2003, 6, 393–403. DOI: 10.1081/JFP-120020117.
  • Zoffoli, J.P.; Latorre, B.A.; Naranjo, P. Hairline, a Postharvest Cracking Disorder in Table Grapes Induced by Sulfur Dioxide. Postharvest Biol. Technol. 2008, 47, 90–97. DOI: 10.1016/j.postharvbio.2007.06.013.
  • Christensen, L.P.; Peacock, W.L. Harvesting and Handling. In Raisin Production Manual; Christensen, L.P., Ed.; University of California, Agricultural and Natural Resources: Oakland, CA, 2000; pp 193–206.
  • Riva, M.; Peri, C. Kinetics of Sun and Air Drying of Different Varieties of Seedless Grapes. Int. J. Food Sci. Tech. 1986, 21, 199–208. DOI: 10.1111/j.1365-2621.1986.tb00441.x.
  • Farahbakhsh, E.; Pakbin, B.; Mahmoudi, R.; Katiraee, F.; Kohannia, N.; Valizade, S. Microbiological Quality of Raisin Dried by Different Methods. Int. J. Food Nutr. Saf. 2015, 6, 62–66.
  • Rahman, M.S.; Perera, C.O. Drying and Food Preservation. In Handbook of Food Preservation, 2nd ed.; Rahman, M.S., Ed.; CRC Press: Boca Raton, 2007; pp 404–432.
  • Radler, F.;. The Prevention of Browning during Drying by the Cold Dipping Treatment of Sultana Grapes. J. Sci. Food Agric. 1964, 15, 864–869. DOI: 10.1002/(ISSN)1097-0010.
  • Grncarevic, M.; Hawker, J.S. Browning of Sultana Grape Berries during Drying. J. Sci. Food Agric. 1971, 22, 270–272. DOI: 10.1002/(ISSN)1097-0010.
  • Liu, L.; Wang, Y.; Zhao, D.; An, K.; Ding, S.; Wang, Z. Effect of Carbonic Maceration Pre-Treatment on Drying Kinetics of Chilli (Capsicum Annuum L.) Flesh and Quality of Dried Product. Food Bioprocess. Technol. 2014, 7, 2516–2527. DOI: 10.1007/s11947-014-1253-6.
  • Xiao, H.-W.; Pan, Z.; Deng, L.-Z.; El-Mashad, H.M.; Yang, X.-H.; Mujumdar, A.S.; Gao, Z.-J.; Zhang, Q. Recent Developments and Trends in Thermal Blanching – A Comprehensive Review. Inf. Process. Agric. 2017, 4, 101–127.
  • Karathanos, V.T.; Belessiotis, V.G. Sun and Artificial Air Drying Kinetics of Some Agricultural Products. J. Food Eng. 1997, 31, 35–46. DOI: 10.1016/S0260-8774(96)00050-7.
  • Fadhel, A.; Kooli, S.; Farhat, A.; Bellghith, A. Study of the Solar Drying of Grapes by Three Different Processes. Desalination. 2005, 185, 535–541. DOI: 10.1016/j.desal.2005.05.012.
  • Doymaz, İ.;. Sun Drying of Seedless and Seeded Grapes. ‎J. Food Sci. Technol. 2012, 49, 214–220. DOI: 10.1007/s13197-011-0272-9.
  • El-Sebaii, A.A.; Aboul-Enein, S.; Ramadan, M.R.I.; El-Gohary, H.G. Experimental Investigation of an Indirect Type Natural Convection Solar Dryer. Energy Convers. Manage. 2002, 43, 2251–2266. DOI: 10.1016/S0196-8904(01)00152-2.
  • Rathore, N.S.; Panwar, N.L. Experimental Studies on Hemi Cylindrical Walk-In Type Solar Tunnel Dryer for Grape Drying. Appl. Energy. 2010, 87, 2764–2767. DOI: 10.1016/j.apenergy.2010.03.014.
  • Is̨Çi, B.; Altındişli, A. Drying of Vitis Vinifera L. Cv “Sultanina” in Tunnel Solar Drier. BIO Web Conf. 2015, 5-01016, 1–4.
  • Tulasidas, T.N.; Ratti, C.; Raghavan, G.S.V. Modelling of Microwave Drying of Grapes. Can. Agric. Eng. 1997, 39, 57–67.
