1,308
Views
37
CrossRef citations to date
0
Altmetric
Reviews

A Comprehensive Overview on Microalgal-Fortified/Based Food and Beverages

&

References

  • Bordignon, G.; Cabrini, M. Algae: An Introduction. In Algae as a Potential Source of Food and Energy in Developing Countries Sustainability, Technology and Selected Case Studies; Perosa, A., Bordignon, G., Ravagnan, G., Zinoviev, S., Eds.; Digital Publishing: Ca’ Foscari Venezia, 2015; pp 9–17.
  • Mata, T. M.; Martins, A. A.; Caetano, N. S. Microalgae for Biodiesel Production and Other Applications: A Review. Renew. Sustain. Ener. Rev. 2010, 14, 217–232. DOI: 10.1016/j.rser.2009.07.020.
  • Enzing, C.; Ploeg, M.; Barbosa, M.; Sijtsma, L. Microalgae-Based Products for the Food and Feed Sector: An Outlook for Europe. In JRC Scientific and Policy Reports, Report EUR 26255 EN; Vigani, M., Parisi, C., Rodríguez Cerezo, E., Eds.; Publications Office of the European Union: Luxembourg, 2014; pp 1–82.
  • Olaizola, M. Commercial Development of Microalgal Biotechnology: From the Test Tube to the Marketplace. Biomol. Eng. 2003, 20, 459–466. DOI: 10.1016/S1389-0344(03)00076-5.
  • Chacón -Lee, T. L.; González-Mariño, G. E. Microalgae for Healthy Foods: Possibilities and Challenges. Comp. Rev. Food Sci. Food. Safety. 2010, 9, 655–675. DOI: 10.1111/j.1541-4337.2010.00132.x.
  • Borowitzka, M. A. High-Value Products from Microalgae - Their Development and Commercialization. J. Appl. Phycol. 2013, 25, 743–756. DOI: 10.1007/s10811-013-9983-9.
  • Dragone, G.; Fernandes, B.; Vicente, A. A.; Teixeira, J. A. Third Generation Biofuels from Microalgae. In Current Research Technology and Education Topics in Applied Microbiology and Microbial Biotechnology; Méndez-Vilas, A., Ed.; Formatex: Badajoz, Spain, 2010; pp 1355–1366.
  • Duong, V. T.; Li, Y.; Nowak, E.; Schenk, P. M. Microalgae Isolation and Selection for Prospective Biodiesel Production. Energies. 2012, 5, 1835–1849. DOI: 10.3390/en5061835.
  • Lim, D. K. Y.; Garg, S.; Timmins, M.; Zhang, E. S. B.; Thomas-Hall, S. R.; Schuhmann, H.; Li, Y.; Schenk, P. M. Isolation and Evaluation of Oil-Producing Microalgae from Subtropical Coastal and Brackish Waters. PloS. ONE. 2012, 7, e40751. DOI: 10.1371/journal.pone.0040751.
  • Pandey, R. K.; Kundu, K.; Prakash, V.; Bhaskar, H.; Karmakar, R.; Dahake, V. R. Production of Biodiesel from Mixed Algal Culture and Its Fuel Characterization. Int. J. Recent Sci. Res. 2013, 4, 794–797.
  • Sidari, R.;. A Simple and Rapid Method for Separation and Isolation of Marine Algal Species from Naturally Evolved Populations. Mar. Biol. Res. 2016, 12, 193–199. DOI: 10.1080/17451000.2015.1125003.
  • Sidari, R.; Zema, D. A.; Bombino, G.; Sgrò, A.; Caridi, A. Evaluation of Natural Mixed Micro-Algal Blooms as Potential Feedstock for Biodiesel Production. Proceeding 23rd EUBCE 2015. 231–234, ISBN: 978-88-89407-516, Wien (Austria), 1-4 June 2015, doi:10.5071/23rdEUBCE2015-1CV.1.61 2015.
  • de Morais, M. G.; Da SilvaVaz, B.; de Morais, E. G.; Vieira Costa, J. A., Biologically Active Metabolites Synthesized by Microalgae, BioMed. Res. Int, 2015, 2015, Article ID 835761, 15 pages.
  • Pulz, O.; Gross, W. Valuable Products from Biotechnology of Microalgae. Appl. Microbiol. Biotechnol. 2004, 65, 635–648. DOI: 10.1007/s00253-004-1647-x.
  • Draaisma, R. B.; Wijffels, R. H.; Slegers, P. M.; Brentner, L. B.; Roy, A.; Barbosa, M. J. Food Commodities from Microalgae. Curr. Opin. Biotechnol. 2013, 24, 169–177. DOI: 10.1016/j.copbio.2012.09.012.
  • Hoseini, S. M.; Shahbazizadeh, S.; Khosravi-Darani, K.; Mozafari, M. R. Spirulina Platensis: Food and Function. Current. Nutr. Food Sci. 2013a, 9, 189–193. DOI: 10.2174/1573401311309030003.
