19,838
Views
63
CrossRef citations to date
0
Altmetric
Reviews

Sub-Saharan African Maize-Based Foods - Processing Practices, Challenges and Opportunities

, , , &

References

  • FAOSTAT (2016) Food Balance Sheet, Available: http://faostat.fao.org/site/345/default.aspx [Accessed November 30, 2016].
  • Nuss, E. T.; Tanumihardjo, S. A. Maize: A Paramount Staple Crop in the Context of Global Nutrition. Compr. Rev. Food Sci. Food Saf. 2010, 9(4), 417–436. DOI: 10.1111/j.1541-4337.2010.00117.x.
  • Ranum, P.; Peña‐Rosas, J. P.; Garcia‐Casal, M. N. Global Maize Production, Utilization, and Consumption. Ann. N.Y. Acad. Sci. 2014, 1312(1), 105–112. DOI: 10.1111/nyas.12396.
  • Serna-Saldivar, S. O.;. Cereal Grains: Properties, Processing, and Nutritional Attributes; CRC Press (Taylor & Francis Group): Boca Raton, FL, 2016.
  • Hernández-Quintero JdD, Rosales-Nolasco A, Molina-Macedo A, Miranda-Piliado A, Willcox M, Hernández-Casillas JM. Cuantificación de antocianinas mediante espectroscopía de infrarrojo cercano y cromatografía líquida en maíces pigmentados. Rev. Fitotecnia Mex. 2017, 40, 2.
  • ŽIlić, S.; Serpen, A.; AkıllıoğLu, G.; GöKmen, V.; VančEtović, J. Phenolic Compounds, Carotenoids, Anthocyanins, and Antioxidant Capacity of Colored Maize (Zea Mays L.) Kernels. J. Agric. Food Chem. 2012, 60(5), 1224–1231. DOI: 10.1021/jf204367z.
  • Mensah, J. O.; Aidoo, R.; Teye, A. N. Analysis of Street Food Consumption across Various Income Groups in the Kumasi Metropolis of Ghana. Int. Rev. Manage. Bus. Res. 2013, 2(4), 951.
  • Ohna, I.; Kaarhus, R.; Kinabo, J. No Meal without Ugali? Social Significance of Food and Consumption in a Tanzanian Village. Culture Agric. Food Environ. 2012, 34(1), 3–14. DOI: 10.1111/j.2153-9561.2012.01061.x.
  • Bouis, H. E.; Saltzman, A. Improving Nutrition through Biofortification: A Review of Evidence from HarvestPlus, 2003 through 2016. Global Food Secur. 2017, 12, 49–58. DOI: 10.1016/j.gfs.2017.01.009.
  • Suri, D. J.; Tanumihardjo, S. A. Effects of Different Processing Methods on the Micronutrient and Phytochemical Contents of Maize: From A to Z. Compr. Rev. Food Sci. Food Saf. 2016, 15(5), 912–926. DOI: 10.1111/crf3.2016.15.issue-5.
  • De Groote, H.; Kimenju, S. C. Consumer Preferences for Maize Products in Urban Kenya. Food. Nutr. Bull. 2012, 33(2), 99–110. DOI: 10.1177/156482651203300203.
  • Greffeuille, V.; Kayodé, A. P.; Icard-Vernière, C.; Gnimadi, M.; Rochette, I.; Mouquet-Rivier, C. Changes in Iron, Zinc and Chelating Agents during Traditional African Processing of Maize: Effect of Iron Contamination on Bioaccessibility. Food Chem. 2011, 126(4), 1800–1807. DOI: 10.1016/j.foodchem.2010.12.087.
  • Alamu, O.; Maziya-Dixon, B.; Olaofe, O.; Menkir, A. Varietal and Harvesting Time Effects on Physical Characteristics and Sensory Properties of Roasted Fresh Yellow Maize Hybrids. IOSR J. Appl. Chem. 2015, 8(2), 55–63.
  • Alamu, O. E.; Menkir, A.; Maziya‐Dixon, B.; Olaofe, O. Effects of Husk and Harvest Time on Carotenoid Content and Acceptability of Roasted Fresh Cobs of Orange Maize Hybrids. Food Sci. Nutr. 2014, 2(6), 811–820. DOI: 10.1002/fsn3.179.
  • Olayiwola I, Oganah B, Onabanjo O, Oguntona C, Popoola A, Sanni S. Consumption Pattern Of Maize Based Dishes In Four Agro-Ecological Zones Of Nigeria. J. Agric. Sci. Environ. 2016, 12(2), 45–61.