  • Wang, J.; Mu, W.-S.; Fang, X.-M.; Mujumdar, A.S.; Yang, X.-H.; Xue, L.-Y.; Xie, L.; Xiao, H.-W.; Gao, Z.-J.; Zhang, Q. Pulsed Vacuum Drying of Thompson Seedless Grape: Effects of Berry Ripeness on Physicochemical Properties and Drying Characteristic. Food Bioprod. Process. 2017, 106, 117–126. DOI: 10.1016/j.fbp.2017.09.003.
  • Clary, C.D.; Mejia-Meza, E.; Wang, S.; Petrucci, V.E. Improving Grape Quality Using Microwave Vacuum Drying Associated with Temperature Control. J. Food Sci. 2007, 72, E023–E028. DOI: 10.1111/j.1750-3841.2006.00234.x.
  • Kassem, A.S.; Shokr, A.Z.; El-Mahdy, A.R.; Aboukarima, A.M.; Hamed, E.Y. Comparison of Drying Characteristics of Thompson Seedless Grapes Using Combined Microwave Oven and Hot Air Drying. J. Saud. Soc. Agric. Sci. 2011, 10, 33–40.
  • Çağlar, A.; Toğrul, İ.T.; Toğrul, H. Moisture and Thermal Diffusivity of Seedless Grape under Infrared Drying. Food Bioprod. Process. 2009, 87, 292–300. DOI: 10.1016/j.fbp.2009.01.003.
  • Maisnam, D.; Rasane, P.; Dey, A.; Kaur, S.; Sarma, C. Recent Advances in Conventional Drying of Foods. J. Food Technol. Pres. 2017, 1, 25–34.
  • Singh, S.P.; Jairaj, K.S.; Srikant, K. Universal Drying Rate Constant of Seedless Grapes: A Review. Renew. Sust. Energy Rev. 2012, 16, 6295–6302. DOI: 10.1016/j.rser.2012.07.011.
  • Barbosa-Cánovas, G.V.; Juliano, P. Desorption Phenomena in Food Dehydration Processes. In Water Activity in Foods; Barbosa-Cánovas, G.V., Schmidt, A.J.F.S.J., Labuza, T.P., Eds.;  USA, 2008; pp 313–340.
  • Esmaiili, M.; Rezazadeh, G.; Sotudeh-Gharebagh, R.; Tahmasebi, A. Modeling of the Seedless Grape Grying Process Using the Generalized Differential Quadrature Method. Chem. Eng. Technol. 2007, 30, 168–175. DOI: 10.1002/ceat.200600151.
  • Ayensu, A.;. Dehydration of Food Crops Using a Solar Dryer with Convective Heat Flow. Sol. Energy. 1997, 59, 121–126.
  • Henderson, S.M.; Pabis, S. Grain Drying Theory. II. Temperature effects on drying coefficients. J. Agric. Eng. Res. 1961, 6, 169–174.
  • Karathanos, V.T.;. Determination of Water Content of Dried Fruits by Drying Kinetics. J. Food Eng. 1999, 39, 337–344.
  • Gamea, G.R.; Taha, A.T. Mathematical Model of Grapes Solar Drying. J. Appl. Sci. Res. 2012, 8, 5708–5723.
  • Kingsly, R.P.; Goyal, R.K.; Manikantan, M.R.; Ilyas, S.M. Effects of Pretreatments and Drying Air Temperature on Drying Behaviour of Peach Slice. Int. J. Food Sci. Tech. 2007, 42, 65–69.
  • Akpinar, E.K.;. Mathematical Modelling and Experimental Investigation on Sun and Solar Drying of White Mulberry. Journal of Mechanical Science and Technology. 2008, 22, 1544–1553.
  • Yaldiz, O.; Ertekin, C.; Uzun, H.I. Mathematical Modeling of Thin Layer Solar Drying of Sultana Grapes. Energy. 2001, 26, 457–465.
  • Midilli, A.; Kucuk, H. Mathematical Modeling of Thin Layer Drying of Pistachio by Using Solar Energy. Energy Convers. Manage. 2003, 44, 1111–1122.