  • Gouveia, L.; Batista, A. P.; Sousa, I.; Raymundo, A.; Bandarra, N. M. Microalgae in Novel Food Products. In Food Chemistry Research Development; Papadopoulos, K.N., Ed.; Nova Science Publishers, Inc.: New York, USA, Chapter 2, 2008a; pp 1–36.
  • Laza-Martínez, A.; Fernández-Marín, B.; García-Plazaola, J. I. Rapid Colour Changes in Euglena Sanguinea (Euglenophyceae) Caused by Internal Lipid Globule Migration. Eur. J. Phycol. 2019, 54, 91–101. DOI: 10.1080/09670262.2018.1513571.
  • Priyadarshani, I.; Rath, B. Commercial and Industrial Applications of Microalgae – A Review. J. Algal. Biomass. Utln. 2012, 3, 89–100.
  • Spolaore, P.; Joannis-Cassan, C.; Duran, E.; Isambert, A. Commercial Applications of Microalgae. J. Biosci. Bioeng. 2006, 101, 87−96. DOI: 10.1263/jbb.101.166.
  • Costa, J. A. C.; de Morais, M. G. Microalgae for Food Production. In Fermentation Process Engineering in the Food Industry; Soccol, C.R., Pandey, A., Larroche, C., Eds.; Taylor & Francis: UK, 2013; p 486.
  • Barrow, C.; Shahidi, F. Marine Nutraceuticals and Functional Foods; Taylor & Francis Group: UK, 2008.
  • Ibañez, E.; Cifuentes, A. Benefits of Using Algae as Natural Sources of Functional Ingredients. J. Sci. Food. Agr. 2013, 93, 703–709. DOI: 10.1002/jsfa.6023.
  • Hoseini, S. M.; Khosravi-Darani, K.; Mozafari, M. R. Nutritional and Medical Applications of Spirulina Microalgae. Mini. Rev. Med. Chem. 2013b, 13, 1231–1237. DOI: 10.2174/1389557511313080009.
  • Sidhu, K. S.;. Health Benefits and Potential Risks Related to Consumption of Fish or Fish Oil. Reg. Toxicol. Pharmacol. 2003, 38, 336–344. DOI: 10.1016/j.yrtph.2003.07.002.
  • Thies, F.; Garry, J. M.; Yagoob, P.; Rerkasem, K.; Williams, J.; Shearman, C. P.; Gallagher, P. J.; Calder, P. C.; Grimble, R. F. Association of N-3 Polyunsaturated Fatty Acids with Stability of Atherosclerotic Plaques: A Randomized Controlled Trial. Lancet. 2003, 361, 477–485. DOI: 10.1016/S0140-6736(03)12468-3.
  • Seto, A.; Wang, H. L.; Hesseltine, C. W. Culture Conditions Affect Eicosapentaenoic Acid Content of Chlorella Minutissima. J. Am. Oil Chem. Soc. 1984, 61, 892–894. DOI: 10.1007/BF02542159.
  • Mahajan, G.; Kamat, M. γ-Linolenic Production from Spirulina Platensis. Appl. Microbiol. Biotechnol. 1995, 43, 466–469. DOI: 10.1007/BF00218450.
  • Chini Zittelli, G.; Lavista, F.; Bastianini, A.; Rodolfi, L.; Vincenzini, M.; Tredici, M. R. Production of Eicosapentaenoic Acid by Nannochloropsis Sp. Cultures in Outdoor Tubular Photobioreactors. J. Biotechnol. 1999, 70, 299–312. DOI: 10.1016/S0168-1656(99)00082-6.
  • Bandarra, N. M.; Pereira, P. A.; Batista, I.; Vilela, M. H. Fatty acids, sterols and α-tocopherol in Isochrysis galbana. J. Food Lipids. 2003, 18, 25–34. DOI: 10.1111/j.1745-4522.2003.tb00003.x.
  • Donato, M.; Vilela, M. H.; Bandarra, N. M. Fatty Acids, Sterols, α-tocopherol and Total Carotenoids Composition of Diacronema Vlkianum. J. Food Lipids. 2003, 10, 267–276. DOI: 10.1111/j.1745-4522.2003.tb00020.x.
  • Mendes, A.; Reis, A.; Vasconcelos, R.; Guerra, P.; Lopes Da Silva, T. Crypthecodinium Cohnii with Emphasis on DHA Production: A Review. J. Appl. Phycol. 2009, 21, 199–214. DOI: 10.1007/s10811-008-9351-3.
  • Winwood, R. J.;. Recent Developments in the Commercial Production of DHA and EPA Rich Oils from Micro-Algae. Ocl. 2013, 20(D604), 1–5. DOI: 10.1051/ocl/2013030.
  • Ratledge, C.; Anderson, A.J.; Kanagachandran, K.; Grantham, D.; Stephenson, J.C.; de Swaaf, M.; Sijtsma, L. Culture of Crypthecodinium Cohnii for the Synthesis of a Polyunsaturated Fatty Acid. WO Patent 2001004338, 2001.
