1,269
Views
33
CrossRef citations to date
0
Altmetric
Reviews

A Review of Criteria and Methods for Evaluating the Probiotic Potential of Microorganisms

, , &

References

  • Grand View Research. 2016. Probiotics Market Analysis by Application (Probiotic Functional Foods and Beverages, Probiotic Dietary Supplements, Animal Feed Probiotics), by End Use (Human Probiotics, Animal Probiotics) and Segment Forecasts to 2020. http://www.grandviewresearch.com/industry‐analysis/probioticsmarket (accessed Nov 5, 2016).
  • Markets and Markets. 2017. Probiotics Market Worth 64.02 Billion USD by 2022. https://www.marketsandmarkets.com/PressReleases/probiotics.asp (accessed Dec 20, 2017).
  • Mukisa, I. M. 2016. Probiotics: What Is Africa Doing? https://www.researchgate.net/publication/310319829_Probiotics_what_is_Africa_doing (accessed Dec 20, 2017).
  • Global Industry Analysts Incorporated. 2016. Probiotics – A Global Strategic Business Report. www.strategyr.com/pressMCP-1084.asp (accessed Jul 22, 2017).
  • Kechagia, M.; Basoulis, D.; Konstantopoulou, S.; Dimitriadi, D.; Gyftopoulou, K.; Skarmoutsou, N.; Fakiri, E. M. Health Benefits of Probiotics: A Review. ISRN Nutrition, 2013, 2013, 1–7. DOI: 10.5402/2013/481651
  • Ziemer, C. J.; Gibson, G. R. An Overview of Probiotics, Prebiotics and Synbiotics in the Functional Food Concept: Perspectives and Future Strategies. Int. Dairy J. 1998, 8(5–6), 473–479. DOI: 10.1016/S0958-6946(98)000.
  • Granato, D.; Branco, G. F.; Nazzaro, F.; Cruz, A. G.; Faria, J. A. Functional Foods and Nondairy Probiotic Food Development: Trends, Concepts, and Products. Compr. Rev. Food Sci. Food Saf. 2010, 9(3), 292–302. DOI: 10.1111/j.1541-4337.2010.00110.x.
  • Metchnikoff, E.;. Essais Optimistes. The Prolongation of Life Optimistic Studies; Heinemann: London UK, 1907.
  • Tissier, H.;. Recherchers sur la flora intestinale normale et pathologique du nourisson; University of Paris: France, 1900.
  • Travers, M.-A.; Sow, C.; Zirah, S.; Deregnaucourt, C.; Chaouch, S.; Queiroz, R. M. L.; Charneau, S.; Allain, T.; Florent, I.; Grellier, P. Deconjugated Bile Salts Produced by Extracellular Bile Salt Hydrolase-Like Activities from the Probiotic Lactobacillus Johnsonii La1inhibit Giardia Duodenalis in Vitro Growth. Front. Microbiol. 2016, 7(1453), 1–16. DOI: 10.3389/fmicb.2016.01453.
  • Kumar, M.; Kumar, A.; Nagpal, R.; Mohania, D.; Behare, P.; Verma, V.; Kumar, P.; Pddae, D.; Aggarwal, P. K.; Henry, C. J.;, et al. Cancer-Preventing Attributes of Probiotics: An Update. Int. J. Sci. Nutr..2010, 61(5), 473–496. DOI: 10.3109/09637480903455971.
  • Yan, F.; Polk, D. B. Probiotics as Functional Food in the Treatment of Diarrhea. Curr. Opin. Clin. Nutr. Metabol. Care. 2006, 9, 717–721. DOI: 10.1097/01.mco.0000247477.02650.51.
  • Ogawa, M.; Shimizu, K.; Nomoto, K.; Takahashi, M.; Watanuki, M.; Tanaka, R.; Hamabata, T.; Yamasaki, S.; Takeda, Y. Protective Effect of Lactobacillus Casei Strain Shirota on Shiga Toxin-Producing Escherichia Coli O157: H7infection in Infant Rabbits. Infect. Immunol. 2001, 69, 1101–1108. DOI: 10.1128/IAI.69.2.1101-1108.2001.
  • Lin, M. Y.; Chen, T. W. Reduction of Cholesterol by Lactobacillus Acidophilus in Culture Broth. J. Food Drug Anal. 2000, 8(2), 97–102.
  • Fuller, R.;. Probiotics for Farm Animals. In Probiotics a Critical Review; Tannock, G. W., Ed.; Horizon Scientific, Wymondham: UK, 1999; pp 15–22.
  • Fuller, R.;. Probiotics in Man and Animals. J. Appl. Bacteriol. 1989, 66(5), 365–378. DOI: 10.1111/j.1365-2672.1989.tb05105.x.
  • FAO/WHO. 2006. Evaluation of Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria. http://www.fao.org (accessed Dec 28, 2016).
  • Cunha, A. F.; Acurcio, L. B.; Assis, B. S.; Oliveira, D. L. S.; Leite, M. O.; Cerqueira, M. M. O. P.; Souza, M. R. In Vitro Probiotic Potential of Lactobacillus Spp. Isolated from Fermented Milks. Arq. Bras. Med. Vet. Zootec. 2013, 65(6), 1876–1882. DOI: 10.1590/S0102-09352013000600040.
  • Minelli, E. B.; Benini, A. Relationship between Number of Bacteria and Their Probiotic Effects. Microb. Ecol. Health Dis. 2008, 20(4), 180–183. DOI: 10.1080/08910600802408095.
  • Sanders, M. E.;. Probiotics: Definition, Sources, Selection, and Uses. Clin. Infect. Dis. 2008, 46(2), S58– S61. DOI: 10.1086/523341.
  • Whorwell, P. J.; Altringer, L.; Morel, J.; Bond, Y.; Charbonneau, D.; O’Mahony, L.; Kiely, B.; Shanahan, F.; Quigley, E. M. Efficacy of an Encapsulated Probiotic Bifidobacterium Infantis 35624 in Women with Irritable Bowel Syndrome. Am. J. Gastroenterol. 2006, 101, 1581–1590. DOI: 10.1111/j.1572-0241.2006.00734.x.
  • Gionchetti, P.; Rizzello, F.; Helwig, U. M.; Venturi, A.; Lammers, K. M.; Brigidi, P.; Vitali, B.; Poggioli, G.; Miglioli, M.; Campieri, M. Prophylaxis of Pouchitis Onset with Probiotic Therapy: A Double-Blind, Placebo-Controlled Trial. Gastroenterol. 2003, 124(5), 1202–1209. DOI: 10.1016/S0016-5085(03)00171-9.
  • Shornikova, A. V.; Casas, I. A.; Mykkanen, H.; Salo, E.; Vesikari, T. Bacteriotherapy with Lactobacillus Reuteri in Rotavirus Gastroenteritis. Pediatr. Infect. Dis. J. 1997, 16, 1103–1107. DOI: 10.1097/00006454-199712000-00002.
  • Market Data Forecast. 2016. Middle-East and Africa Probiotics Market by Bacteria. www.marketdataforecast.com/market-reports/middle-east-and-africa-probiotics-market-776/ (accessed Jul 23, 2017).
  • Global Probiotics Market 2017-2021. 2017. https://www.technavio.com/report/global-probiotics-market (accessed Jun 30, 2017).
  • Lei, V.; Jakobsen, M. Microbiological Characterization and Probiotic Potential of Koko and Koko Sour Water, African Spontaneously Fermented Millet Porridge and Drink. J. Appl. Microbiol. 2004, 96, 384–397. DOI: 10.1046/j.1365-2672.2004.02162.x.
  • Borah, D.; Gogoi, O.; Adhikari, C.; Kakoti, B. B. Isolation and Characterization of the New Indigenous Staphylococcus Sp. DBOCP06 as a Probiotic Bacterium from Traditionally Fermented Fish and Meat Products of Assam State. Egypt. J. Basic Appl. Sci. 2016, 3, 232–240. DOI: 10.1016/j.ejbas.2016.06.001.
  • Banwo, K.; Sanni, A.; Tan, H. Technological Properties and Probiotic Potential of Enterococcus Faecum Strains Isolated from Cow Milk. J. Appl. Microbiol. 2013, 114, 229–241. DOI: 10.1111/jam.12031.
  • Mathara, J. M.; Schillinger, U.; Guigas, C.; Franz, C.; Kutima, P. M.; Mbugua, S. K.; Shin, H.-K.; Holzapfel, W. H. Functional Characteristics of Lactobacillus Spp. From Traditional Maasai Fermented Milk Products in Kenya. Int. J. Food Microbiol. 2008, 126, 57–64. DOI: 10.1007/s00284-007-9084-6.
  • Saxelin, M.; Tynkkynen, S.; Mattila-Sandholm, T.; de Vos, W. M. Probiotic and Other Functional Microbes: From Markets to Mechanisms. Curr. Opin. Biotechnol. 2005, 16, 204–211. DOI: 10.1016/j.copbio.2005.02.003.
  • Rabah, H.; Rosa Do Carmo, L. R.; Jan., G. Dairy Propionibacteria: Versatile Probiotics. Microorg. 2017, 5(2). DOI: 10.3390/microorganisms5020024.