  • Verma, L.R.; Bucklin, R.A.; Endan, J.B.; Wratten, F.T. Effects of Drying Air Parameters on Rice Drying Models. Trans. ASAE. 1985, 28, 296–301.
  • Wang, C.Y.; Singh, R.P. A Single Layer Drying Equation for Rough Rice. Trans. ASAE. 1978, Paper no. 78–3001, 21.
  • Maroulis, Z.B.; Tsami, E.; Marinos-Kouris, D.; Saravacos, G.D. Application of the GAB Model to the Moisture Sorption Isotherms for Dried Fruits. J. Food Eng. 1988, 7, 63–78.
  • Jairaj, K.S.; Singh, S.P.; Srikant, K. A Review of Solar Dryers Developed for Grape Drying. Sol. Energy. 2009, 83, 1698–1712. DOI: 10.1016/j.solener.2009.06.008.
  • Prakash, O.; Kumar, A. Historical Review and Recent Trends in Solar Drying Systems. Int. J. Green Energy. 2013, 10, 690–738. DOI: 10.1080/15435075.2012.727113.
  • Mustayen, A.G.M.B.; Mekhilef, S.; Saidur, R. Performance Study of Different Solar Dryers: A Review. Renew. Sust. Energy Rev. 2014, 34, 463–470. DOI: 10.1016/j.rser.2014.03.020.
  • Michailidis, P.A.; Krokida, M.K. Drying and Dehydration Processes in Food Preservation and Processing. In Conventional and Advanced Food Processing Technologies; Bhattacharya, S.; John Wiley & Sons, Ltd: UK, 2014; pp 1–32.
  • Rattanadecho, P.; Makul, N. Microwave-Assisted Drying: A Review of the State-Of-The-Art. Drying Technol. 2016, 34, 1–38. DOI: 10.1080/07373937.2014.957764.
  • Parikh, D.;. Vacuum Drying: Basics and Application. Chem. Eng. (New York). 2015, 122, 48–54.
  • Riadh, M.H.; Ahmad, S.A.B.; Marhaban, M.H.; Soh, A.C. Infrared Heating in Food Drying: An Overview. Drying Technol. 2015, 33, 322–335. DOI: 10.1080/07373937.2014.951124.
  • Krishnamurthy, K.; Khurana, H.K.; Soojin, J.; Irudayaraj, J.; Demirci, A. Infrared Heating in Food Processing: An Overview. Compr. Rev. Food Sci. F. 2008, 7, 2–13. DOI: 10.1111/j.1541-4337.2007.00024.x.
  • Tulasidas, T.;. Combined Convective and Microwave Drying of Grapes. Drying Technol. 1995, 13, 1029–1031. DOI: 10.1080/07373939508917001.
  • Tulasidas, T.N.; Raghavan, V.; Norris, E.R. Microwave and Convective Drying of Grapes. Trans. ASAE. 1993, 36, 1861–1865. DOI: 10.13031/2013.28534.
  • Tulasidas, T.N.; Raghavan, G.S.V.; Mujumdar, A.S. Microwave Drying of Grapes in a Single Mode Cavity at 2450 Mhz - 11: Quality and Energy Aspects. Drying Technol. 1995, 13, 1973–1992. DOI: 10.1080/07373939508917059.
  • Karagianni, P.; Tsakiridou, E.; Tsakiridou, H.; Mattas, K. Consumer Perceptions about Fruit and Vegetable Quality Attributes: Evidence from a Greek Survey. Acta Hortic. 2003, 604, 345–352. DOI: 10.17660/ActaHortic.2003.604.36.
  • Omolola, A.O.; Jideani, A.I.O.; Kapila, P.F. Quality Properties of Fruits as Affected by Drying Operation. Crit. Rev. Food Sci. Nutr. 2017, 57, 95–108. DOI: 10.1080/10408398.2013.859563.
  • Su, Y.; Zhang, M.; Mujumdar, A.S. Recent Developments in Smart Drying Technology. Drying Technol. 2015, 33, 260–276. DOI: 10.1080/07373937.2014.985382.
  • Angulo, O.; Fidelibus, M.W.; Heymann, H. Grape Cultivar and Drying Method Affect Sensory Characteristics and Consumer Preference of Raisins. J. Sci. Food Agric. 2007, 87, 865–870. DOI: 10.1002/(ISSN)1097-0010.