  • Kulczyński, B.; Gramza-Michałowska, A.; Kobus-Cisowska, J.; Kmiecik, D. The Role of Carotenoids in the Prevention and Treatment of Cardiovascular Disease – Current State of Knowledge. J. Func. Foods. 2017, 38, 45–65. DOI: 10.1016/j.jff.2017.09.001.
  • Lorenz, R. T.; Cysewski, G. R. Commercial Potential for Haematococcus Microalgae as a Natural Source of Astaxanthin. Trends. Biotechnol. 2000, 18, 160–167. DOI: 10.1016/S0167-7799(00)01433-5.
  • Guerin, M.; Huntley, M. E.; Olaizola, M. Haematococcus Astaxanthin: Applications for Human Health and Nutrition. Trends. Biotechnol. 2003, 21, 210–216. DOI: 10.1016/S0167-7799(03)00078-7.
  • Dufossé, L.; Galaup, P.; Yarnon, A.; Arad, S. M.; Blanc, P.; Chidambara Murthy, K. N.; Ravishankar, G. A. Microorganisms and Microalgae as Source of Pigments for Use: A Scientific Oddity or an Industrial Reality? Trends Food Sci. Tech. 2005, 16, 389–406. DOI: 10.1016/j.tifs.2005.02.006.
  • Del Campo, J. A.; Rodriguez, H.; Moreno, J.; Vargas, M. A.; Rivas, J.; Guerrero, M. G. Lutein Production by Muriellopsis Sp. In an Outdoor Tubular Photobioreactor. J. Biotechnol. 2001, 85, 289–295. DOI: 10.1016/S0168-1656(00)00380-1.
  • Del Campo, J. A.; García-González, M.; Guerrero, M. G. Outdoor Cultivation of Microalgae for Carotenoid Production: Current State and Perspectives. Appl. Microbiol. Biotechnol. 2007, 74, 1163–1174. DOI: 10.1007/s00253-007-0844-9.
  • García-González, M.; Moreno, J.; Manzano, J. C.; Florencio, F. J.; Guerrero, M. G. Production of Dunaliella Salina Biomass Rich in 9-cis-β-carotene and Lutein in a Closed Tubular Photobioreactor. J. Biotechnol. 2005, 115, 81–90. DOI: 10.1016/j.jbiotec.2004.07.010.
  • Pangestuti, R.; Kim, S.-K. Biological Activities and Health Benefit Effects of Natural Pigments Derived from Marine Algae. J. Funct. Foods. 2011, 3, 255–266. DOI: 10.1016/j.jff.2011.07.001.
  • Viskari, P. J.; Colyer, C. L. Rapid Extraction of Phycobiliproteins from Cultured Cyanobacteria Samples. Anal. Biochem. 2003, 319, 263–271. DOI: 10.1016/S0003-2697(03)00294-X.
  • Sekar, S.; Chandramohan, M. Phycobiliproteins as a Commodity: Trends in Applied Research, Patents and Commercialization. J. Appl. Phycol. 2008, 20, 113–136. DOI: 10.1007/s10811-007-9188-1.
  • Gupta, A.; Sainis, J. K. Isolation of C-Phycocyanin from Synechococcus Sp., (Anacystis Nidulans BD1). J. Appl. Phycol. 2010, 22, 231–233. DOI: 10.1007/s10811-009-9449-2.
  • Román, R. B.; Alvárez-Pez, J. M.; Acién Fernández, F. G.; Molina Grima, E. Recovery of Pure B-Phycoerythrin from the Microalga Porphyridium Cruentum. J. Biotechnol. 2002, 93, 73–85.
  • Dupre, C.; Guary, J. C.; Grizeau, D. Culture of an Autoflocculent Microalga in a Vertical Tubular Photobioreactor for Phycoerythrin Production. Biotechnol. Tech. 1995, 9, 185–190. DOI: 10.1007/BF00157076.
  • Eriksen, N.;. Production of Phycocyanin - a Pigment with Applications in Biology, Biotechnology, Foods and Medicine. Appl. Microbiol. Biotechnol. 2008, 80, 1–14. DOI: 10.1007/s00253-008-1535-x.
  • Becker, W.;. Microalgae in Human and Animal Nutrition. In Handbook of Microalgal Culture; Richmond, A., Ed.; Scientific Research – An Academic Publisher: Wuhan, 2004; pp 312–351.
  • Vigani, M.; Parisi, C.; Rodríguez-Cerezo, E.; Barbosa, M. J.; Sijtsma, L.; Ploeg, M.; Enzing, C. Food and Feed Products from Microalgae: Market Opportunities and Challenges for the EU. Trends Food Sci. Technol. 2015, 42, 81–92. DOI: 10.1016/j.tifs.2014.12.004.