  • Jayanthi, N.; Ratan Sudha, M. Bacillus Clausii - the Probiotic of Choice in the Treatment of Diarrhea. J. Yoga Phys. Ther. 2015, 5(4), 1–4. DOI: 10.4172/2157-7595.1000211.
  • Otte, J.-M.; Mahjurian-Namari, R.; Brand, S.; Werner, I.; Schmidt, W. E.; Schmitz, F. Probiotics Regulate the Expression of COX-2 in Intestinal Epithelial Cells. Nutr. Cancer. 2009, 61(1), 103–113. DOI: 10.1080/01635580802372625.
  • Botes, M.; van Reenen, C. A.; Dicks, L. M. T. Evaluation of Enterococcus Mundtii ST4SA and Lactobacillus Plantarum 423 as Probiotics by Using a Gastro-Intestinal Model Infant Milk Formulations as Substrate. Int. J. Food Microbiol. 2008, 128, 362–370. DOI: 10.1016/j.ijfoodmicro.2008.09.016.
  • Nangia, T.; Setia, V.; Kochhar, G. K.; Kaur, K.; Bansal, R.; Sharma, R. Probiotics: Review of Literature. J. Period. Med. Clin. Pract. 2014, 1, 144–151.
  • Hong, H. A.; Huang, J. H.; Khanej, R.; Hiep, L. V.; Urdaci, M. C.; Cutting, S. M. The Safety of Bacillus Subtilis and Bacillus Indicus as Food Probiotics. J. Appl. Microbiol. 2008, 105, 510–520. DOI: 10.1111/j.1365-2672.2008.03773.x.
  • Cutting, S. M.;. Bacillus probiotics. Food Microbiol. 2011, 28(2), 214–220. DOI: 10.1016/j.fm.2010.03.007.
  • Soccol, C. R.; Vandenberghe, L. P.; Spier, M. R.; Medeiros, A. B. P.; Yamaguishi, C. T.; Lindner, J. D. D.; Pandey, A.; Thomaz-Soccol, V. The Potential of Probiotics: A Review. Food Technol. Biotechnol. 2010, 48(4), 413–434.
  • Araújo, T. F.; Ferreira, C. L. F. The Genus Enterococcus as Probiotic: Safety Concerns. Braz. Arch. Biol. Tech. 2013, 56(3). DOI: 10.1590/S1516-89132013000300014.
  • Goh, H. M. S.; Yong, M. H. A.; Chong, K. K. L.; Kline, K. A. Model Systems for the Study of Enterococcal Colonization and Infection. Virulence. 2016, 8, 1525–1562. DOI: 10.1080/21505594.2017.1279766.
  • Nami, Y.; Hagshenas, B.; Hagshenas, M.; Khosroushahi, A. Antimicrobial Activity and Presence of Virulence Factors and Bacteriocin Structural Genes in Enterococcus Faecium CM33 Isolated from Ewe Colostrum. Front. Microbiol. 2015, 6(782). DOI: 10.3389/fmicb.2015.00782.
  • Lodemann, U.; Strahlendorf, J.; Schierack, P.; Klingspor, S.; Aschenbach, J. R.; Martens, H. Effects of the Probiotic Enterococcus Faecium and Pathogenic Escherichia Coli Strains in a Pig and Human Epithelial Intestinal Cell Model. Scientifica (Cairo). 2015, 2015, 1–10. DOI: 10.1155/2015/235184.
  • Al Atya, A. K.; Drider-Hadiouche, K.; Ravallec, R.; Silvain, A.; Vachee, A.; Drider, D. Probiotic Potential of Enterococcus Faecalis Strains Isolated from Meconium. Front. Microbiol. 2015, 6(227). DOI: 10.3389/fmicb.2015.00227.
  • Sonnenborn, U.; Schulze, J. The Non-Pathogenic Escherichia Coli Strain Nissle 1917 – Features of a Versatile Probiotic. Microb. Ecol. Health Dis. 2009, 21, 122–158. DOI: 10.3109/08910600903444267.
  • Schultz, M.;. Clinical Use of E. Coli Nissle 1917 in Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2008, 14, 1012–1018. DOI: 10.1002/ibd.20377.
  • Clinical-Trials. 2017. Study to Determine the Effectiveness of the Probiotic E. Coli Strain M17 in Treating Irritable Bowel Syndrome (IBS). https://clinicaltrials.gov/ct2/show/NCT00194922 (accessed Jul 25, 2017).
  • Kotowska, M.; Albrecht, P.; Szajewska, H. Saccharomyces Boulardii in the Prevention of Antibiotic-Associated Diarrhea in Children: Randomized Double-Blind Placebo-Controlled Trial. Aliment. Pharm.Ther. 2005, 21(5), 583–590. DOI: 10.1111/j.1365-2036.2005.02356.x.
  • Biviano, I.; Rossi, S.; Paicentino, D.; Alvino, V.; Corazziari, E. S.; Badiali, D.; Gastroenterology, A. Effect of Bifidobacterium Longum Bb536 Plus Lactoferrin in the Treatment of Irritable Bowel Syndrome. A Double Blind Clinical Trial. Adv. Res. Gastroenterol. Hepatol. 2017, 6(4), 1–4. DOI: 10.19080/argh.2017.06.555691.
  • Begley, M.; Hill, C.; Gahan, C. G. M. Bile Salt Hydrolase Activity in Probiotics. Appl. Environ. Microbiol. 2006, 72(3), 1729–1738. DOI: 10.1128/AEM.72.3.1729-1738.2006.
  • Assimos, D. G.;. Probiotic Therapy for Hyperoxaluria. Rev. Urol. 2006, 8(3), 170–171.
  • LeBlanc, J. G.; Rutten, G.; Bruinenberg, P.; Sesma, F.; de Giori, G. S.; Smid, E. J. A Novel Dairy Product Fermented with Propionibacterium Freudenreichii Improves the Riboflavin Status of Deficient Rats. Nutr. 2006, 22, 645–651. DOI: 10.1016/j.nut.2006.01.002.
  • Doron, S.; Snydman, D. R.; Gorbach, S. L. Lactobacillus GG: Bacteriology and Clinical Applications. Gastroenterol. Clin. North Am. 2005, 34, 483–498. DOI: 10.1016/j.gtc.2005.05.011.
  • LeBlanc, J. G.; Burgess, C.; Sesma, F.; de Giori, G. S.; van Sinderen, D. Lactococcus Lactis Is Capable of Improving the Riboflavin Status in Deficient Rats. Br. J. Nutr. 2005, 94, 262–267.
  • Reid, G.; Bruce, A. W.; Taylor, M. Instillation of Lactobacillus and Stimulation of Indigenous Organisms to Prevent Recurrence of Urinary Tract Infections. Microecol. Ther. 1995, 23, 32–45.
  • Prazdnova, E. V.; Chistyakov, V. A.; Churilov, M. N.; Mazanko, M. S.; Bren, A. B.; Volski, A.; Chikindas, M. L. DNA-protection and Antioxidant Properties of Fermentates from Bacillus Amyloliquefaciens B-1895 and Bacillus Subtilis KATMIRA 1933. Lett. Appl. Microbiol. 2015, 61(6), 549–554. DOI: 10.1111/lam.12491.
  • Kort, R.; Westerik, N.; Mariela Serrano, L.; Douillard, F. P.; Gottstein, W.; Mukisa, I. M.; Tuijn, C. J.; Basten, L.; Hafkamp, B.; Meijer, W. C.; Teusink, B.; de Vos, W. M.; Reid, G.; Sybesma, W. A novel consortium of Lactobacillus rhamnosus and Streptococcus thermophilus for increased access to functional fermented foods. Microb. Cell Fact. 2015, 14(1), 1–14. DOI: 10.1186/s12934-015-0370-x.
  • Drisko, J. A.; Giles, C. K.; Bischoff, B. J. Probiotics in Health Maintenance and Disease Prevention. Altern. Med. Rev. 2003, 8(2), 143–155.DOI: 10.12938/bifidus.25.39.
  • Ducrotté, P.; Sawant, P.; Jayanthi, V. Clinical Trial: Lactobacillus Plantarum 299v (DSM 9843) Improves Symptoms of Irritable Bowel Syndrome. World J. Gastroenterol. 2012, 18 1205 (30),4012–4018. DOI: 10.3748/wjg.v18.i30.4012.
  • Matsumoto, K.; Takada, T.; Shimizu, K.; Kado, Y.; Kawakami, K.; Makino, I.; Yamaoka, Y.; Hirano, K.; Nishimura, A.; Kajimoto, O.; et al. The Effect of a Probiotic Milk Product Containing Lactobacillus Casei Strain Shirota on the Defecation Frequency and the Intestinal Microflora of Sub-Optimal Health State Volunteers: A Randomized Placebo-Controlled Cross-Over Study. Biosci. Microflora. 2006, 25(2), 39–48. DOI: 10.12938/bifidus.25.39.
  • Symonds, E. L.; O’Mahony, C.; Lapthorne, S.; O’Mahony, D.; Sharry, J. M.; O’Mahony, L.; Shanahan, F. Bifidobacterium Infantis 35624 Protects against Salmonella-Induced Reductions in Digestive Enzyme Activity in Mice by Attenuation of the Host Inflammatory Response. Clin. Transl. Gastroenterol. 2012, 3(5), e15. DOI: 10.1038/ctg.2012.9.