  • Serratosa, M.P.; Lopez-Toledano, A.; Merida, J.; Medina, M. Changes in Color and Phenolic Compounds during the Raisining of Grape Cv. Pedro Ximenez. J. Agric. Food Chem. 2008, 56, 2810–2816. DOI: 10.1021/jf073278k.
  • Barrett, D.M.; Beaulieu, J.C.; Shewfelt, R. Color, Flavor, Texture, and Nutritional Quality of Fresh-Cut Fruits and Vegetables: Desirable Levels, Instrumental and Sensory Measurement, and the Effects of Processing. Crit. Rev. Food Sci. Nutr. 2010, 50, 369–389. DOI: 10.1080/10408391003626322.
  • Guiné, R.P.F.; Almeida, I.C.; Correia, A.C.; Gonçalves, F.J. Evaluation of the Physical, Chemical and Sensory Properties of Raisins Produced from Grapes of the Cultivar Crimson. J. Food Meas. Charact. 2015, 9, 337–346. DOI: 10.1007/s11694-015-9241-8.
  • Queiroz, C.; Mendes Lopes, M.L.; Fialho, E.; Valente-Mesquita, V.L. Polyphenol Oxidase: Characteristics and Mechanisms of Browning Control. Food Rev. Int. 2008, 24, 361–375. DOI: 10.1080/87559120802089332.
  • Ortiz-García-Carrasco, B.; Yañez-Mota, E.; Pacheco-Aguirre, F.M.; Ruiz-Espinosa, H.; García-Alvarado, M.A.; Cortés-Zavaleta, O.; Ruiz-López, I.I. Drying of Shrinkable Food Products: Appraisal of Deformation Behavior and Moisture Diffusivity Estimation under Isotropic Shrinkage. J. Food Eng. 2015, 144, 138–147. DOI: 10.1016/j.jfoodeng.2014.07.022.
  • Ratti, C.;. Shrinkage during Drying of Foodstuffs. J. Food Eng. 1994, 23, 91–105. DOI: 10.1016/0260-8774(94)90125-2.
  • Simal, S.; Mulet, A.; Catala, P.J.; Canellas, J.; Rossello, C. Moving Boundary Model For Simulating Moisture Movement In Grapes. J. Food Sci. 1996, 61, 157–160. DOI: 10.1111/j.1365-2621.1996.tb14748.x.
  • Mayor, L.; Sereno, A.M. Modelling Shrinkage during Convective Drying of Food Materials: A Review. J. Food Eng. 2004, 61, 373–386. DOI: 10.1016/S0260-8774(03)00144-4.
  • Michailidis, P.A.; Krokida, M.K.; Rahman, M.S. Data and Models of Density, Shrinkage, and Porosity. In Food Properties Handbook, 2nd ed.; Rahman, M.S., Ed.; CRC Press Taylor & Francis Group: New York, 2009; pp 418–499.
  • Azzouz, S.; Hermassi, I.; Toujani, M.; Belghith, A. Effect of Drying Temperature on the Rheological Characteristics of Dried Seedless Grapes. Food Bioprod. Process. 2016, 100, 246–254. DOI: 10.1016/j.fbp.2016.07.002.
  • Behroozi Khazaei, N.; Tavakoli, T.; Ghassemian, H.; Khoshtaghaza, M.H.; Banakar, A. Applied Machine Vision and Artificial Neural Network for Modeling and Controlling of the Grape Drying Process. Comput. Electron. Agric. 2013, 98, 205–213. DOI: 10.1016/j.compag.2013.08.010.
  • Gabas, A.L.; Menegalli, F.C.; Telis-Romero, J. Effect of Chemical Pretreatment on the Physical Properties of Dehydrated Grapes. Drying Technol. 1999, 17, 1215–1226. DOI: 10.1080/07373939908917606.
  • Azzouz, S.; Guizani, A.; Jomaa, W.; Belghith, A. Moisture Diffusivity and Drying Kinetic Equation of Convective Drying of Grapes. J. Food Eng. 2002, 55, 323–330. DOI: 10.1016/S0260-8774(02)00109-7.