  • Ismail, A.;. Marine Lipids Overview: Markets, Regulation, and the Value Chain. Ocl. 2010, 17, 205–208. DOI: 10.1051/ocl.2010.0321.
  • Wells, M. L.; Potin, P.; Craigie, J. S.; Raven, J. A.; Merchant, S. S.; Helliwell, K. E.; Smith, A. G.; Camire, M. E.; Brawley, S. H. Algae as Nutritional and Functional Food Sources: Revisiting Our Understanding. J. Appl. Phycol. 2017, 29, 949–982.
  • Brown, M. R.;. The Amino Acid and Sugar Composition of 16 Species of Microalgae Used in Mariculture. J. Exp. Mar. Biol. Ecol. 1991, 145, 79–99. DOI: 10.1016/0022-0981(91)90007-J.
  • Becker, E. W.;. Microalgae: Biotechnology and Microbiology; Cambridge University Press: Cambridge, 1994.
  • Zhu, C. J.; Lee, Y. K. Determination of Biomass Dry Weight of Marine Microalgae. J. Appl. Phycol. 1997, 9, 189–194. DOI: 10.1023/A:1007914806640.
  • Pleissner, D.; Eriksen, N. T. Effects of Phosphorous, Nitrogen, and Carbon Limitation on Biomass Composition in Batch and Continuous Flow Cultures of the Heterotrophic Dinoflagellate Crypthecodinium Cohnii. Biotech. Bioeng. 2012, 109(8), 2006–2016. DOI: 10.1002/bit.24470.
  • Ludevese-Pascual, G.; Dela Peña, M.; Tornalejo, J. Biomass Production, Proximate Composition and Fatty Acid Profile of the Local Marine Thraustochytrid Isolate, Schizochytrium Sp. LEY7 Using Low-Cost Substrates at Optimum Culture Conditions. Aquacult. Res. 2016, 47, 318–328. DOI: 10.1111/are.12494.
  • Barka, A.; Blecker, C. Microalgae as A Potential Source of Single-Cell Proteins. A Review. Biotechnol. Agron. Soc. Environ. 2016, 20, 427–436.
  • Kent, M.; Welladsen, H. M.; Mangott, A.; Li, Y. Nutritional Evaluation of Australian Microalgae as Potential Human Health Supplements. PloS. ONE. 2015, 10, e0118985. DOI: 10.1371/journal.pone.0118985.
  • Brown, M. R.; Garland, C. D.; Jeffrey, S. W.; Jameson, I. D.; Leroi, J. M. The Gross and Amino Acid Compositions of Batch and Semi-Continuous Cultures of Isochrysis Sp. (Clone T.ISO), Pavlova Lutheri and Nannochloropsis Oculata. J. Appl. Phycol. 1993, 5, 285–296. DOI: 10.1007/BF02186231.
  • Brown, M. R.; Jeffrey, S. W. The Amino Acid and Gross Composition of Marine Diatoms Potentially Useful for Mariculture. J. Appl. Phycol. 1995, 7, 521–527. DOI: 10.1007/BF00003938.
  • Skrede, A.; Mydland, L. T.; Ahlstrøm, Ø.; Reitan, K. I.; Gislerød, H. R.; Øverland, M. Evaluation of Microalgae as Sources of Digestible Nutrients for Monogastric Animals. J. Animal. Feed. Sci. 2011, 20, 131–142. DOI: 10.22358/jafs/66164/2011.
  • Tibbetts, S. M.; Milley, J. E.; Lall, S. P. Chemical Composition and Nutritional Properties of Freshwater and Marine Microalgal Biomass Cultured in Photobioreactors. J. Appl. Phycol. 2015, 27, 1109–1119. DOI: 10.1007/s10811-014-0428-x.
  • Madeira, M. S.; Cardoso, C.; Lopes, P. A.; Coelho, D.; Afonso, C.; Bandarra, N. M.; Pratesa, J. A. M. Microalgae as Feed Ingredients for Livestock Production and Meat Quality: A Review. Livest. Sci. 2017, 205, 111–121. DOI: 10.1016/j.livsci.2017.09.020.
  • Patil, V.; Källqvist, T.; Olsen, E.; Vogt, G.; Gislerød, H. R. Fatty Acid Composition of 12 Microalgae for Possible Use in Aquaculture Feed. Aquacult. Int. 2007, 15, 1–9. DOI: 10.1007/s10499-006-9060-3.
  • Martins, D. A.; Custódio, L.; Barreira, L.; Pereira, H.; Ben-Hamadou, R.; Varela, J.; Abu-Salah, K. M. Alternative Sources of N-3 Long-Chain Polyunsaturated Fatty Acids in Marine Microalgae. Mar. Drugs. 2013, 11, 2259–2281. DOI: 10.3390/md11072259.
  • Renaud, S. M.; Parry, D. L.; Thinh, L.-V. Microalgae for Use in Tropical Aquaculture I: Gross Chemical and Fatty Acid Composition of Twelve Species of Microalgae from the Northern Territory, Australia. J. Appl. Phycol. 1994, 6, 337–345. DOI: 10.1007/BF02181948.