  • Bruno, F.; Frigerio, G. A New Therapeutic Alternative for The Treatment Of Enteritis- Controlled Double-blind Test with The Strain Sf 68. Schweiz. Rundsch. Med. Prax. 1981, 70(39), 1717–1720.
  • Kruis, W.; Fric, P.; Pokrotnieks, J.; Lukás, M.; Fixa, B.; Kascak, M.; Kamm, M. A.; Weismueller, J.; Beglinger, C.Stolte, M.; et al. Maintaining Remission of Ulcerative Colitis with the Probiotic Escherichia Coli Nissle 1917 Is as Effective as with Standard Mesalazine. Gut, 2004, 53, 1617–1623. DOI: 10.1136/gut.2003.037747.
  • Wojtyniak, K.; Horvath, A.; Dziechciarz, P.; Szajewska, H. Lactobacillus Casei Rhamnosus Lcr35 in the Management of Functional Constipation in Children: A Randomized Trial. J. Pediatr. 2017, 184, 101–105. DOI: 10.1016/j.jpeds.2017.01.068.
  • Petricevic, L.; Witt, A. The Role of Lactobacillus Casei Rhamnosus Lcr35 in Restoring the Normal Vaginal Flora after Antibiotic Treatment of Bacterial Vaginosis. Gen. Gynaecol. 2017, 1369–1374. DOI: 10.1111/j.1471-0528.2008.01882.x.
  • Martín, R.; Laval, L.; Chain, F.; Miquel, S.; Natividad, J.; Cherbuy, C.; Sokol, H.; Verdu, E. F.; Vlieg, J. H.; Bermudez-Humaran, L. G.; et al. Bifidobacterium Animalis Ssp. Lactis CNCM-I2494 Restores Gut Barrier Permeability in Chronically Low-Grade Inflamed Mice. Front. Microbiol. 2016, 7(608), 1–12. DOI: 10.3389/fmicb.2016.00608.
  • Sgouras, D. N.; Panayotopoulou, E. G.; Martinez-Gonzalez, B.; Petraki, K.; Spyros Michopoulos, S.; Mentis, A. Lactobacillus Johnsonii La1 Attenuates Helicobacter Pylori –Associated Gastritis and Reduces Levels of Pro Inflammatory Chemokines in C57BL/6 Mice. Clin. Diagn. Lab. Immunol. 2005, 12(12),1378–1386. DOI: 10.1128/CDLI.12.12.1378-1386.2005.
  • Dietrich, C. G.; Kottmann, T.; Alavi, M. Commercially Available Probiotic Drinks Containing Lactobacillus Casei DN-114001 Reduce Antibiotic-Associated Diarrhea. World J. Gastroenterol. 2014, 20(42), 15837–15844. DOI: 10.3748/wjg.v20.i42.15837.
  • Bruns, R.; Raedsch, R. Therapy of Traveller’s Diarrhea. Med. Welt. 1995, 46, 591–596.
  • Ringel-Kulka, T.; Palsson, O. S.; Maier, D.; Carroll, I.; Galanko, J. A.; Leyer, G.; Ringel, Y. Probiotic Bacteria Lactobacillus Acidophilus NCFM and Bifidobacterium Lactis Bi-07 versus 1245Placebo for the Symptoms of Bloating in Patients with Functional Bowel Disorders: A Double-Blind Study. J. Gastroenterol. 2011, 45(6),518–525. DOI: 10.1097/MCG.0b013e31820ca4d6 .
  • Ardeypharm. 2018. Discover the German Group of Companies. www.ardeypharm.com/Probiotical-pharmaceuticals.html ( accessed Jan 26, 2018).
  • Jäger, R.; Purpura, M.; Farmer, S.; Cash, H. A.; Keller, D. Probiotic Bacillus Coagulans GBI-30, 6086 Improves Protein Absorption and Utilization. Probiotics Antimicrob. Proteins. 2017. DOI: 10.1007/s12602-017-9354-y.
  • Medellin-Peña, M. J.; Griffiths, M. W. Effect of Molecules Secreted by Lactobacillus Acidophilus Strain La-5 on Escherichia Coli O157: H7colonization. Appl. Environ. Microbiol. 2009, 75(4), 1165–1172. DOI: 10.1128/AEM.01651-08.
  • Joint FAO/WHO Working Group. 2002. Report on Drafting Guidelines for the Evaluation of Probiotics in Food: Guidelines for the Evaluation of Probiotics in Food. London. http://www.who.int/foodsafety/fs_management/en/probiotic_guidelines.pdf (accessed Jun 30, 2017).
  • Mahasneh, A. M.; Abbas, M. M. Probiotics and Traditional Fermented Foods: The Eternal Connection (Mini-Review). Jordan J. Biol. Sci. 2010, 3(4), 133–140.
  • Ganguly, N. K.; Bhattacharya, S. K.; Sesikeran, B.; Nair, G. B.; Ramakrishna, B. S.; Sachdev, H. P. S.; Batish, V. K.; Kanagasabapathy, A. S.; Muthuswamy, V.; Kathuria, S. C. ICMR-DBT Guidelines for Evaluation of Probiotics in Food. Indian J. Med. Res. 2011, 134(1), 22–25.
  • Ramos, C. L.; Thorsen, L.; Schwan, R. F.; Jespersen, L. Strain-Specific Probiotics Properties of Lactobacillus Fermentum, Lactobacillus Plantarum and Lactobacillus Brevis Isolates from Brazilian Food Products. Food Microbiol. 2013, 36(1), 22–29. DOI: 10.1016/j.fm.2013.03.010.
  • Papadimitriou, K.; Zoumpopoulou, G.; Foligne, B.; Alexandraki, V.; Kazou, M.; Pot, B.; Tsakalidou, E. Discovering Probiotic Microorganisms: In Vitro, in Vivo, Genetic and Omics Approaches. Front. Microbiol. 2015, 6(58), 1–28. DOI: 10.3389/fmicb.2015.00058.
  • Adams, M. R.; Marteau, P. On the Safety of Lactic Acid Bacteria from Food. Int. J. Food Microbiol. 1995, 27, 263–264. DOI: 10.1016/0168-1605(95)00067-T.
  • Marteau, P.;. Safety Aspects of Probiotic Products. Näringsforskning. 2001, 45(1), 22–24. DOI: 10.3402/fnr.v45i0.1785.
  • Snydman, D. R.;. The Safety of Probiotics. Clin. Infect. 2008, 46, S104– 111. DOI: 10.1086/523331.
  • Kurokawa, K.; Itoh, T.; Kuwahara, T.; Oshima, K.; Toh, H.; Toyoda, A.; Takama, H.; Morita, H.; Sharma, V. K.; Srivastva, T. P.;, et al. Comparative Metagenomics Revealed Commonly Enriched Gene Sets in Human Gut Microbiomes. DNA Res. 2007, 14, 169–181. DOI: 10.1093/dnares/dsm018.
  • Khaenhammer, T. R.; Kullen, M. J. Selection and Design of Probiotics. Int. J. Food Microbiol. 1999, 50(1–2), 45–57. DOI: 10.1016/S0168-1605(99)00076-8.
  • Kõll, P.; Mändar, R.; Marcotte, H.; Leibur, E.; Mikelsaar, M.; Hammarstöm, L. Characterization of Oral Lactobacilli as Potential Probiotics for Oral Health. Oral Microbiol. Immunol. 2008, 23(2),139–147. DOI: 10.1111/j.1399-302X.2007.00402.x.
  • Rahman, S. M. K.; Jalil, A.; Rahman, S. M. M.; Hossain, K. M. A Study on Probiotic Properties of Isolated and Identified Bacteria from Regional Yoghurts. Int. J. Biosci. 2015, 13107(4), 139–149. DOI: 10.12692/ijb/7.4.139-149.
  • Belicová, A.; Mikulášová, M.; Dušinský, R. Probiotic Potential and Safety Properties of Lactobacillus Plantarum from Slovak Bryndza Cheese. Biomed. Res. Int. 2013, 760298,1 –8. DOI: 10.1155/2013/760298.
  • Leite, A. M. O.; Miguel, M. A. L.; Peixoto, R. S.; Ruas-Madiedo, P.; Paschoalin, V. M. F.; Mayo, B.; Delgado, S. Probiotic Potential of Selected Lactic Acid Bacteria Strains from Brazilian Kefir Grains. J. Dairy Sci. 2015, 98, 3622–3632. DOI: 10.3168/jds.2014-9265.
  • Yadav, R.; Puniya, A. K.; Shukia, P. Probiotic Properties of Lactobacillus Plantarum RYPR1 from an Indigenous Fermented Beverage Raabadi. Front. Microbiol. 2016, 7(1683),1–9. DOI: 10.3389/fmicb.2016.01683.
  • Shukla, R.; Goyal, I. I. A. Leuconostoc Mesenteroids NRRL B-1149 as Probiotic and Its Dextran with Anticancer Properties. J. Biosci. Biotechnol. 2014, 3(1),79–87.
  • Osmanagaoglu, O.; Kiran, F.; Yagci, F. C.; Gursel, I. Immunomodulatory Function and in Vivo Properties of Pediococcus Pentosaceus OZF, a Promising Probiotic Strain. Ann. Microbiol. 2012, 63(4),1311–1318. DOI: 10.1007/s13213-012-0590-9.