  • Bennamoun, L.; Belhamri, A. Numerical Simulation of Drying under Variable External Conditions: Application to Solar Drying of Seedless Grapes. J. Food Eng. 2006, 76, 179–187. DOI: 10.1016/j.jfoodeng.2005.05.005.
  • McMinn, W.A.M.; Magee, T.R.A. Quality and Physical Structure of a Dehydrated Starch-Based System. Drying Technol.. 1997, 15, 1961–1971. DOI: 10.1080/07373939708917341.
  • Yan, Z.; Sousa-Gallagher, M.J.; Oliveira, F.A.R. Shrinkage and Porosity of Banana, Pineapple and Mango Slices during Air-Drying. J. Food Eng. 2008, 84, 430–440. DOI: 10.1016/j.jfoodeng.2007.06.004.
  • Yadollahinia, A.; Latifi, A.; Mahdavi, R. New Method for Determination of Potato Slice Shrinkage during Drying. Comput. Electron. Agric. 2009, 65, 268–274. DOI: 10.1016/j.compag.2008.11.003.
  • Adiletta, G.; Senadeera, W.; Liguori, L.; Crescitelli, A.; Albanese, D.; Russo, P. The Influence of Abrasive Pretreatment on Hot Air Drying of Grape. Food and Nutrition Sciences. 2015, 6, 355–364. DOI: 10.4236/fns.2015.63036.
  • Xiao, H.-W.; Pang, C.-L.; Wang, L.-H.; Bai, J.-W.; Yang, W.-X.; Gao, Z.-J. Drying Kinetics and Quality of Monukka Seedless Grapes Dried in an Air-Impingement Jet Dryer. Biosys. Eng. 2010, 105, 233–240. DOI: 10.1016/j.biosystemseng.2009.11.001.
  • Rybka, A.C.P.; De Freitas, S.T.; Netto, A.F.; Biasoto, A.C.T. Central Composite Rotatable Design Approach to Optimize ‘Italia’ Raisin Drying Conditions. Comun. Sci. 2015, 6, 454–462. DOI: 10.14295/cs.v6i4.993.
  • Bhat, N.R.; Desai, B.B.; Suleiman, M.K. Flavor in Grapes: Its Characterization and Commercial Applications. In Handbook of Fruit and Vegetable Flavors; Hui, Y.H., Ed.; John Wiley & Sons, Inc: New Jersey, 2010; pp 279–302.
  • Longo, M.A.; Sanromán, M.A. Vegetable Flavors from Cell Culture. In Handbook of Fruit and Vegetable Flavors; Hui, Y.H.; John Wiley & Sons, Inc. Hoboken, New Jersey, 2010; pp 663–680.
  • Ramshaw, E.H.; Hardy, P.J. Volatile Compounds in Dried Grapes. J. Sci. Food Agric. 1969, 20, 619–621. DOI: 10.1002/(ISSN)1097-0010.
  • Buttery, R.; Seifert, R.M.; Ling, L.C.; Soderstrom, E.I.; Yerington, A.P. Raisin and Dried Fig Volatile Components: Possible Insect Attractants. J. Am. Chem. Soc. (USA). 1981, 4, 29–41.
  • Wang, D.; Cai, J.; Zhu, B.-Q.; Wu, G.-F.; Duan, C.-Q.; Chen, G.; Shi, Y. Study of Free and Glycosidically Bound Volatile Compounds in Air-Dried Raisins from Three Seedless Grape Varieties Using HS–SPME with GC–MS. Food Chem. 2015, 177, 346–353. DOI: 10.1016/j.foodchem.2015.01.018.
  • Wang, D.; Duan, C.-Q.; Shi, Y.; Zhu, B.-Q.; Javed, H.U.; Wang, J. Free and Glycosidically Bound Volatile Compounds in Sun-Dried Raisins Made from Different Fragrance Intensities Grape Varieties Using a Validated HS-SPME with GC–MS Method. Food Chem. 2017, 228, 125–135. DOI: 10.1016/j.foodchem.2017.01.153.
  • Bhouri, A.M.; Flamini, G.; Chraief, I.; Hammami, M. Aromatic Compounds and Soluble Carbohydrate Profiles of Different Varieties of Tunisian Raisin (Vitis Vinifera L.). Int. J. Food Prop. 2016, 19, 339–350. DOI: 10.1080/10942912.2015.1027920.