  • Hu, H.; Yeguang, L.; Chuntao, Y.; Yexin, O. Isolation and Characterization of a Mesophilic Arthrospira Maxima Strain Capable of Producing Docosahexaenoic Acid. J. Microbiol. Biotechnol. 2011, 21(7), 697–702. DOI: 10.4014/jmb.1101.12040.
  • Ötles, S.; Pire, R. Fatty Acid Composition of Chlorella and Spirulina Microalgae Species. J. AOAC. Int. 2001, 84(6), 1708–1714.
  • Markou, G.; Nerantzis, E. Microalgae for High-Value Compounds and Biofuels Production: A Review with Focus on Cultivation under Stress Conditions. Biotechnol. Adv. 2013, 31, 1532–1542. DOI: 10.1016/j.biotechadv.2013.07.011.
  • Orosa, M.; Franqueira, D.; Cid, A.; Abalde, J. Carotenoid Accumulation in Haematococcus Pluvialis in Mixotrophic Growth. Biotech. Lett. 2001, 23(5), 373–378. DOI: 10.1023/A:1005624005229.
  • Abd El-Baky, H. H.; El Baz, F. K.; El-Baroty, G. S. Spirulina Species as a Source of Carotenoids and α-tocopherol and Its Anticarcinoma Factors. Biotechnol. 2003, 2(3), 222–240. DOI: 10.3923/biotech.2003.222.240.
  • Abd El-Baky, H. H.; El Baz, F. K.; El-Baroty, G. S. Production of Antioxidant by the Green Alga Dunaliella Salina. Int. J. Agri. Biol. 2004, 6(1), 49–57.
  • Del Campo, J. A.; Rodríguez, H.; Moreno, J.; Vargas, M. A.; Rivas, J.; Guerrero, M. G. Accumulation of Astaxanthin and Lutein in Chlorella Zofingiensis (Chlorophyta). Appl. Microbiol. Biotechnol. 2004, 64(6), 848–854. DOI: 10.1007/s00253-003-1490-5.
  • Di Sanzo, G.; Mehariya, S.; Martino, M.; Larocca, V.; Casella, P.; Chianese, S.; Musmarra, D.; Balducchi, R.; Molino, A. Supercritical Carbon Dioxide Extraction of Astaxanthin, Lutein, and Fatty Acids from Haematococcus Pluvialis Microalgae. Mar. Drugs. 2018, 16(334), 2–18. DOI: 10.3390/md16090334.
  • Sathasivam, R.; Ki, J.-S. A Review of the Biological Activities of Microalgal Carotenoids and Their Potential Use in Healthcare and Cosmetic Industries. Mar. Drugs. 2018, 16(26), 2–31. DOI: 10.3390/md16010026.
  • Fabregas, J.; Herrero, C. Vitamin Content of Four Marine Microalgae. Potential Use as Source of Vitamins in Nutrition. J. Ind. Microbiol. 1990, 5, 259–264. DOI: 10.1007/BF01569683.
  • Hadley, K. B.; Bauer, J.; Milgram, N. W. The Oil-Rich Alga Schizochytrium Sp. As a Dietary Source of Docosahexaenoic Acid Improves Shape Discrimination Learning Associated with Visual Processing in a Canine Model of Senescence. Prostag. Leukotr. ESS. 2017, 118, 10–18. DOI: 10.1016/j.plefa.2017.01.011.
  • Andrade, L. M.; Andrade, C. J.; Dias, M.; Nascimento, C. A. O.; Mendes, M. A. Chlorella and Spirulina Microalgae as Sources of Functional Foods, Nutraceuticals, and Food Supplements; an Overview. MOJ. Food. Process. Technol. 2018, 6(1), 00144. DOI: 10.15406/mojfpt.2018.06.00144.
  • Regulation (EC) N° 258/97 of the European Parliament and of the 27 January 1991 concerning novel foods and novel food ingredients.
  • Champenois, J.; Marfaing, H.; Pierre, R. Review of the Taxonomic Revision of Chlorella and Consequences for Its Food Uses in Europe. J. Appl. Phycol. 2015, 27, 1845–1851. DOI: 10.1007/s10811-014-0431-2.
  • Commission Implementing Decision (EU) 2015/545 of 31 March 2015 authorising the placing on the market of oil from the micro-algae Schizochytrium sp. (ATCC PTA-9695) as a novel food ingredient under Regulation (EC) N° 258/97 of the European Parliament and of the Council (notified under document C(2015) 2082), Brussels, Belgium.
  • Commission Implementing Decision (EU) 2015/546 of 31 March 2015 authorising an extension of use of DHA and EPA-rich oil from the micro-algae Schizochytrium sp. as a novel food ingredient under Regulation (EC) N° 258/97 of the European Parliament and of the Council (notified under document C(2015) 2083), Brussels, Belgium.