  • Muzhingi, T.; Langyintuo, A. S.; Malaba, L. C.; Banziger, M. Consumer Acceptability of Yellow Maize Products in Zimbabwe. Food Policy. 2008, 33(4), 352–361. DOI: 10.1016/j.foodpol.2007.09.003.
  • Dovlo, F.;. Maize in the Ghanaian Diet. Home Sci. 1973, 2(3), 13–29.
  • Iken, J.; Review:, A. N. Maize Research and Production in Nigeria. Afr. J. Biotechnol. 2004, 3(6), 302–307. DOI: 10.5897/AJB2004.000-2056.
  • van Eijnatten, C. L. M.; Towards the improvement of maize in Nigeria [(Doctoral dissertation)]: Wageningen, The Netherlands; 1965.
  • Osseo-Asare, F. Food Culture in Sub-Saharan Africa; Greenwood Publishing Group: Westport, CT, 2005.
  • Ohna IL. Food, Culture and Livelihood in Malinzanga Village, Tanzania [ M.Sc. thesis]2007. .
  • Palacios-Rojas N, Vázquez G, Rodriguez ME, Carvajal M, Molina A, Rosales-Nolasco A. Lime Cooking Process: Nixtamalization from Mexico to the World; CIMMYT: Mexico, 2016.
  • Uzogara, S. G.; Morton, I. D.; Daniel, J. W. Changes in Some Antinutrients of Cowpeas (Vigna Unguiculata) Processed with ‘Kanwa’alkaline Salt. Plant Foods Human Nutr. 1990, 40(4), 249–258.
  • Bressani, R.; Turcios, J.; De Ruiz, A. Nixtamalization Effects on the Contents of Phytic Acid, Calcium, Iron and Zinc in the Whole Grain, Endosperm and Germ of Maize. Food Sci. Technol. Int. 2002, 8(2), 81–86. DOI: 10.1177/1082013202008002574.
  • Voss, K.; Ryu, D.; Jackson, L.; Riley, R.; Gelineau-van Waes, J. Reduction of Fumonisin Toxicity by Extrusion and Nixtamalization (Alkaline Cooking). J. Agric. Food Chem. 2017, 65(33), 7088–7096. DOI: 10.1021/acs.jafc.6b05761.
  • Elias-Orozco, R.; Castellanos-Nava, A.; Gaytan-Martinez, M.; Figueroa-Cárdenas, J.; Loarca-Pina, G. Comparison of Nixtamalization and Extrusion Processes for a Reduction in Aflatoxin Content. Food Addit. Contam. 2002, 19(9), 878–885. DOI: 10.1080/02652030210145054.
  • White, P. J.; Johnson, L. A. Corn: Chemistry and Technology; American Association of Cereal Chemists, Inc.: Minnesota, USA, 2003; pp 71–74.
  • Li R, Hu H-B, Li X-F, Zhang P, Xu Y-K, Yang J-J. Essential Oils Composition and Bioactivities of Two Species Leaves Used as Packaging Materials in Xishuangbanna, China. Food Control. 2015, 51, 9–14. DOI: 10.1016/j.foodcont.2014.11.009.
  • Bokanga, M., editor. Processing of Cassava Leaves for Human Consumption. Int. Workshop Cassava Saf. 1994, 375, 203–208.
  • Kordylas, J. M. Processing and Preservation of Tropical and Subtropical Foods; Macmillan, 1990.
  • Proietti, I.; Frazzoli, C.; Mantovani, A. Identification and Management of Toxicological Hazards of Street Foods in Developing Countries. Food Chem. Toxicol. 2014, 63, 143–152. DOI: 10.1016/j.fct.2013.10.047.
  • Nago, M.; Hounhouigan, D. La transformation alimentaire traditionnelle des céréales au Bénin; FSA/UAC: CERNA, 1998; pp 152.
  • Nkhabutlane, P. An Investigation of Basotho Culinary Practices and Consumer Acceptance of Basotho Traditional Bread. Dissertation, University of Pretoria, 2014.
  • Mphwanthe, G.; Kalimbira, A. A.; Geresomo, N. C. Consumption and Wastage of Home-Fortified Maize Flour Products in Northern Malawi. South Afr. J. Clin. Nutr. 2015, 29(1), 23–26. DOI: 10.1080/16070658.2016.1215881.
  • Redhead, J.; Boelen, M. Utilization of Tropical Foods: Cereals; Food & Agriculture Org., 1989.