  • Baek, H.H.; Cadwallader, K.R.; Marroquin, E.; Silva, J.L. Identification of Predominant Aroma Compounds in Muscadine Grape Juice. J. Food Sci. 1997, 62, 249–252. DOI: 10.1111/j.1365-2621.1997.tb03978.x.
  • Dunlevy, J.D.; Kalua, C.M.; Keyzers, R.A.; Boss, P.K. The Production of Flavour & Aroma Compounds in Grape Berries. In Grapevine Molecular Physiology & Biotechnology; Roubelakis-Angelakis, K.A.; Springer Dordrecht, Netherlands, 2009; pp 293–340.
  • González-Barreiro, C.; Rial-Otero, R.; Cancho-Grande, B.; Simal-Gándara, J. Wine Aroma Compounds in Grapes: A Critical Review. Crit. Rev. Food Sci. Nutr. 2015, 55, 202–218. DOI: 10.1080/10408398.2011.650336.
  • Ilc, T.; Werck-Reichhart, D.; Navrot, N. Meta-Analysis of the Core Aroma Components of Grape and Wine Aroma. Front. Plant Sci. 2016, 7, 1–15. DOI: 10.3389/fpls.2016.00001.
  • Jelen, H.;. Specificity of Food Odorants. In Food Flavors Chemical, Sensory and Technological Properties; Jelen, H., Ed.; CRC Press Taylor & Francis Group: New York, 2012; pp 1–18.
  • Tan, Z.-W.; Yu, A.-N. Volatiles from the Maillard Reaction of L-Ascorbic Acid with L-Glutamic Acid/L-aspartic Acid at Different Reaction Times and Temperatures. Asia-Pac. J. Chem. Eng. 2012, 7, 563–571. DOI: 10.1002/apj.607.
  • Biniecka, M.; Caroli, S. Analytical Methods for the Quantification of Volatile Aromatic Compounds. Trends Analyt. Chem. 2011, 30, 1756–1770. DOI: 10.1016/j.trac.2011.06.015.
  • Delahunty, C.M.; Eyres, G.; Dufour, J.P. Gas Chromatography-Olfactometry. J. Sep. Sci. 2006, 29, 2107–2125.
  • van Boekel, M.A.J.S.;. Formation of Flavour Compounds in the Maillard Reaction. Biotechnol. Adv. 2006, 24, 230–233. DOI: 10.1016/j.biotechadv.2005.11.004.
  • USDA. Basic Report: 09298, Raisins, Seedless, National Nutrient Database for Standard Reference Release 28, United States Department of Agriculture, Agricultural Service. https://ndb.nal.usda.gov/ndb/foods/show/2371 (accessed Sep 15, 2017).
  • Buttery, R.G.;. Volatile Aroma/Flavor Components of Raisins (Dried Grapes). In Handbook of Fruit and Vegetable Flavors; Hui, Y.H., Ed.; John Wiley & Sons, Inc.: New Jersey, 2010; pp 549–556.
  • Corzo-Martínez, M.; Corzo, N.; Villamiel, M.; del Castillo, M.D. Browning Reactions. In Food Biochemistry and Food Processing; Benjamin, S.; Leo, N.; Gopinadhan, P.; Soottawat, B.; Wiley-Blackwell, USA, 2012; pp 56–83.
  • Wen, Y.-Q.; Zhong, G.-Y.; Gao, Y.; Lan, Y.-B.; Duan, C.-Q.; Pan, Q.-H. Using the Combined Analysis of Transcripts and Metabolites to Propose Key Genes for Differential Terpene Accumulation across Two Regions. BMC Plant Biol. 2015, 15, 1–22. DOI: 10.1186/s12870-014-0410-4.
  • Crowley, S.; O’Mahony, J. Drying: Effect on Nutrients, Composition and Health. In Encyclopedia of Food and Health; Caballero, B., Finglas, P.M., Toldra, F., Eds.; Elsevier: UK, 2016; pp 439–445.
  • Meng, J.; Fang, Y.; Zhang, A.; Chen, S.; Xu, T.; Ren, Z.; Han, G.; Liu, J.; Li, H.; Zhang, Z.; Wang, H. Phenolic Content and Antioxidant Capacity of Chinese Raisins Produced in Xinjiang Province. Food Res. Int. 2011, 44, 2830–2836. DOI: 10.1016/j.foodres.2011.06.032.