  • Commission Implementing Decision 2014/463/EU: on authorising the placing on the market of oil from the micro-algae Schizochytrium sp. as a novel food ingredient under Regulation (EC) N° 258/97 of the European Parliament and of the Council and repealing Decisions 2003/427/EC and 2009/778/EC, Brussels, Belgium.
  • Commission Decision 2009/777/EC of 21 October 2009 concerning the extension of uses of algal oil from the micro-algae Ulkenia sp. as a novel food ingredient under Regulation (EC) N° 258/97 of the European Parliament and of the Council (notified under document C(2009) 7932), Brussels, Belgium.
  • Regulation (EU) 2015/2283 of the European Parliament and of the Council of 25 November 2015 on novel foods, amending Regulation (EU) N° 1169/2011 of the European Parliament and of the Council and repealing Regulation (EC) N° 258/97 of the European Parliament and of the Council and Commission Regulation (EC) N° 1852/2001, Brussels, Belgium.
  • GRAS Notice N° 000101 (2002) - GRAS Notification for Spirulina microalgae, Maryland, USA.
  • JETRO Specifications and Standards for Foods, Food Additives, etc. Under the Food Sanitation Act, Japan External Trade Organization (JETRO): Tokyo, Japan, 2011, 1–180.
  • GRAS Notice N° 000137 (2003) - GRAS Exemption claim for DHA algal oil derived from Schizochytriurm sp. as a source of DHA for use in foods, Maryland, USA.
  • GRAS Notice N° 000160 (2004) - Expert panel consensus oil under the conditions of intended use in traditional foods, Maryland, USA.
  • GRAS Notice N° 000330 (2010) - GRAS Notice for an Algal flour (Chlorella) ingredient, Maryland, USA.
  • GRAS Notice N° 000351 (2010) - GRAS Assessment for Nikken Sohonsha Corporation Dunaliella bardawil powder, Maryland, USA.
  • GRAS Notice N° 000396 (2011) - GRAS exemption claim for Chlorella vulgaris as an ingredient in foods, Maryland, USA.
  • GRAS Notice N° 697 (2017) - GRAS Notice for dried Euglena gracilis (ATCC PTA-123017), Maryland, USA.
  • Australia New Zealand Food Standards Code – Schedule 25 – Permitted novel foods. Authorised Version F2017C00413 registered 25/05/2017, Canberra (Australia), Wellington (New Zealand), pp 1–3.
  • Guinee, T. P.; Caric, M.; Kaláb, M. Pasteurized Processed Cheese and Substitute/Imitation Cheese Products. In Cheese: Chemistry Physics and Microbiology. Major Cheese Groups; Fox, P.F., McSweeney, P.L.H., Cogan, T.M., Guinee, T.P., Eds.; Elsevier Ltd: London, 2004; pp 349–394.
  • Heo, J. Y.; Shin, H. J.; Oh, D. H.; Cho, S. K.; Yang, C. J.; Kong, I. K.; Lee, S. S.; Choi, K. S.; Choi, S. H.; Kim, S. C.;; et al. Quality Properties of Appenzeller Cheese Added with Chlorella. Korean. J. Food Sci. Animal. Res. 2006, 26, 525–531.
  • Habib, M. A. B.; Parvin, M.; Huntington, T. C.; Hasan, M. R. A Review on Culture, Production and Use of Spirulina as Food for Humans and Feeds for Domestic Animals and Fish. FAO Fisheries and Aquaculture Circular No. 1034, 2008.
  • Jeon, J.-K.;. Effect of Chlorella Addition on the Quality of Processed Cheese. J. Korean Soc. Food Sci. Nutr. 2006, 35, 373–377. DOI: 10.3746/jkfn.2006.35.3.373.
  • Mohamed, A. G.; Abo-El-Khair, E.; Shalaby, S. M. Quality of Novel Healthy Processed Cheese Analogue Enhanced with Marine Microalgae Chlorella Vulgaris Biomass. World. Appl. Sci. J. 2013, 23, 914–925.
  • Shalaby, S. M.; Yasin, N. M. N. Quality Characteristics of Croissant Stuffed with Imitation Processed Cheese Containing Microalgae Chlorella Vulgaris Biomass. World J. Dairy. Food. Sci. 2013, 8, 58–66.
  • Shirota, M.; Nagamatsu, N.; Takechi, Y. Method for Cultivating Lactobacilli. U.S. Pat. No. 3,123,538, 1964.
  • Gibson, G. R.; Roberfroid, M. B. Dietary Modulation of the Human Colonic Microbiota: Introducing the Concept of Prebiotics. J. Nutr. 1995, 125, 1401–1412. DOI: 10.1093/jn/125.6.1401.
  • Parada, J. L.; de Caire, G. Z.; de Mulé, M. C. Z.; de Cano, M. M. S. Lactic Acid Bacteria Growth Promoters from Spirulina Platensis. Int. J. Food. Microbiol. 1998, 45, 225–228. DOI: 10.1016/S0168-1605(98)00151-2.