  • Iskander, F. Y.; Davis, K. R.; Ashour, H.; Hassan, H. F. Aluminium Content of Egyptian Breads. Food Chem. 1990, 35(3), 197–208. DOI: 10.1016/0308-8146(90)90033-Z.
  • Nkhabutlane, P.; Du Rand, GE; De Kock HL. Quality Characterization of Wheat, Maize and Sorghum Steamed Breads from Lesotho. J. Sci. Food Agric. 2014, 94(10), 2104–2117. DOI: 10.1002/jsfa.6531.
  • MacRitchie, F. Flour Lipids and Their Effects in Baking. J. Sci. Food Agri. 1977, 28(1), 53–58. DOI: 10.1002/(ISSN)1097-0010.
  • Kohajdová, Z.; Karovicova, J.; Schmidt, S. Significance of Emulsifiers and Hydrocolloids in Bakery Industry. Acta Chim. Slovaca. 2009, 2(1), 46–61.
  • Kataria, R.;. Development of Maize and Rice Based Gluten Free Food Products. Doctoral dissertation, CCSHAU, 2014.
  • Julianti, E.; Rusmarilin, H.; Yusraini, E. Functional and Rheological Properties of Composite Flour from Sweet Potato, Maize, Soybean and Xanthan Gum. J. Saudi Soc. Agric. Sci. 2017, 16(2), 171–177. DOI: 10.1016/j.jssas.2015.05.005.
  • Schober, T. J.; Bean, S. R.; Boyle, D. L.; Park, S.-H. Improved Viscoelastic Zein–Starch Doughs for Leavened Gluten-Free Breads: Their Rheology and Microstructure. J. Cereal Sci. 2008, 48(3), 755–767. DOI: 10.1016/j.jcs.2008.04.004.
  • Brites, C.; Trigo, M. J.; Santos, C.; Collar, C.; Rosell, C. M. Maize-Based Gluten-Free Bread: Influence of Processing Parameters on Sensory and Instrumental Quality. Food Bioprocess. Technol. 2010, 3(5), 707–715. DOI: 10.1007/s11947-008-0108-4.
  • Watanabe, M.; Maeda, T.; Tsukahara, K.; Kayahara, H.; Morita, N. Application of Pregerminated Brown Rice for Breadmaking. Cereal Chem. 2004, 81(4), 450–455. DOI: 10.1094/CCHEM.2004.81.4.450.
  • Falade, A. T.; Buys, E. M.; Taylor, J. R. Effect of Different Non-Wheat Bread Making Methods on the Quality of Maize Bread. J. Food Technol. 2017, 15(1), 1–6.
  • Sly, A. C.; Taylor, J.; Taylor, J. R. Improvement of Zein Dough Characteristics Using Dilute Organic Acids. J. Cereal Sci. 2014, 60(1), 157–163. DOI: 10.1016/j.jcs.2014.02.006.
  • Iken, J.; Amusa, N. Consumer Acceptability of Seventeen Popcorn Maize (Zea Mays L.) Varieties in Nigeria. Afr. J. Agric. Res. 2010, 5(5), 405–407.
  • Uzor-Peters, P.; Arisa, N.; Lawrence, C.; Osondu, N.; Adelaja, A. Effect of Partially Defatted Soybeans or Groundnut Cake Flours on Proximate and Sensory Characteristics of Kokoro. Afr. J. Food Sci. 2008, 2(8), 098–101.
  • Nout, M. R. Rich Nutrition from the poorest–Cereal Fermentations in Africa and Asia. Food Microbiol. 2009, 26(7), 685–692. DOI: 10.1016/j.fm.2009.07.002.
  • Steinkraus, K. Industrialization of Indigenous Fermented Foods, Revised and Expanded; CRC Press: Boca Raton, FL, 2004.
  • Jideani, V.; Danladi, I. Instrumental and Sensory Textural Properties of Fura Made from Different Cereal Grains. Int. J. Food Prop. 2005, 8(1), 49–59. DOI: 10.1081/JFP-200048095.
  • Assohoun, M. C.; Djeni, T. N.; Koussémon-Camara, M.; Brou, K. Effect of Fermentation Process on Nutritional Composition and Aflatoxins Concentration of Doklu, a Fermented Maize Based Food. Food Nutr. Sci. 2013, 4(11), 1120. DOI: 10.4236/fns.2013.411146.