  • Shahidi, F.; Tan, Z. Raisins: Processing, Phytochemicals, and Health Benefits. In Dried Fruits; Alasalvar, C., Shahidi, F., Eds.; Blackwell Publishing Ltd: USA, 2013; pp 372–392.
  • Ghrairi, F.; Lahouar, L.; Amira, E.A.; Brahmi, F.; Ferchichi, A.; Achour, L.; Said, S. Physicochemical Composition of Different Varieties of Raisins (Vitis Vinifera L.). from Tunisia. Ind. Crops Prod. 2013, 43, 73–77. DOI: 10.1016/j.indcrop.2012.07.008.
  • Marquez, A.; Perez-Serratosa, M.; Varo, M.A.; Merida, J. Effect of Temperature on the Anthocyanin Extraction and Color Evolution during Controlled Dehydration of Tempranillo Grapes. J. Agric. Food Chem. 2014, 62, 7897–7902. DOI: 10.1021/jf502235b.
  • Chang, S.K.; Alasalvar, C.; Shahidi, F. Review of Dried Fruits: Phytochemicals, Antioxidant Efficacies, and Health Benefits. J. Funct. Foods. 2016, 21, 113–132. DOI: 10.1016/j.jff.2015.11.034.
  • Karadeniz, F.; Durst, R.W.; Wrolstad, R.E. Polyphenolic Composition of Raisins. J. Agric. Food Chem. 2000, 48, 5343–5350.
  • Parker, T.L.; Wang, X.H.; Pazmiño, J.; Engeseth, N.J. Antioxidant Capacity and Phenolic Content of Grapes, Sun-Dried Raisins, and Golden Raisins and Their Effect on Ex Vivo Serum Antioxidant Capacity. J. Agric. Food Chem. 2007, 55, 8472–8477. DOI: 10.1021/jf071468p.
  • Fabani, M.P.; Baroni, M.V.; Luna, L.; Lingua, M.S.; Monferran, M.V.; Paños, H.; Tapia, A.; Wunderlin, D.A.; Feresin, G.E. Changes in the Phenolic Profile of Argentinean Fresh Grapes during Production of Sun-Dried Raisins. J. Food Compost. Anal. 2017, 58, 23–32. DOI: 10.1016/j.jfca.2017.01.006.
  • Magalhães, M.; Santos, D.; Castro, S.M.; Silva, C.L.M. Nuts and Dried Fruits Potential as Functional Foods. In Functional Properties of Traditional Foods; Kristbergsson, K., Ötles, S., Eds.; Springer US: Boston, 2016; pp 293–307.
  • Sablani, S.S.;. Drying of Fruits and Vegetables: Retention of Nutritional/Functional Quality. Drying Technol. 2006, 24, 123–135. DOI: 10.1080/07373930600558904.
  • Alasalvar, C.; Shahidi, F. Composition, Phytochemicals, and Beneficial Health Effects of Dried Fruits: An Overview. In Dried Fruits Phytochemicals and Health Effects; Alasalvar, C.; Shahidi, F.; Blackwell Publishing Ltd., USA, 2013; pp 1–18.
  • Benlloch-Tinoco, M.; Carranza-Concha, J.; Camacho, M.M.; Martínez-Navarrete, N. Production of Raisins and Its Impact on Active Compounds A2. In Processing and Impact on Active Components in Food; Preedy, V., Ed.; Elsevier: London, 2015; pp 181–187.
  • Offen, W.; Martinez-Fleites, C.; Yang, M.; Kiat-Lim, E.; Davis, B.G.; Tarling, C.A.; Ford, C.M.; Bowles, D.J.; Davies, G.J. Structure of a Flavonoid Glucosyltransferase Reveals the Basis for Plant Natural Product Modification. EMBO J. 2006, 25, 1396–1405. DOI: 10.1038/sj.emboj.7600970.
  • He, F.; Mu, L.; Yan, G.-L.; Liang, -N.-N.; Pan, Q.-H.; Wang, J.; Reeves, M.J.; Duan, C.-Q. Biosynthesis of Anthocyanins and Their Regulation in Colored Grapes. Molecul. 2010, 15, 9057–9091.