  • Gyenis, B.; Szigeti, J.; Molnár, N.; Varga, L. Use of Dried Microalgal Biomasses to Stimulate Acid Production and Growth of Lactobacillus Plantarum and Enterococcus Faecium in Milk. Acta. Agraria. Kaposváriensis. 2005, 9, 53–59.
  • Molnár, N.; Gyenis, B.; Varga, L. Influence of Powdered Spirulina Platensis Biomass on Acid Production of Lactococci in Milk. Milchwissenschaft. 2005, 4, 380–382.
  • Molnár, N.; Sipos-Kozma, Z.; Tóth, Á.; Ásványi, B. M.; Varga, L. Development of Functional Dairy Food Enriched in Spirulina (Arthrospira Platensis). Tejgazdaság. 2009, 69, 15–22.
  • Guldas, M.; Irkin, R. Influence of Spirulina Platensis Powder on the Microflora of Yoghurt and Acidophilus Milk. Mljekarstvo. 2010, 60, 237–243.
  • Beheshtipour, H.; Mortazavian, A. M.; Haratian, P.; Khosravi-Darani, K. Effects of Chlorella Vulgaris and Spirulina Platensis Addition on the Viability of Probiotic Bacteria in Yoghurt and Its Biochemical Properties. Eur. Food Res. Technol. 2012, 235, 719–728. DOI: 10.1007/s00217-012-1798-4.
  • Beheshtipour, H.; Mortazavian, A. M.; Mohammadi, R.; Sohrabvandi, S.; Khosravi-Darani, K. Supplementation of Spirulina Platensis and Chlorella Vulgaris Algae into Probiotic Fermented Milks. Comp. Rev. Food Sci. Food. Safety. 2013, 12, 144–154. DOI: 10.1111/1541-4337.12004.
  • Varga, L.; Sule, J.; Szigeti, J. Stimulation of Probiotic Lactobacilli and Bifidobacteria in Cultured Dairy Foods. Proceedings of the International Scientific Conference on Sustainable Development and Ecological Footprint. 26-27 March 2012, Sopron, Hungary.
  • Prakash, D. R.; Pooja, K. Preparation of Low-Fat and High-Protein Frozen Yoghurt Enriched with Papaya Pulp and Spirulina. Trends. Biosci. 2011, 4, 182–184.
  • Cho, E. J.; Nam, E. S.; Park, S. I. Keeping Quality and Sensory Properties of Drinkable Yoghurt with Added Chlorella Extract. Korean. J. Food Nutr. 2004, 17(2), 128–132.
  • Kavimandan, A. Incorporation of Spirulina Platensis into Probiotic Fermented Dairy Products. Int. J. Dairy Sci. 2015, 10, 1–11. DOI: 10.3923/ijds.2015.1.11.
  • Ak, B.; Avşaroğlu, E.; Işık, O.; Özyurt, G.; Kafkas, E.; Etyemez, M.; Uslu, L. Nutritional and Physicochemical Characteristics of Bread Enriched with Microalgae Spirulina Platensis. Int. J. Eng. Res. Appl. 2016, 6, 30–38.
  • Jeong, C. H.; Cho, H. J.; Shim, K. H. Quality Characteristics of White Bread Added with Chlorella Powder. Korean. J. Food Pres. 2006, 13, 465–471.
  • Babuskin, S.; Krishnan, K. R.; Babu, P. A. S.; Sivarajan, M. S.; Sukumar, M. Functional Foods Enriched with Marine Microalga Nannochloropsis Oculata as a Source of ω-3 Fatty Acids. Food Technol. Biotechnol. 2014, 52, 292–299.
  • Gouveia, L.; Batista, A. P.; Miranda, A.; Empis, J.; Raymundo, A. Chlorella Vulgaris Biomass Used as Colouring Source in Traditional Butter Cookies. Innov. Food Sci. Emerg. Technol. 2007, 8, 433–436. DOI: 10.1016/j.ifset.2007.03.026.
  • Bang, B.-H.; Kim, K.-P.; Jeong, E.-J. Quality Characteristics of Cookies that Contain Different Amounts of Chlorella Powder. Korean J. Food Preserv. 2013, 20, 798–804. DOI: 10.11002/kjfp.2013.20.6.798.
  • Gouveia, L.; Coutinho, C.; Mendonça, E.; Batista, A. P.; Sousa, I.; Bandarra, N. M.; Raymundo, A. Sweet Biscuits with Isochrysis Galbana Microalga Biomass as a Functional Ingredient. J. Sci. Food. Agri. 2008c, 88, 891–896. DOI: 10.1002/jsfa.3166.
  • Salehifar, M.; Shahbazizadeh, S.; Khosravi-Darani, K.; Behmadi, H.; Ferdowsi, R. Possibility of Using Microalgae Spirulina Platensis Powder in Industrial Production of Iranian Traditional Cookies. Iranian J. Nutr. Sci. Food Technol. 2013, 7, 63–72.