  • Haleegoah, J.; Ruivenkamp, G.; Essegbey, G.; Frempong, G.; Jongerden, J. Street-Vended Local Food Systems Actors Perceptions on Safety in Urban Ghana: The Case of Hausa Koko, Waakye and Ga Kenkey. Adv. Appl. Sociol. 2015, 5(04), 134. DOI: 10.4236/aasoci.2015.54013.
  • Nout, M.; Kok, B.; Vela, E.; Nche, P.; Rombouts, F. Acceleration of the Fermentation of Kenkey, an Indigenous Fermented Maize Food of Ghana. Food Res. Int. 1995, 28(6), 599–604. DOI: 10.1016/0963-9969(95)00059-3.
  • Hounhouigan, D.; Nout, M.; Nago, C.; Houben, J.; Rombouts, F. Changes in the Physico-Chemical Properties of Maize during Natural Fermentation of Mawe. J. Cereal Sci. 1993, 17(3), 291–300. DOI: 10.1006/jcrs.1993.1027.
  • Adegbehingbe, K. Fermented Sprouted and Unsprouted Maize for Ogi Production. Int. J. Adv. Res. 2013, 1(10), 428–434.
  • Katongole, J. N. The Microbial Succession in Indigenous Fermented Maize Products; Doctoral dissertation, University of the Free State, South Africa, 2008.
  • Oyeyiola, G. Microbiological and Biochemical Changes during the Fermentation of Maize (Zea Mays) Grains Formasa Production. World J. Microbiol. Biotechnol. 1990, 6(2), 171–177. DOI: 10.1007/BF01200938.
  • Achi, O. K.; Ukwuru, M. Cereal-Based Fermented Foods of Africa as Functional Foods. Int. J. Microbiol. Appl. 2015, 2(4), 71–83.
  • Blandino, A.; Al-Aseeri, M.; Pandiella, S.; Cantero, D.; Webb, C. Cereal-Based Fermented Foods and Beverages. Food Res. Int. 2003, 36(6), 527–543. DOI: 10.1016/S0963-9969(03)00009-7.
  • Nout, M. Microbiological Aspects of the Traditional Manufacture of Bussa, a Kenyan Opaque Maize Beer. Chemie, Mikrobiologie, Technologie der Lebensmittel= Food chemistry, microbiology, technology. 1980.
  • Burgess, C. M.; Smid, E. J.; van Sinderen, D. Bacterial Vitamin B2, B11 and B12 Overproduction: An Overview. Int. J. Food Microbiol. 2009, 133(1–2), 1–7. DOI: 10.1016/j.ijfoodmicro.2009.04.012.
  • Adebawo, O.; Ruiz‐Barba, J. L.; Warner, P. J.; Oguntimein, G. B. Regulation of Aspartokinase in Lactobacillus Plantarum. J. Appl. Microbiol. 1997, 82(2), 191–196.
  • Sybesma, W.; Burgess, C.; Starrenburg, M.; van Sinderen, D.; Hugenholtz, J. Multivitamin Production in Lactococcus Lactis Using Metabolic Engineering. Metab. Eng. 2004, 6(2), 109–115. DOI: 10.1016/j.ymben.2003.11.002.
  • Adebawo, O.; Akingbala, J.; Ruiz-Barba, J. L.; Osilesi, O. Utilization of High Lysine-Producing Strains of Lactobacillus Plantarum as Starter Culture for Nutritional Improvement of Ogi. World J. Microbiol. Biotechnol. 2000, 16(5), 451–455. DOI: 10.1023/A:1008967625335.
  • Odunfa, S.; Adeniran, S.; Teniola, O.; Nordstrom, J. Evaluation of Lysine and Methionine Production in Some Lactobacilli and Yeasts from Ogi. Int. J. Food Microbiol. 2001, 63(1), 159–163.
  • Hellström, A. M.; Vázques-Juárez, R.; Svanberg, U.; Andlid, T. A. Biodiversity and Phytase Capacity of Yeasts Isolated from Tanzanian Togwa. Int. J. Food Microbiol. 2010, 136(3), 352–358. DOI: 10.1016/j.ijfoodmicro.2009.10.011.
  • Nche, P.; Nout, M.; Rombouts, F. The Effects of Processing on the Availability of Lysine in Kenkey, a Ghanaian Fermented Maize Food. Int. J. Food Sci. Nutr. 1995, 46(3), 241–246.
  • Muhihi, A.; Gimbi, D.; Njelekela, M.; Shemaghembe, E.; Mwambene, K.; Chiwanga, F.; Malik, V. S.; Wedick, N. M.; Spiegelman, D.; Hu, F. B.; Willett, W. C. Consumption and Acceptability of Whole Grain Staples for Lowering Markers of Diabetes Risk among Overweight and Obese Tanzanian Adults. Globalization Health. 2013, 9(1), 1.