  • Ritter, P.; Kohler, C.; von Ah, U. Evaluation of the Passage of Lactobacillus Gasseri K7 and Bifidobacteria from the Stomach to Intestines Using a Single Reactor Model. BMC Microbiol. 2009, 9(87),1–9. DOI: 10.1186/1471-2180-9-87
  • Hou, R. C.; Lin, M. Y.; Wang, M. M.; Tzen, J. T. Increase of Viability of Entrapped Cells of Lactobacillus Delbrueckii Spp. Bulgaricus in Artificial Sesame Oil Emulsions. J. Dairy Sci. 2003, 86, 424–428. DOI: 10.3168/jds.s0022-0302(03)73620-0.
  • Begley, M.; Gahan, C. G.; Hill, C. The Interaction between Bacteria and Bile. FEMS Microbiol. Rev. 2005, 29, 625–651. DOI: 10.1016/j.femsre.2004.09.003.
  • Flahaut, S.; Hartke, A.; Giard, J. C.; Benachour, A.; Boutibonnes, P.; Auffray, A. Relationship between Stress Response Towards Bile Salts, Acid and Heat Treatment in Enterococcus Faecalis. FEMS Microbiol. Lett. 1996, 138, 49–54. DOI: 10.1111/j.1574-6968.1996.tb08133.x.
  • Shimakawa, Y.; Matsubara, S.; Yuki, N.; Ikeda, M.; Ishikawa, F. Evaluation of Bifidobacterium Breve Yakult- Fermented Soymilk as a Probiotic Food. Int. J. Food Microbiol. 2003, 81, 131–136.
  • Okoli, A. S.; Raftery, M. J.; Mendz, G. L. Effects of Human and Porcine Bile on the Proteome of Helicobacter Hepaticus. Proteome Sci. 2012, 10(27), 1–16. DOI: 10.1186/1477-5956-10-27.
  • Grill, J. P.; Cayuela, C.; Antoine, J. M.; Schneider, F. Isolation and Characterization of a Lactobacillus Amylovorus Mutant Depleted in Conjugated Bile Salt Hydrolase Activity: Relation between Activity and Bile Salt Resistance. J. Appl. Microbiol. 2000, 89, 553–563. DOI: 10.1046/j.1365-2672.2000.01147.x.
  • Legrand-Defretin, V.; Juste, C.; Henry, R.; Corring, T. Ion-Pair High-Performance Liquid Chromatography of Bile Salt Conjugates: Application to Pig Bile. Lipids. 1991, 26, 578–583. DOI: 10.1007/BF02536421.
  • Barrett, K.; Brooks, H.; Boitano, S.; Barman, S. 2012. Ganong’s Review of Medical Physiology. https://emergencypedia.files.wordpress.com/2013/04/ganong-pdf.pdf (accessed Dec 24, 2017).
  • Jose, N. M.; Bunt, C. R.; Hussain, M. A. Comparison of Microbiological and Probiotic Characteristics of Lactobacilli Isolates from Dairy Food Products and Animal Rumen Contents. Microorg. 2015, 3, 198–212. DOI: 10.3390/microorganisms3020198.
  • Goldin, B. R.; Gorbach, S. L. Probiotics for Humans. In Probiotics, the Scientific Basis; Fuller, R., Ed.; Chapman and Hall: London, 1992; pp 355–376.
  • Rohrig, B.; 2012. 24 Hours: Your Food on the Move. https://www.acs.org/content/dam/acsorg/education/resources/highschool/chemmatters/videos/chemmatters-feb2012-digestion.pdf (accessed Feb 3, 2018).
  • Hassanzadazar, H.; Ehsani, A.; Mardani, K.; Hesari, J. Investigation of Antibacterial, Acid and Bile Tolerance Properties of Lactobacilli Isolated from Koozeh Cheese. Vet. Res. Forum. 2012, 3(3), 181–185.
  • Xanthopoulos, V.; Litopoulou-Tzanetaki, E.; Tzanetakis, N. Characterization of Lactobacillus Isolates from Infant Faeces as Dietary Adjuncts. Food Microbiol. 2000, 17, 205–215. DOI: 10.1006/fmic.1999.0300.
  • Dunne, C.; O’Mahony, L.; Murphy, L.; Thornton, G.; Morrissey, D.; O’Hlloran, S.; Feeney, M.; Flynn, S.; Fitzgerald, G.; Daly, C.; et al. In Vitro Selection Criteria for Probiotic Bacteria of Human Origin: Correlation with in Vivo Findings. Am. J. Clin. Nutr. 2001, 73, 386S– 392S. DOI: 10.1093/ajcn/73.2.386s.
  • Kim, P. I.; Jung, M. Y.; Chang, Y.-H.; Kim, S.; Kim, S.-J.; Park, Y.-H. Probiotic Properties of Lactobacillus and Bifidobacterium Strains from Porcine Gastrointestinal Tract. Appl. Microbiol. Biotechnol. 2007, 74, 1103–1111. DOI: 10.1007/s00253-006-0741-7.
  • Abdulhussein, B. J.; Hussein, Y. F.; Nawar, A. H.; Al-Naggar, R. A. Conversion Rate of Laparoscopic Cholecystectomy to Open Surgery at Al Karamah Teaching Hospital, Iraq. Surg. Sci. 2015, 6, 221–226. DOI: 10.4236/ss.2015.65034.
  • Riaz, M. S.; Shaheen, T.; Siddiq, M.; Nadeem, A.; Hussain, A.; Hayyat, F.; Shi, J. In-Vitro Assessment of Probiotic Potential of Lactic Acid Bacteria. J. Biol. Today’s World. 2015, 4(10), 190–198. DOI: 10.15412/J.JBTW.01041001.
  • Jacobsen, C. N.; Nielsen, V. R.; Hayford, A. E.; Møller, P. F.; Michaelsen, K. F.; Pærregaard, A.; Sandström, B.; Tvede, M.; Jakobsen, M. Screening of Probiotic Activities of Forty-Seven Strains of Lactobacillus Spp. By in Vitro Techniques and Evaluation of the Colonization Ability of Five Selected Strains in Humans. Appl. Environ. Microbiol. 1999, 65(11), 4949–4956.
  • Vinderola, G.; Capellini, B.; Villarreal, F.; Suárez. Usefulness of a set of simple in vitro tests for the screening and identification of probiotic candidate strains for dairy use. LWT – Food Sci. Tech. 2008, 41, 1678–1688. DOI: 10.1016/j.lwt.2007.10.008.
  • Todorov, S. D.; Botes, M.; Guigas, C.; Schillinger, U.; Wiid, I.; Wachsman, M. B.; Holzapfel, W. H. Boza, a Natural Source of Probiotic Lactic Acid Bacteria. J. Appl. Microbiol. 2008, 104, 465–477. DOI: 10.1111/j.1365-2672.2007.03558.x.
  • Duangjitcharoen, Y.; Kantachote, D.; Ongsakul, M.; Poosaran, N.; Chaiyasut, C. Selection of Probiotic Lactic Acid Bacteria Isolated from Fermented Plant Beverages. Pak. J. Biol. Sci. 2008, 11(4), 652–655. DOI: 10.3923/pjbs.2008.652.655.
  • Delgado, S.; O’Sullivan, E.; Fitzgerald, G.; Mayo, B. In Vitro Evaluation of the Probiotic Properties of Human Intestine Bifidobacterium Species and Selection of New Probiotic Candidates. J. Appl. Microbiol.. 2008, 104, 1119–1127. DOI: 10.1111/j.1365-2672.2007.03642.x.
  • Picot, A.; Lacroix, C. Encapsulation of Bifidobacteria in Whey Protein-Based Microcapsules and Survival in Simulated Gastrointestinal Conditions and in Yoghurt. Int. Dairy J. 2004, 14, 505–515. DOI: 10.1016/j.idairyj.2003.10.008.
  • Meddah, A. T. T.; Yazourh, A.; Desmet, I.; Risbourg, B.; Verstraete, W.; Romond, M. B. The Regulatory Effects of Whey Retentate from Bifidobacteria Fermented Milk on Microbiota of the Simulator of the Human Intestinal Microbial Ecosystem (SHIME). J. Appl. Microbiol. 2001, 91(6), 1110–1117. DOI: 10.1046/j.1365-2672.2001.01482.x.
  • Marteau, P.; Minekus, M.; Havenaar, R.; Veld, J. H. J. Survival of Lactic Acid Bacteria in a Dynamic Model of the Stomach and Small Intestine: Validation and Effects of Bile. J. Dairy Sci. 1997, 80, 1031–1037. DOI: 10.3168/jds.S0022-0302(97)76027-2.
  • Drouault, S.; Corthier, G.; Ehrlich, S. D.; Renault, P. Survival, Physiology and Lysis of Lactococcus Lactis in the Digestive Tract. Appl. Environ. Microbiol. 1999, 65(11), 4881–4886.
  • Sumeri, I.; Adamberg, S.; Uusna, R.; Sarand, I.; Paalme, T. Survival of Cheese Bacteria in a Gastrointestinal Tract Simulator. Int. Dairy J. 2012, 25(1), 36–41. DOI: 10.1016/j.idairyj.2011.12.016.