  • Serrano, A.; Espinoza, C.; Armijo, G.; Inostroza-Blancheteau, C.; Poblete, E.; Meyer-Regueiro, C.; Arce, A.; Parada, F.; Santibáñez, C.; Arce-Johnson, P. Omics Approaches for Understanding Grapevine Berry Development: Regulatory Networks Associated with Endogenous Processes and Environmental Responses. Front. Plant Sci. 2017, 8, 1–15.
  • Kelebek, H.; Jourdes, M.; Selli, S.; Teissedre, P.-L. Comparative Evaluation of the Phenolic Content and Antioxidant Capacity of Sun-Dried Raisins. J. Sci. Food Agric. 2013, 93, 2963–2972.
  • Marquez, A.; Serratosa, M.P.; Lopez-Toledano, A.; Merida, J. Colour and Phenolic Compounds in Sweet Red Wines from Merlot and Tempranillo Grapes Chamber-Dried under Controlled Conditions. Food Chem. 2012, 130, 111–120.
  • Ostry, V.; Ruprich, J.S. Raisins, Ochratoxin A and Human Health. Mycotoxin Res. 2002, 18, 178–182.
  • Möller, T.E.; Nyberg, M. Ochratoxin A in Raisins and Currants: Basic Extraction Procedure Used in Two Small Marketing Surveys of the Occurrence and Control of the Heterogeneity of the Toxins in Samples. Food Addit. Contam. 2003, 20, 1072–1076.
  • Valero, A.; Marín, S.; Ramos, A.J.; Sanchis, V. Ochratoxin A-Producing Species in Grapes and Sun-Dried Grapes and Their Relation to Ecophysiological Factors. Lett. Appl. Microbiol. 2005, 41, 196–201.
  • Iamanaka, B.T.; Taniwaki, M.H.; Menezes, H.C.; Vicente, E.; Fungaro, M.H.P. Incidence of Toxigenic Fungi and Ochratoxin A in Dried Fruits Sold in Brazil. Food Addit. Contam. 2005, 22, 1258–1263.
  • Çağlarirmak, N.;. Ochratoxin A, Hydroxymethylfurfural and Vitamin C Levels of Sun-Dried Grapes and Sultanas. J. Food Process. Preserv. 2006, 30, 549–562.
  • Karami-Osboo, R.; Miri, R.; Javidnia, K.; Kobarfard, F.; AliAbadi, M.H.S.; Maham, M. A Validated Dispersive Liquid-Liquid Microextraction Method for Extraction of Ochratoxin A from Raisin Samples. ‎J. Food Sci. Technol. 2015, 52, 2440–2445.
  • Masood, M.; Iqbal, S.Z.; Asi, M.R.; Malik, N. Natural Occurrence of Aflatoxins in Dry Fruits and Edible Nuts. Food Control. 2015, 55, 62–65.
  • Heshmati, A.; Mozaffari Nejad, A.S. Ochratoxin A in Dried Grapes in Hamadan Province, Iran. Food Additives Contaminants: Part. B. 2015, 8, 255–259.
  • Palumbo, J.D.; O’Keeffe, T.L.; Ho, Y.S.; Santillan, C.J. Occurrence of Ochratoxin A Contamination and Detection of Ochratoxigenic Aspergillus Species in Retail Samples of Dried Fruits and Nuts. J. Food Prot. 2015, 78, 836–842.
  • Asghar, M.A.; Ahmed, A.; Iqbal, J. Aflatoxins and Ochratoxin A in Export Quality Raisins Collected from Different Areas of Pakistan. Food Additives Contaminants: Part. B. 2016, 9, 51–58.
  • Zhang, X.; Li, J.; Wang, D.; Feng, S.; Ma, L. The Effect of Dipping Pretreatment on Ochratoxin A Accumulation in Sultanas and Currants. Food Sci. Biotechnol. 2016, 25, 929–934.
  • McCoy, S.; Chang, J.W.; McNamara, K.T.; Oliver, H.F.; Deering, A.J. Quality and Safety Attributes of Afghan Raisins before and after Processing. Food Science and Nutrition. 2015, 3, 56–64.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.