  • Onyango, C.;. Physical Properties of Dry-Milled Maize Meals and Their Relationship with the Texture of Stiff and Thin Porridge. Afr. J. Food Sci. 2014, 8(8), 435–443. DOI: 10.5897/AJFS2014.1185.
  • Bolade, M. K.; Adeyemi, I. A.; Ogunsua, A. O. Influence of Particle Size Fractions on the Physicochemical Properties of Maize Flour and Textural Characteristics of a Maize‐Based Nonfermented Food Gel. Int. J. Food Sci. Technol. 2009, 44(3), 646–655. DOI: 10.1111/j.1365-2621.2008.01903.x.
  • Gadaga, T.; Mutukumira, A.; Narvhus, J.; Feresu, S. A Review of Traditional Fermented Foods and Beverages of Zimbabwe. Int. J. Food Microbiol. 1999, 53(1), 1–11.
  • Gadaga, T. H.; Lehohla, M.; Ntuli, V. Traditional Fermented Foods of Lesotho. J. Microbiol. Biotechnol. Food Sci. 2013, 2(6), 2387.
  • Marras, S.; AgBendech, M. Street Food in Urban Ghana; Food and Agriculture Organization of the United Nations (FAO): Accra, Ghana, 2016.
  • Kalui, C.; Mathara, J.; Kutima, P.; Kiiyukia, C.; Wongo, L. Partial Characterisation and Identification of Lactic Acid Bacteria Involved in Production of Ikii: A Traditional Fermented Maize Porridge by the Kamba in Kenya. J. Trop. Microbiol. Biotechnol. 2008, 4(1), 3–15.
  • Nche, P.; Odamtten, G.; Nout, M.; Rombouts, F. Dry Milling and Accelerated Fermentation of Maize for Industrial Production of Kenkey, a Ghanaian Cereal Food. J. Cereal Sci. 1994, 20(3), 291–298. DOI: 10.1006/jcrs.1994.1069.
  • Teniola, O.; Odunfa, S. The Effects of Processing Methods on the Levels of Lysine, Methionine and the General Acceptability of Ogi Processed Using Starter Cultures. Int. J. Food Microbiol. 2001, 63(1), 1–9.
  • Bolade, M. K. Effect of Flour Production Methods on the Yield, Physicochemical Properties of Maize Flour and Rheological Characteristics of a Maize-Based Non-Fermented Food Dumpling. Afr. J. Food Sci. 2009, 3(10), 288–298.
  • Jayne, T. S.; Rubey, L.; Tschirley, D. L.; Mukumbu, M.; Chisvo, M.; Santos, A. P.; Weber, M. T.; Diskin, P. K. Effects of Market Reform on Access to Food by Low-Income Households: Evidence from Four Countries in Eastern and Southern Africa; Department of Agricultural, Food, and Resource Economics, Michigan State University: Michigan, USA, 1996.
  • Mukumbu, M.; Jayne, T. S. Urban Maize Meal Consumption Patterns: Strategies for Improving Food Access for Vulnerable Urban Households in Kenya; Working Paper No. 1; Tegemeo Institute of Agricultural Policy and Development, Egerton University: Nairobi, Kenya, 1994.
  • Ongol, M. P.; Niyonzima, E.; Gisanura, I.; Vasanthakaalam, H. Effect of Germination and Fermentation on Nutrients in Maize Flour. Pak. J. Food Sci. 2013, 23(4), 183–188.
  • Amoa, B.; Muller, H. Studies on Kenkey with Particular Reference to Calcium and Phytic Acid. Cereal Chem. 1979, 53, 365–375.
  • Mensah, P.; Tomkins, A. Household-Level Technologies to Improve the Availability and Preparation of Adequate and Safe Complementary Foods. Food Nutr. Bull. 2003, 24(1), 104–125. DOI: 10.1177/156482650302400106.
  • Bankole, M. O. Consumer’s Knowledge, Attitude, Usage and Storage Pattern of Ogi–A Fermented Cereal Gruel in South West, Nigeria. Food Public Health. 2015, 5(3), 77–83.
  • Lartey, A.; Manu, A.; Brown, K. H.; Peerson, J. M.; Dewey, K. G. A Randomized, Community-Based Trial of the Effects of Improved, Centrally Processed Complementary Foods on Growth and Micronutrient Status of Ghanaian Infants from 6 to 12 Mo of Age. Am. J. Clin. Nutr. 1999, 70(3), 391–404. DOI: 10.1093/ajcn/70.3.391.