  • De Boever, P.; Verstraete, W. Bile Salt Deconjugation by Lactobacillus Plantarum 80 and Its Implication for Bacterial Toxicity. J. Appl. Microbiol. 1999, 87, 345–352. DOI: 10.1046/j.1365-2672.1999.00019.x.
  • Duangjitcharoen, Y.; Kantachote, D.; Ongsakul, M.; Poosaran, N.; Chaiyasut, C. Potential Use of Probiotic Lactobacillus Plantarum SS2 Isolated from a Fermented Plant Beverage: Safety Assessment and Persistence in the Murine Gastrointestinal Tract. World J. Microbiol. Biotechnol. 2009, 25(2), 315–321. DOI: 10.1007/s11274-008-9894-0.
  • Horgan, R. P.; Kenny, L. C. SAC Review ‘Omics’ Technologies: Genomics, Transcriptomics, Proteomics and Metabolomics. Obstet. Gynaecol. 2011, 13, 189–195. DOI: 10.1576/toag.13.3.189.27672.
  • Hamon, E.; Horvatovich, P.; Marchioni, E.; Aoudé-Werner, D.; Ennahar, S. Investigation of Potential Markers of Acid Resistance in Lactobacillus Plantarum by Comparative Proteomics. J. Appl. Microbiol. 2014, 116, 134–144. DOI: 10.1111/jam.12339.
  • Jin, J.; Zhang, B.; Guo, H.; Cui, J.; Jiang, L.; Song, S.; Sun, M.; Ren, F. Mechanism Analysis of Acid Tolerance Response of Bifidobacterium Longum Subsp. Longum BBMN 68 by Gene Expression Profile Using RNA-sequencing. PLoS ONE. 2012, 7, e50777. DOI: 10.1371/journal.pone.0050777.
  • An, H.; Douillard, F. P.; Wang, G.; Zhai, Z.; Yang, J.; Song, S.; Cui, J.; Ren, F.; Luo, Y.; Zhang, B.;, et al. Integrated Transcriptomics and Proteomic Analysis of the Bile Stress Response in a Centenarian - Originated Probiotic Bifidobacterium Longum BBMN68. Mol. Cell Proteomics 2014, 13, 2558–2572. DOI: 10.1074/mcp.M114.039156.
  • Koskenniemi, K.; Laakso, K.; Koponen, J.; Kankainen, M.; Greco, D.; Auvinen, P.; Savijoki, K.; Nyman, T. A.; Surakka, A.; Salusjärvi, T.;, et al. Proteomics and Transcriptomics Characterization of Bile Stress Response in Probiotic Lactobacillus Rhamnosus GG. Mol. Cell. Proteomics.2011, 10(2), 1–18. DOI: 10.1074/mcp.M110.002741.
  • Hamon, E.; Horvatovich, P.; Bisch, M.; Bringe, F.; Marchioni, E.; Aoudé-Werner, D.; Ennahar, S. Investigation of Biomarkers of Bile Tolerance in Lactobacillus Casei Using Comparative Proteomics. J. Proteome Res. 2012, 11(1), 109–118. DOI: 10.1021/pr200828t.
  • Bermudez-Brito, M.; Plaza-Díaz, J.; Muñoz-Quezada, S.; Gómez-Lorente, C.; Gil, A. Probiotic Mechanisms of Action. Ann. Nutr. Metab. 2012, 61, 160–174. DOI: 10.1159/000342079.
  • Liong, M. T.; Shah, N. P. Acid and Bile Tolerance and Cholesterol Removal Ability of Lactobacilli Strains. J. Dairy Sci. 2005, 88, 55–66. DOI: 10.3168/jds.s0022-0302(05)72662-x.
  • Nguyen, T. D. T.; Kang, J. H.; Lee, M. S. Characterization of Lactobacillus Plantarum PH04, a Potential Probiotic Bacterium with Cholesterol-Lowering Effects. Int. J. Food Microbiol. 2007, 113, 358–361. DOI: 10.1016/j.ijfoodmicro.2006.08.015.
  • Abd El-Gawad, I. A.; El-Sayed, E. M.; Hafez, S. A.; El-Zeini, H. M.; Saleh, F. A. The Hypocholesterolaemic Effect of Milk Yoghurt and Soy-Yoghurt Containing Bifidobacteria in Rats Fed on Cholesterol-Enriched Diet. Int. Dairy J. 2005, 15, 37–44. DOI: 10.1016/j.idairyj.2004.06.001.
  • Surono, I. S.;. In Vitro Probiotic Properties of Indigenous Dadih Lactic Acid Bacteria. Asian-Aust. J. Anim. Sci. 2003, 16(5), 726–731. DOI: 10.1007/s00253-008-1553-8.
  • De Smet, I.; Van Hoorde, I.; De Saeyer, M.; Vande, W. M.; Verstraete, W. In Vitro Study of Bile Salt Hydrolase (BSH) Activity of BSH Isogenic Lactobacillus Plantarum 80 Strains and Estimation of Cholesterol Lowering through Enhanced BSH Activity. Microb. Ecol. Health Dis. 1994, 7, 315–329. DOI: 10.3109/08910609409141371.
  • Bernstein, C.; Bernstein, H.; Payne, C. M.; Dvorakova, K.; Garewal, H. Bile Acids as Carcinogens in Human Gastrointestinal Cancers. Mutat. Res. 2005, 589, 47–65. DOI: 10.1016/j.mrrev.2004.08.001.
  • Veysey, M. J.; Thomas, L. A.; Mallet, A. I.; Jenkins, P. J.; Besser, G. M.; Wass, J. A.; Murphy, G. M.; Dowling, R. H. Prolonged Large Bowel Transit Increases Serum Deoxycholic Acid: A Risk Factor for Octreotide Induced Gallstones. Gut. 1999, 44, 675–681.
  • Pazzi, P.; Puriani, A. C.; Dalla Libera, M.; Guerra, G.; Rici, D.; Gullini, S.; Ottolenghi, C. Bile Salt-Induced Cytotoxicity and Ursodeoxycholate Cytoprotection: In Vitro Study Perfused Rat Hepatocytes. Eur. J. Gastroenterol. Hepatol. 1997, 9, 703–709. DOI: 10.1097/00042737-199707000-00011.
  • Kandell, R. L.; Bernstein, C. Bile Salt/Acid Induction of DNA Damage in Bacterial and Mammalian Cells: Implications for Colon Cancer. Nutr. Cancer. 1991, 16, 227–238. DOI: 10.1080/01635589109514161.
  • Ahn, Y. T.; Kim, G. B.; Lim, Y. S.; Baek, Y. J.; Kim, Y. U. Deconjugation of Bile Salts by Lactobacillus Acidophilus Isolates. Int. Dairy J. 2003, 13, 303–311. DOI: 10.1016/S0958-6946(02)00174-7.
  • Takahashi, T.; Morotomi, M. Absence of Cholic Acid 7-Dehydroxylase Activity in the Strains of Lactobacillus and Bifidobacterium. J. Dairy Sci. 1994, 77, 3275–3286. DOI: 10.3168/jds.S0022-0302(94)77268-4.
  • Chou, L. S.; Weimer, B. Isolation and Characterization of Acid- and Bile-Tolerant Isolates from Strains of Lactobacillus Acidophilus. J. Dairy Sci. 1999, 82(1), 23–31. DOI: 10.3168/jds.s0022-0302(99)75204-5.
  • Tomáška, M.; Drončovský, M.; Klapáčová, L.; Slottová, A.; Kološta, M. Potential Probiotic Properties of Lactobacilli Isolated from Goat’s Milk. Potravinarstvo Sci. J. Food Ind. 2015, 9(1), 66–71. DOI: 10.5219/434.
  • Collado, M. C.; Meriluoto, J.; Salminen, S. Role of Commercial Probiotic Strains against Human Pathogen Adhesion to Intestinal Mucus. Lett. Appl. Microbiol. 2007, 45, 454–460. DOI: 10.1111/j.1472-765x.2007.02212.x.
  • Gueimonde, M.; Jalonen, L.; He, F.; Hiramatsu, M.; Salminen, S. Adhesion and Competitive Inhibition and Displacement of Human Enteropathogens by Selected Lactobacilli. Food Res. Int. 2006, 39, 467–471.
  • Marco, M. L.; Pavan, S.; Kleerebezem, M. Towards Understanding Molecular Modes of Probiotic Action. Curr. Opin. Biotechnol. 2006, 17, 204–210. DOI: 10.1016/j.copbio.2006.02.005.
  • De Champs, C. D.; Maroncle, N.; Balestrino, D.; Rich, C.; Forestier, C. Persistence of Colonization of Intestinal Mucosa by a Probiotic Strain, Lactobacillus Casei Subsp. Rhamnosus Lcr35, after Oral Consumption. J. Clin. Microbiol. 2003, 41(3), 1270–1273. DOI: 10.1128/JCM.41.3.1270-1273.2003.
  • Aissi, E. A.; Lecocq, M.; Brassart, C.; Bouquelet, S. Adhesion of Some Bifidobacteria Strains to Human Enterocyte-Like Cells and Binding to Mucosal Glycoproteins. Microb. Ecol. Health Dis. 2001, 13, 32–39. DOI: 10.1080/089106001750071681.
  • Fogh, J.; Trempe, G. New Human Tumor Cell Lines. In Human Tumor Cells in Vitro; Fogh, J., Ed.; New Plenum Press: York, 1975; pp 115–141.