  • Onofiok, N.; Nnanyelugo, D. Weaning Foods in West Africa: Nutritional Problems and Possible Solutions. Food Nutr. Bull. 1998, 19(1), 27–33. DOI: 10.1177/156482659801900105.
  • Oyarekua, M. Evaluation of the Nutritional and Microbiological Status of Co-Fermented Cereals/Cowpea ‘OGI’. Agric. Biol. J. North Am. 2011, 2(1), 61–73. DOI: 10.5251/abjna.2011.2.1.61.73.
  • Nche, P.; Nout, M.; Rombouts, F. The Effect of Cowpea Supplementation on the Quality of Kenkey, a Traditional Ghanaian Fermented Maize Food. J. Cereal Sci. 1994, 19(2), 191–197. DOI: 10.1006/jcrs.1994.1026.
  • Oluwamukomi, M.; Eleyinmi, A.; Enujiugha, V. Effect of Soy Supplementation and Its Stage of Inclusion on the Quality of Ogi–A Fermented Maize Meal. Food Chem. 2005, 91(4), 651–657. DOI: 10.1016/j.foodchem.2004.06.036.
  • Aminigo, E.; Akingbala, J. Nutritive Composition and Sensory Properties of Ogi Fortified with Okra Seed Meal. J. Appl. Sci. Environ. Manage. 2004, 8(2), 23–28.
  • Badifu, G.; Ilochi, J.; Dutse, J.; Akpapunam, M. Use of Mango Mesocarp Flour to Enrich the Provitamin A Content of A Complementary Food Blend of Maize and Soya Bean Flours for Porridge. Food Nutr. Bull. 2000, 21(3), 316–322. DOI: 10.1177/156482650002100312.
  • Abioye, F.; Mo, A. Proximate Composition and Sensory Properties of Moringa Fortified Maize-Ogi.J. Nutr. Food Sci. S. 2015, 12, 1–4.
  • Ajani, O. O. Improvement of Nutritive Value of Sorghum-Ogi Fortified with Pawpaw (Carica Papaya L). Fruit Veg. Cereal Sci. Biotechnol. 2010, 4(1), 98–101.
  • Adeoti, O.; Elutilo, O.; Babalola, J.; Jimoh, K.; Azeez, L.; Proximate, R. K.; Mineral, A. Acid and Fatty Acid Compositions of Maize Tuwo-Cirina Forda Flour Blends. Greener J. Biol. Sci. 2013, 3(4), 165–171. DOI: 10.15580/GJBS.2013.4.122912348.
  • Gaffa, T.; Jideani, I.; Nkama, I. Traditional Production, Consumption and Storage of Kunu–A Non Alcoholic Cereal Beverage. Plant Foods Human Nutr. 2002, 57(1), 73–81.
  • Oi, Y.; Kitabatake, N. Chemical Composition of an East African Traditional Beverage, Togwa. J. Agric. Food Chem. 2003, 51(24), 7024–7028. DOI: 10.1021/jf0203343.
  • Zulu, R.; Dillon, V.; Owens, J. Munkoyo Beverage, a Traditional Zambian Fermented Maize Gruel Using Rhynchosia Root as Amylase Source. Int. J. Food Microbiol. 1997, 34(3), 249–258.
  • Seiuml, N. B.; Kayodé, A.; Dalodé-Vieira, G.; Baba-Moussa, L.; Kotchoni, S.; Hounhouigan, D. Improvement of the Traditional Technology for the Production of Gow, a Sour and Sweet Beverage from Benin. Afr. J. Food Sci. 2011, 5(15), 806–813.
  • Lee, M.; Regu, M.; Seleshe, S. Uniqueness of Ethiopian Traditional Alcoholic Beverage of Plant Origin, Tella. J. Ethnic Foods. 2015, 2(3), 110–114. DOI: 10.1016/j.jef.2015.08.002.
  • Aka, S.; Konan, G.; Fokou, G.; Dje, K. M.; Bassirou, B. Review on African Traditional Cereal Beverages. Am. J. Res. Comm. 2014, 2(5), 103–153.
  • Mwesigye, P. K.; Okurut, T. O. A Survey of the Production and Consumption of Traditional Alcoholic Beverages in Uganda. Process Bioche.. 1995, 30(6), 497–501. DOI: 10.1016/0032-9592(94)00033-6.