  • Tropcheva, R.; Georgieva, R.; Danova, S. Adhesion Ability of Lactobacillus Plantarum AC131. Biotechnol. Biotechnol. Equip. 2011, 25(1), 121–124. DOI: 10.5504/BBEQ.2011.0123.
  • Denkova, R.; Strinska, H.; Denkova, Z.; Dobrev, G.; Torodov, D.; Mladenova, K.; Shishkov, S. Study on the Adhesion of Lactobacillus Plantarum Strains with Probiotic Properties to MDCK. J. Fac. Food Eng. 2014, 13(3), 214–217.
  • Haeri, A.; Khodaii, Z.; Ghaderian, S. M. H.; Panah, A. S. T.; Najar, R. A. Comparison of Adherence Patterns of a Selection of Probiotic Bacteria to Caco-2, HEp-2 and T84 Cell Lines. Ann. Microbiol. 2012, 62(1), 339–344. DOI: 10.1007/s13213-011-0267-9.
  • Hidalgo, I. J.; Raub, T. J.; Borchard, R. T. Characterization of the Human Colon Carcinoma Cell Line (Caco-2) as a Model System for Intestinal Epithelial Permeability. Gastroenterol. 1989, 96(3), 736–749. DOI: 10.1016/0016-5085(89)90897-4.
  • Merino-Trigo, A.; Rodríguez-Berrocal, F. J.; de Miguel, E.; Páez de la Cadena, M. Activity and Properties of a-L-fucosidase are Dependent on the State of Enterocytic Differentiation of HT-29 Colon Cancer Cells. Int. J. Biochem. Cell Biol. 2002, 34, 1291–1303. DOI: 10.1016/S1357-2725(02)00067-5.
  • Lea, T.;. Epithelial Cell Models: General Introduction. In The Impact of Food Bioactives on Health: In Vitro and Ex Vivo Models; Verhoeckx, K., Ed.; Springer: Switzerland, 2015; pp 95–109.
  • Sarem, F.; Sarem-Damerdji, L. O.; Nicolas, J. P. Comparison of the Adherence of Three Lactobacillus Strains to Caco-2 and Int-407 Human Intestinal Cell Lines. Lett. Appl. Microbiol. 1996, 22, 439–442.
  • Gopal, P. K.; Prasad, J.; Smart, J.; Gill, H. S. In Vitro Adherence Properties of Lactobacillus Rhamnosus DR20 and Bifidobacterium Lactis DR10 Strains and Their Antagonistic Activity against an Enterotoxigenic Escherichia Coli. Int. J. Food Microbiol. 2001, 67, 207–216.
  • Grajek, W.; Olejnik, A. Epithelial Cell Cultures in Vitro as a Model to Study Functional Properties of Food. Pol. J. Food Nutr. Sci. 2004, 13, 5–24.
  • Otte, J.-M.; Podolsky, D. K. Functional Modulation of Enterocytes by Gram-Positive and Gram Negative Microorganisms. Am. J. Physiol. Gastrointest. Liver Physiol. 2004, 286(4), G613– G626. DOI: 10.1152/ajpgi.00341.2003.
  • Skovdahl, H. K. Differences between the HT29 and HT29 MXT epithelial cell lines. PhD Thesis, Norwegian University of Science and Technology, Norway, 2016.
  • Kos, B.; Susković, J.; Vuković, S.; Simpraga, M.; Frece, J.; Matosić, S. Adhesion and Aggregation Ability of Probiotic Strain Lactobacillus Acidophilus M92. J. Appl. Microbiol. 2003, 94, 981–987. DOI: 10.1046/j.1365-2672.2003.01915.x.
  • Abbasiliasi, S.; Tan, J. S.; Bashokouh, F.; Ibrahim, T. A. T.; Mustafa, S.; Vakhshiteh, F.; Sivasamboo, S.; Ariff, A. B. In Vitro Assessment of Pediococcus Acidilactici Kp 10 for Its Potential Use in the Food Industry. BMC Microbiol. 2017, 17(1), 121. DOI: 10.1186/s12866-017-1000-z.
  • Saxami, G.; Ypsilantis, P.; Sidira, M.; Simopoulos, C.; Kourkoutas, Y.; Galanis, A. Distinct Adhesion of Probiotic Strain Lactobacillus Casei ATCC 393 to Rat Intestinal Mucosa. Anaerobe. 2012, 19, 417–420. DOI: 10.1016/j.anaerobe.2012.04.002.
  • Azcarate-Peril, M. A.; Altermann, E.; Goh, Y. J.; Tallon, R.; Sanozky-Dawes, R. B.; Pfeiler, E. A.; O’Flaherty, S.; Buck, B. L.; Dobson, A.; Duong, T.;, et al. Analysis of the Genome Sequence of Lactobacillus Gasseri ATCC33323 Reveals the Molecular Basis of an Autochthonous Intestinal Organism. Appl. Environ. Microbiol. 2008, 74, 4610–4625. DOI: 10.1128/AEM.00054-08.
  • Douillard, F. P.; Ribbera, A.; Järvinen, H. M.; Kant, R.; Pietila, T. E.; Randazzo, C.; Paulin, L.; Laine, P. K.; Caggia, C.; von Ossowski, I.;, et al. Comparative Genomic and Functional Analysis of Lactobacillus Casei and Lactobacillus Rhamnosus Strains Marked as Probiotics. Appl. Environ. Microbiol.2013, 24(3), 531–538. DOI: 10.1128/AEM.03467-12.
  • Turroni, F.; Serafini, F.; Foroni, E.; Duranti, S.; O’connell Motherway, M.; Taver-Niti, V.; Mangifesta, M.; Milani, C.; Viappiani, A.; Roversi, T.;, et al. Role of Sortase-Dependent Pili of Bifidobacterium Bifidum PRL2010 in Modulating Bacterium-Host Interactions. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 11151–11156. DOI: 10.1073/pnas.1303897110.
  • García, M. A.; Marina, M. L.; Ríos, A.; Valcárcel, M. Separation Modes in Capillary Electrophoresis. In Analysis and Detection by Capillary Electrophoresis; Marina, M.L., Ríos, A., Valcárcel, M., Eds.; Elsevier: Amsterdam, 2005; pp 31–134.
  • Shobharani, P.; Agrawal, R. A Potent Probiotic Strain from Cheddar Cheese. Indian J. Microbiol. 2011, 51(3), 251–258. DOI: 10.1007/s12088-011-0072-y.
  • Chauviere, G.; Coconnier, M. H.; Kerneis, S.; Darfeuille-Michaud, A. Competitive Exclusion of Diarrheagenic Escherichia Coli (ETEC) from Human Enterocyte-Like Caco-2 Cells by Heat Killed. Lactobacillus FEMS Microbiol. Lett. 1992, 70, 213–217. DOI: 10.1016/0378-1097(92)90700-X.
  • Grady, C. P. L., Jr.; Daigger, G. T.; Lim, H. C. Biological Wastewater Treatment, 2nd ed.; Marcel Dekker: New Yolk, 1999.
  • Reid, G.; Jass, J.; Sebulsky, M. T.; McCormick, J. K. Potential Uses of Probiotics in Clinical Practice. Clin Microbiol Rev. 2003, 16, 4658–4672. DOI: 10.1128/CMR.16.4.658-672.2003.
  • Das, D.; Goyal, A. Characterization of a Noncytotoxic Bacteriocin from Probiotic Lactobacillus Plantarum DM5 with Potential as a Food Preservative. Food Funct. 2014, 5, 2453–2462. DOI: 10.1039/c4fo00481g.
  • Todorov, S. D.; Perin, L. M.; Carneiro, B. M.; Rahal, P.; Holzapfel, W.; Nero, L. A. Safety of Lactobacillus Plantarum ST8Sh and Its Bacteriocin. Probiotics Antimicrob. Proteins. 2017, 9, 334–344. DOI: 10.1007/s12602-017-9260-3.
  • Byaruhanga, Y. B.; Bester, B. H.; Watson, T. G. Growth and Survival of Bacillus Cereus in Mageu, a Sour Maize Beverage. World J. Microbiol. Biotechnol. 1999, 15, 329–333. DOI: 10.1023/A:1008967117381.
  • Gueimonde, M.; Sánchez, B.; de Los Reyes-Gavilán, C. G.; Margolles., A. Antibiotic Resistance in Probiotic Bacteria. Front. Microbiol. 2013, 4(202), 1–6. DOI: 10.3389/fmicb.2013.00202.
  • Broaders, E.; Gahan, C. G.; Marchesi, J. R. Mobile Genetic Elements of the Human Gastrointestinal Tract: Potential for Spread of Antibiotic Resistance Genes. Gut. Microb. 2013, 4, 271–280. DOI: 10.4161/gmic.24627.
  • Lahtinen, S. J.; Boyle, R. J.; Margolles, A.; Frías, R.; Gueimonde, M. Safety Assessment of Probiotics. In Prebiotics and Probiotics Science and Technology; Charalampopoulos, D., Rastall, R.A., Eds.; Springer-Verlag: Berlin, 2009; pp 1193–1225.
  • Nemeth, J.; Oesch, G.; Kuster, S. P. Bacteriostatic Verses Bacteriocidal Antibiotics for Patients with Serious Bacterial Infections: Systematic Review and Meta-Analysis. J. Antimicrob. Chemother. 2015, 70(2), 382–395. DOI: 10.1093/jac/dku379.