  • Sacca, C.; Adinsi, L.; Anihouvi, V.; Akissoe, N.; Dalode, G.; Mestres, C.; Jacobs, A.; Dlamini, N.; Pallet, D.; Hounhouigan, D. J. Production, Consumption, and Quality Attributes of Akpan-A Yoghurt-Like Cereal Product from West Africa. Food Chain. 2012, 2(2), 207–220.
  • Worku, B. B.; Woldegiorgis, A. Z.; Gemeda, H. F. Indigenous Processing Methods of Cheka: A Traditional Fermented Beverage in Southwestern Ethiopia. J. Food Process. Technol. 2015, 7(540), 2.
  • Louw, A.; Geyser, M.; Troskie, G.; van der Merwe, M.; Scheltema, N.; Nicholson, R. Determining the Factors that Limit Agro-Processing Development in the Maize Milling Industry in Rural Areas in South Africa. Report by Markets and Economics Research center (MERC) for the National Agricultural marketing centre (NAMC), South Africa. 2010.
  • Hotz, C.; Gibson, R. S. Assessment of Home-Based Processing Methods to Reduce the Phytate Content and Phytate/Zinc Molar Ratio of White Maize (Zea Mays). J. Agric. Food Chem. 2001, 49(2), 692–698.
  • Olukoya, D.; Ebigwei, S.; Olasupo, N.; Ogunjimi, A. Production of DogiK: An Improved Ogi (Nigerian Fermented Weaning Food) with Potentials for Use in Diarrhoea Control. J. Trop. Pediatr. 1994, 40(2), 108–113. DOI: 10.1093/tropej/40.2.108.
  • Oi, Y.; Kitabatake, N. Analysis of the Carbohydrates in an East African Traditional Beverage, Togwa. J. Agric. Food Chem. 2003, 51(24), 7029–7033. DOI: 10.1021/jf030085y.
  • Malaisse, F.;. How to Live and Survive in Zambezian Open Forest (Miombo Ecoregion); Presses agronomiques de Gembloux: Belgium, 2010.
  • Haard, N.; Odunfa, S.; Lee, C.; Quintero–Ram´ırez, R.; Lorence–Quinones, A.; Wacher–Radarte, C. Fermented Cereals: A Global Perspective; Food and Agriculture Organization of the United Nations: Rome, 1999. ISBN 92-5-104296-9
  • Simango, C.; Rukure, G. Survival of Bacterial Enteric Pathogens in Traditional Fermented Foods. J. appl. bacteriol. 1992, 73(1), 37–40.
  • Arendt, E. K.; Zannini, E. Cereal Grains for the Food and Beverage Industries; Elsevier: Cambridge, UK, 2013.
  • Berhanu, A. Microbial Profile of Tellaand the Role of Gesho (Rhamnus Prinoides) as Bittering and Antimicrobial Agent in Traditional Tella (Beer) Production. Int. Food Res. J. 2014, 21(1).
  • Adebolu, T.; Olodun, A.; Ihunweze, B. Evaluation of Ogi Liquor from Different Grains for Antibacterial Activities against Some Common Diarrhoeal Bacteria in Southwest Nigeria. Afr. J. Biotechnol. 2007, 6, 9.
  • Yartey, J.; Nkrumah, F.; Hori, H.; Harrison, K.; Armar, D. Clinical Trial of Fermented Maize-Based Oral Rehydration Solution in the Management of Acute Diarrhoea in Children. Ann. trop. paediatrics. 1995, 15(1), 61–68.
  • Enujiugha, V. N.; Badejo, A. A. Probiotic Potentials of Cereal-Based Beverages. Crit. Rev. Food Sci. Nutr. 2017, 57(4), 790–804. DOI: 10.1080/10408398.2014.930018.
  • Wacher, C.; Cañas, A.; Bárzana, E.; Lappe, P.; Ulloa, M.; Owens, J. D. Microbiology of Indian and Mestizo Pozol Fermentations. Food Microbiol. 2000, 17(3), 251–256. DOI: 10.1006/fmic.1999.0310.
  • Ackah, M.; Gyamfi, E.; Anim, A.; Osei, J.; Hansen, J.; Agyemang, O. Socio-Economic Profile, Knowledge of Hygiene and Food Safety Practices among Street-Food Vendors in Some Parts of Accra-Ghana. Internet J. Food Safety. 2011, 13, 191–197.
  • Nwokoro, O.; Chukwu, B. C. Studies on Akamu, a Traditional Fermented Maize Food. Revista Chilena de Nutrición. 2012, 39(4).