  • Balouiri, M.; Sadiki, M.; Ibnsouda, S. K. Methods for in Vitro Evaluating Antimicrobial Activity: A Review. J. Pharm. Anal. 2016, 2016(6), 71–79. DOI: 10.1016/j.jpha.2015.11.005.
  • Vandenbossche, I.; Vaneechoutte, M.; Vandevenne, M.; De Baere, T.; Verschraegen, G. Susceptibility Testing of Fluconazole by the NCCLS Broth Macrodilution Method, E-Test and Disk Diffusion for Application in the Routine Laboratory. J. Clin. Microbiol. 2002, 40(3), 918–921. DOI: 10.1128/JCM.40.3.918-921.2002.
  • Jorgensen, J. H.; Ferraro, M. J. Antimicrobial Susceptibility Testing: A Review of General Principles and Contemporary Practices. Clin. Infect. Dis. 2009, 49, 1749–1755. DOI: 10.1086/647952.
  • Denes, È.; Hidri, N. Synergie et antagonism en antibiothèrapie. Antibiotiques. 2009, 11, 106–115. DOI: 10.1016/j.antib.2009.02.001.
  • Berghaus, L. J.; Giguère, S.; Guldbech, K.; Warner, E.; Ugorji, U.; Berghaus, R. D. Comparison of Etest, Disk Diffusion, and Broth Macrodilution for in Vitro Susceptibility Testing of Rhodococcus Equi. J. Clin. Microbiol. 2015, 53, 314–318. DOI: 10.1128/JCM.02673-14.
  • Mayhofer, S.; Domig, K. J.; Mair, C.; Zitz, U.; Huys, G.; Kneifel, W. Comparison of Broth Microdilution, Etest, and Agar Disk Diffusion Methods for Antimicrobial Susceptibility Testing of Lactobacillus Acidophilus Group Members. Appl. Environ. Microbiol. 2008, 74(12), 3745–3748. DOI: 10.1128/AEM.02849-07.
  • Castilho, A. L.; Caleffi-Ferracioli, K. R.; Canezin, P. H.; Dias Sigueira, V. L.; de Lima Scodro, R. B.; Cardoso, R. F. Detection of Drug Susceptibility in Rapidly Growing Mycobacteria by Resazurin Broth Micro-Dilution Assay. J. Microbiol. Methods. 2015, 111, 119–121. DOI: 10.1016/j.mimet.2015.02.007.
  • Al-Bakri, A. G.; Afifi, F. U. Evaluation of Antimicrobial Activity of Selected Plant Extracts by Rapid XTT Colorimetry and Bacterial Enumeration. J. Microbiol. Methods. 2007, 2007(68), 19–25. DOI: 10.1016/j.mimet.2006.05.013.
  • Luber, P.; Bartelt, E.; Genschow, E.; Wagner, J.; Hahn, H. Comparison of Broth Microdilution, Etest and Agar Dilution Methods for Antibiotic Susceptibility Testing of Campylobacter Jejuni and Campylobacter Coli. J. Clin. Microbiol. 2003, 41(3), 1062–1068. DOI: 10.1128/JCM.41.3.1062-1068.2003.
  • Danielsen, M.; Wind, A. Susceptibility of Lactobacillus spp. To Antimicrobial Agents. Int. J. Food Microbiol. 2003, 82, 1–11. DOI: 10.1016/S0168-1605(02)00254-4.
  • Ocaña, V.; Silva, C.; Nader-Macias, M. E. Antibiotic Susceptibility of Potentially Probiotic Vaginal Lactobacilli. Infect. Dis. Obstet. Gynecol. 2006, 1–6. DOI: 10.1155/IDOG/2006/18182.
  • Kivanç, S. A.; Kivanç, M.; Yiğit, T. Antibiotic Susceptibility, Antibacterial Activity and Characterisation of Enterococcus Faecum Strains Isolated from Breast Milk. Exp. Ther. Med. 2016, 12(3), 1732–1740. DOI: 10.3892/etm.2016.354.
  • Charteris, W.; Kelly, P.; Morelli, L.; Collins, J. Antibiotic Susceptibility of Potentially Probiotic Lactobacillus Species. J. Food Prot. 1998, 61, 1636–1643. DOI: 10.4315/0362-028X-61.12.1636.
  • Nijs, A.; Cartuyvels, R.; Mewis, A.; Peeters, V.; Rummens, J. L.; Magerman, K. Comparison and Evaluation of Osiris and Sirscan 2000 Antimicrobial Susceptibility Systems in the Clinical Microbiology Laboratory. J. Clin. Microbiol. 2003, 41, 3627–3630. DOI: 10.1128/JCM.41.8.3627–3630.2003.
  • Buller, N.; Thomas, A.; Barton, M. 2014. Antimicrobial Susceptibility Testing. Australian and New Zealand Standard Diagnostic Procedures. http://www.agriculture.gov.au/SiteCollectionDocuments/animal/ahl/ANZSDP-Antimicrobial-susceptibility-testing.pdf (accessed Dec 23, 2017).
  • Nickson, C. 2017. Minimum Inhibitory Concentration (MIC). https://lifeinthefastlane.com/ccc/minimum-inhibitory-concentration-mic/(accessed December 23, 2017).
  • Oxoid. 2017. Antibiotic Susceptibility Testing Best Practice. http://www.oxoid.com/UK/blue/techsupport/its.asp?itsp=faq&cat=&faq=tsfaq021&c=UK&lang=EN&print=N (accessed Jul 30, 2017).
  • Huys, G.; D’Haene, K.; Swings, J. Influence of the Culture Medium on Antibiotic Susceptibility Testing of Food Associated Lactic Acid Bacteria with Agar Overlay Disc Diffusion Method. Lett. Appl. Microbiol. 2002, 34(6), 402–406. DOI: 10.1046/j.1472-765X.2002.01109.x.
  • Clinical and Laboratory Standard Institute (CLSI). 2013. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Third Information Supplement. http://www.facm.ucl.ac.be/intranet/CLSI/CLSI-M100S23-susceptibility-testing-2013-no-protection.pdf (accessed Dec 23, 2017).
  • European Committee on Antimicrobial Susceptibility Testing. 2013. Clinical Breakpoints. http://www.eucast.org/clinical_breakpoints/(accessed Dec 23, 2017).
  • Borriello, S. P.; Hammes, W. P.; Holzapfel, W.; Marteau, P.; Schrezenmeir, J.; Vaara, M.; Valtonen, V. Safety of Probiotics that Contain Lactobacilli or Bifidobacteria. Clin. Infect. Dis. 2003, 36, 775–780. DOI: 10.1086/368080.
  • Etebu, E.; Arikekpar, I. Antibiotics: Classification and Mechanisms of Action with Emphasis on Molecular Perspectives. Int. J. Appl. Microbiol. Biotechnol. Res. 2016, 4, 90–101.
  • Adzitey, F.;. Antibiotic Classes and Antibiotic Susceptibility of Bacterial Isolates from Selected Poultry; a Mini Review. World Vet. J.. 2015, 5(3), 36–41. DOI: 10.5455/wvj.20150853.
  • Ullah, H.; Ali, S. 2017. Classification of Anti-Bacterial Agents and Their Functions. https://www.intechopen.com/books/antibacterial-agents/classification-of-anti-bacterial-agents-and-their-functions (accessed Dec 23, 2017).
  • Lonvaud-Funel, A.;. Biogenic Amines in Wines: Role of Lactic Acid Bacteria. FEMS Microbiol. Lett. 2001, 199, 9–13. DOI: 10.1111/j.1574-6968.2001.tb10643.x.
  • Spano, G.; Russo, P.; Lonvaud-Funel, A.; Lucas, P.; Alexandre, H.; Grandvalet, C.; Coton, E.; Coton, M.; Barnavon, L.; Bach, B.;, et al. Biogenic Amines in Fermented Foods. Eur. J. Clin. Nutr. 2010, 64, 95–100. DOI: 10.1038/ejcn.2010.218.
  • Shalaby, A. R. Significance of Biogenic Amines to Food Safety and Human Health. Food Res. Int. 1996, 29, 675–690. DOI: 10.1016/S0963-9969(96)00066-X.
  • Martín, R.; Olivares, M.; Marín, M. L.; Fernández, L.; Xaus, J.; Rodríguez, J. M. Probiotic Potential of 3 Lactobacilli Strains Isolated from Breastmilk. J. Hum. Lact. 2005, 21(1), 8–17. DOI: 10.1177/0890334404272393.
  • Bover-Cid, S.; Holzapfel, W. H. Improved Screening Procedure for Biogenic Amine Production by Lactic Acid Bacteria. Int. J. Food Microbiol. 1999, 53, 33–41.
  • Priyadarshani, W. M. D.; Rakshit, S. K. Screening Selected Strains of Probiotic Lactic Acid Bacteria for Their Ability to Produce Biogenic Amines (Histamine and Tyrosine). Int. J. Food Sci. Technol. 2011, 46(10), 2062–2069. DOI: 10.1111/j.1365-2621.2011.02717.x.
  • Savini, V.; Gherardi, G.; Marrollo, R.; Franco, A.; De Araujo, F. P.; Dottarelli, S.; Fazii, P.; Batiisti, A.; Carretto, E. Could β-hemolytic, Group B Enterococcus Faecalis Be Mistaken for Streptococcus Agalactiae? Diagn. Microbiol. Infect. Dis. 2015, 82(1), 32–33. DOI: 10.1016/j.diagmicrobio.2014.12.005.
  • Papaparaskevas, J.; Houhoula, D. P.; Papadimitriou, M.; Saroglou, G.; Legakis, N. J.; Zerva, L. Ruling Out Bacillus Anthracis. Emerg. Infect. Dis. 2004, 10(4), 732–735. DOI: 10.3201/eid1004.030544.
  • Johnson, B. T.; Mayo, J. A.; Jeansonne, B. G. Beta-Hemolytic Streptococci and Other Beta-Hemolytic Organisms in Apical Periodontitis and Severe Marginal Periodontitis. Endod. Dent. Trauma. 1999, 15(3), 102–108. DOI: 10.1111/j.1600-9657.1999.tb00764.x.
  • Linke, B.; Schreiber, Y.; Picard-Willems, B.; Slattery, P.; Nüsing, R. M.; Harder, S.; Geisslinger, G.; Scholich, K. Activated Platelets Induce an Anti-Inflammatory Response of Monocytes/Macrophages through Cross-Regulation of PGE2 and Cytokines. Mediators Inflamm. 2017, 2017, 1463216. DOI: 10.1155/2017/146321.
  • Azizpour, K.; van Kessel, K.; Oudega, R.; Rutten, F. The Effect of Probiotic Lactic Acid Bacteria (LAB) Strains on the Platelet Activation: A Flow Cytometry-Based Study. J. Probiotics Health. 2017, 5(3), 1–5. DOI: 10.4172/2329-8901.1000185.
  • Zhou, J. S.; Rutherfurd, K. J.; Gill, H. S. Inability of Probiotic Bacterial Strains Lactobacillus Rhamnosus HN001 and Bifidobacterium Lactis HN019 to Induce Human Platelet Aggregation in Vitro. J. Food Prot.. 2005, 68(11), 2459–2464. DOI: 10.4315/0362-028X-68.11.2459.
  • Korpela, R.; Moilanen, E.; Saxelin, M.; Vapaatalo, H. Lactobacillus Rhamnosus GG (ATCC 53103) and Platelet Aggregation in Vitro. Int. J. Food Microbiol. 1997, 37, 83–86.
  • Johansson, D.; Shannon, O.; Rasmussen, M. Platelet and Neutrophil Responses to Gram Positive Pathogens in Patients with Bacteremic Infection. PLoS ONE. 2011, 6(11), e26928– e26928. DOI: 10.1371/journal.pone.0026928.
  • Shannon, O.; Mörgelin, M.; Rasmussen, M. Platelet Activation and Biofilm Formation by Aerococcus Urinae, an Endocarditis Causing Pathogen. Infect. Immunol. 2010, 78(10), 4268–4275. DOI: 10.1128/IAI.00469-10.
  • Rasmussen, M.; Johansson, D.; Söbirk, S. K.; Mörgelin, M.; Shannon, O. Clinical Isolates of Enterococcus Faecalis Aggregate Human Platelets. Microb. Infect. 2010, 12(4), 295–301. DOI: 10.1016/j.micinf.2010.01.005.
  • Pokhrel, P.; 2015. Deoxyribonuclease (Dnase) Test-Principle, Uses, Procedure, Result, Interpretation, Quality Control, Examples and Limitations. http://www.microbiologynotes.com/deoxyribonuclease-dnase-test-principle-uses-procedure-result-interpretation-quality-control-examples-and-limitations/ (accessed Aug 14, 2017).
  • Gupta, H.; Malik, R. K. Incidence of Virulence in Bacteriocin-Producing Enterococcal Isolates. Le Lait. 2007, 87, 587–601. DOI: 10.1051/lait:2007031.
  • Acharya, T.; 2014. Deoxyribonuclease (Dnase) Test: Principle, Procedure and Results. https://microbeonline.com/deoxyribonuclease-dnase-test-principle-procedure-results/ (accessed Dec 26, 2017).
  • Sieladie, D. V.; Zambou, N. F.; Kaktcham, P. M.; Cresci, A.; Fonteh, F. Probiotic Properties of Lactobacilli Strains Isolated from Raw Cow Milk in the Western Highlands of Cameroon. Innov. Rom. Food Biotechnol. 2011, 9, 12–28.
  • Acharya, T.; 2014. Gelatin Hydrolysis Test: Principle, Procedure and Expected Results. https://microbeonline.com/gelatin-hydrolysis-test-principle-procedure-expected-results/ (accessed Dec 24, 2017.
  • Guneser, M. B.; Eldeniz, A. U. Enterococcus Faecalis on Adhesion to Dentin after Irrigation with Various Endodontic Irrigants. Acta Biomater. Odontol. Scand. 2016, 1(2), 144–149. DOI: 10.1080/23337931.2016.1256212.
  • Anderson, A. C.; Jonas, D.; Huber, I.; Karygianni, L.; Wölber, J.; Hellwig, E.; Arweiler, N.; Vach, K.; Wittmer, A.; Al-Ahmad, A. Enterococcus Faecalis from Food, Clinical Specimens, and Oral Sites: Prevalence of Virulence Factors in Association with Biofilm Formation. Front. Microbiol. 2006, 6(1534), 1–14. DOI: 10.3389/fmicb.2015.01534.
  • Beecher, D. J.; Wong, A. C. Cooperative, Synergetic and Antagonistic Haemolytic Interaction between Haemolysin BL, Phosphotidycholine, Phospholipase C and Sphingomyelinase from Bacillus Cereus. Microbiol. 2000, 146, 3033–3039. DOI: 10.1099/00221287-146-12-3033.
  • Titball, R. W.;. Bacterial Phospholipids C. Microbiol. Rev. 1993, 57, 347–366.
  • Bhat, A. R.; Irorere, V. U.; Bartlett, T.; Hill, D.; Kedia, G.; Morris, M. R.; Charalampopoulos, D.; Radecka, I. Bacillus Subtilis Natto: A Non-Toxic Source of poly-γ-glutamic Acid that Could Be Used as a Cryoprotectant for Probiotic Bacteria. AMB Expr. 2013, 3(36), 1–9. DOI: 10.1186/2191-0855-3-36.
  • Georgescu, M.; Gheorghe, I.; Curutiu, C.; Lazar, V.; Bleotu, C.; Chifiriuc, M. C. Virulence and Resistance Features of Pseudomonas Aeruginosa Strains Isolated from Chronic Leg Ulcers. BMC Infect. Dis. 2016, 16(Suppl 1), 92. DOI: 10.1186/s12879-016-1396-3.
  • El-Baz, R.; Rizk, D. E.; Barwa, R.; Hassan, R. Virulence Factors Profile of Staphylococcus Aureus Isolated from Different Clinical Sources. N. Egypt. J. Microbiol. 2016, 43, 126–144.
  • Rijal, N.; 2015. Nagler Reaction (Lecithinase Test): Principle, Procedure, Results and Limitations. https://microbeonline.com/nagler-reaction-lecithinsae-test-principle-procedure-results-limitations/ (accessed Dec 20, 2017).
  • Sharaf, E. F.; El-Sayed, W. S.; Abosaif, R. M. Lecithinase-Producing Bacteria in Commercial and Home-Made Foods: Evaluation of Toxic Properties and Identification of Potent Producers. J. Taibah Univ. Sci. 2014, 8(3), 207–215. DOI: 10.1016/j.jtusci.2014.03.006.
  • Teramu, E.; Shimura, S.; Karasawa, T. Clostridium Tetani Is a Phospholipase (Lecithinase) Producing Bacterium. J. Clin. Microbiol. 2005, 43(4), 2024–2025. DOI: 10.1128/JCM.43.4.2024-2025.2005.
  • Ermolaeva, S.; Karpova, T.; Novella, S.; Wagner, M.; Scortti, M.; Tartakovskii, I.; Vazquez-Boland, J. A. A Simple Method for the Differentiation of Listeria Monocytogenes Based on Induction of Lecithinase Activity by Charcoal. Int. J. Food Microbiol. 2003, 82(1), 87–94.
  • Macfarlane, G. T.; Gibson, G. R. Formation of Glycoprotein Degrading Enzymes by Bacteroides Fragilis. FEMS Microbiol. Lett. 1991, 77, 289–294. DOI: 10.1111/j.1574-6968.1991.tb04363.x.
  • Abe, F.; Muto, M.; Yaeshima, T.; Iwatsuki, K.; Aihara, H.; Ohashi, Y.; Fujisawa, T. Safety Evaluation of Probiotic Bacteria Bifidobacteria by Analysis of Mucin Degradation Activity and Translocation Ability. Anaerobe. 2010, 16, 131–136. DOI: 10.1016/j.anaerobe.2009.07.006.
  • Ruas-Maldiedo, P.; Gueimonde, M.; Fernández-Garcıá, M.; de Los Reyes-Gavilán, C. G.; Margolles, A. Mucin Degradation by Bifidobacterium Strains Isolated from the Human Microbiota. Appl. Environ. Microbiol. 2008, 74(6), 1936–1940. DOI: 10.1128/AEM.02509-07.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.