  • Ijabadeniyi, A.; Adebolu, T. The Effect of Processing Methods on the Nutritional Properties of Ogi Produced from Three Maize Varieties. J. Food Agric. Environ. 2005, 3, 108–109.
  • Oyarekua, M.; Eleyinmi, A. Comparative Evaluation of the Nutritional Quality of Corn, Sorghum and Millet Ogi Prepared by a Modified Traditional Technique. J. Food Agric. Environ. 2004, 2, 94–99.
  • Rutherfurd, S. M.; Moughan, P. J. Development of a Novel Bioassay for Determining the Available Lysine Contents of Foods and Feedstuffs. Nutr. Res. Rev. 2007, 20(1), 3–16. DOI: 10.1017/S0954422407739124.
  • Oboh, G.; Ademiluyi, A. O.; Akindahunsi, A. A. The Effect of Roasting on the Nutritional and Antioxidant Properties of Yellow and White Maize Varieties. Int. J. Food Sci. Technol. 2010, 45(6), 1236–1242. DOI: 10.1111/j.1365-2621.2010.02263.x.
  • Vohra, A.; Satyanarayana, T. Phytases: Microbial Sources, Production, Purification, and Potential Biotechnological Applications. Crit. Rev. Biotechnol. 2003, 23(1), 29–60. DOI: 10.1080/713609297.
  • Khan, N.; Zaman, R.; Elahi, M. Effect of Heat Treatments on the Phytic Acid Content of Maize Products. J. Sci. Food Agric. 1991, 54(1), 153–156. DOI: 10.1002/(ISSN)1097-0010.
  • Iqbal, T.; Lewis, K.; Cooper, B. Phytase Activity in the Human and Rat Small Intestine. Gut. 1994, 35(9), 1233–1236.
  • Egli, I.; Davidsson, L.; Juillerat, M.; Barclay, D.; Hurrell, R. The Influence of Soaking and Germination on the Phytase Activity and Phytic Acid Content of Grains and Seeds Potentially Useful for Complementary Feedin. J. Food Sci. 2002, 67(9), 3484–3488. DOI: 10.1111/jfds.2002.67.issue-9.
  • Hotz, C.; Gibson, R. S. Traditional Food-Processing and Preparation Practices to Enhance the Bioavailability of Micronutrients in Plant-Based Diets. J. Nutr. 2007, 137(4), 1097–1100. DOI: 10.1093/jn/137.4.1097.
  • Mitchikpe, E. C. S.; Dossa, R. A.; Ategbo, E.-A. D.; van Raaij, J. M.; Hulshof, P. J.; Kok, F. J. The Supply of Bioavailable Iron and Zinc May Be Affected by Phytate in Beninese Children. J. Food Compost. Anal. 2008, 21(1), 17–25. DOI: 10.1016/j.jfca.2007.06.006.
  • De Boland, A. R.; Garner, G. B.; O’Dell, B. L. Identification and Properties of Phytate in Cereal Grains and Oilseed Products. J. Agric. Food Chem. 1975, 23(6), 1186–1189.
  • Gupta, R. K.; Gangoliya, S. S.; Singh, N. K. Reduction of Phytic Acid and Enhancement of Bioavailable Micronutrients in Food Grains. J. Food Sci. Technol. 2015, 52(2), 676–684. DOI: 10.1007/s13197-013-0978-y.
  • Godoy, S.; Chicco, C.; Meschy, F.; Requena, F. Phytic Phosphorus and Phytase Activity of Animal Feed Ingredients. Interciencia. 2005, 30(1), 24–28.
  • Proulx, A. K.; Reddy, M. B. Fermentation and Lactic Acid Addition Enhance Iron Bioavailability of Maize. J. Agric. Food Chem. 2007, 55(7), 2749–2754. DOI: 10.1021/jf0630015.
  • Drakakaki, G.; Marcel, S.; Glahn, R. P.; Lund, E. K.; Pariagh, S.; Fischer, R.; Christou, P.; Stoger, E. Endosperm-Specific Co-Expression of Recombinant Soybean Ferritin and Aspergillus Phytase in Maize Results in Significant Increases in the Levels of Bioavailable Iron. Plant Mol. Biol. 2005, 59(6), 869–880.
  • Nakamura, Y.; Fukuhara, H.; Sano, K. Secreted Phytase Activities of Yeasts. Biosci., Biotechnol., Biochem. 2000, 64(4), 841–844.