  • Lucas, B. F.; de Morais, M. G.; Santosa, T. D.; Costa, J. A. V. Spirulina for Snack Enrichment: Nutritional, Physical and Sensory Evaluations. LWT – Food. Sci. Technol. 2018, 90, 270–276. DOI: 10.1016/j.lwt.2017.12.032.
  • Gouveia, L.; Batista, A. P.; Raymundo, A.; Bandarra, N. M. Spirulina Maxima and Diacronema Vlkianum Microalgae in Vegetable Gelled Desserts. Nutr. Food Sci. 2008b, 38, 492–501. DOI: 10.1108/00346650810907010.
  • Kim, K. J.; Chung, H. C. Quality Characteristics of Yellow Layer Cake Containing Different Amounts of Chlorella Powder. Korean J. Food Cook. Sci. 2010, 26, 860–865. DOI: 10.5851/kosfa.2010.30.5.860.
  • Fradique, M.; Batista, A. P.; Nunes, M. C.; Gouveia, L.; Bandarra, N. M.; Raymundo, A. Chlorella Vulgaris and Spirulina Maxima Biomass Incorporation in Pasta Products. J. Sci. Food Agr. 2010, 90, 1656–1664. DOI: 10.1002/jsfa.3999.
  • Acheson, J.; Chlorella in Packed Food, Beverage, and Pet Products. Global Analysis Report. Her Majesty the Queen in Right of Canada, represented by the Minister of Agriculture and Agri-Food. 1–10, 2016.
  • Gouveia, L.; Raymundo, A.; Batista, A. P.; Miranda, A.; Sousa, I.; Empis, J. Coulouring Emulsions Using Microbial Biomass – Stability over Time. In Pigments in Food – More than Colours; Dufossé, L., Ed.; Pigments Publishing, Université de Bretagne Occidentale: Quimper, 2004; pp 121–123.
  • Raymundo, A.; Gouveia, L.; Batista, A. P.; Empis, J.; Sousa, I. Fat Mimetic Capacity of Chlorella Vulgaris Biomass in Oil-In-Water Food Emulsions Stabilized by Pea Protein. Food Res. Int. 2005, 38, 961–965. DOI: 10.1016/j.foodres.2005.02.016.
  • Gouveia, L.; Batista, A. P.; Raymundo, A.; Sousa, I.; Empis, J. Chlorella Vulgaris and Haematococcus Pluvialis Biomass as Colouring and Antioxidant in Food Emulsions. Eur. Food Res. Technol. 2006, 222, 362–367. DOI: 10.1007/s00217-005-0105-z.
  • Batista, A. P.; Nunes, M. C.; Fradinho, P.; Gouveia, L.; Sousa, I.; Raymundo, A.; Franco, J. M. Novel Foods with Microalgae Ingredients - Effect of Gel Setting Conditions on the Linear Viscoelasticity of Spirulina and Haematococcus Gels. J. Food. Eng. 2012, 110, 182–189. DOI: 10.1016/j.jfoodeng.2011.05.044.
  • Kim, D. C.; Won, S. I.; In, M.-J. Preparation and Quality Characteristics of Mul-Kimchi Added with Chlorella. J. Appl. Biol. Chem. 2014, 57, 23−28. DOI: 10.3839/jabc.2014.004.
  • Park, M.-K.; Lee, J.-M.; Park, C.-H.; In, M.-J. Quality Characteristic of Sulgidduk Containing Chlorella Powder. J. Korean. Soc. Food Sci. Nutr. 2002, 31, 225–229. DOI: 10.3746/jkfn.2002.31.2.225.
  • Jorgensen, J.; Fermentation Process for Producing Alcoholic Beverages from Microalgae. United States Patent 3,389,998, 1968.
  • Lone, J.; Lene, D. S.; Karsten, O.; Skibsted, L. H. Heat and Light Stability of Three Natural Blue Colourants for Use in Confectionery and Beverages. Eur. Food Res. Technol. 2005, 220, 261–266. DOI: 10.1007/s00217-004-1062-7.
  • Zhongliang, L.; Changlan, Z. Blue Liquid Spirulina Beverage and Preparing Process Thereof. CN Patent 1127611, 1996.
  • Xu, X.; 1994 Natural Blue Beverage Preparing Method Made of Spiral Algae. CN Patent 1096178.
  • Keillar, D.; Drink Containing Fluorescent Agent. WO Patent 03099039, 2003.
  • Goiris, K.; Muylaert, K.; De Cooman, L. Microalgae as a Novel Source of Antioxidants for Nutritional Applications. In Handbook of Marine Microalgae: Biotechnology Advances; Chapter 17; Kim, S.-K., Ed.; Academic Press, Elsevier: USA, 2015; pp 269–280.
  • Valencia, I.; Ansorena, D.; Astiasarán, I. Development of Dry Fermented Sausages Rich in Docosahexaenoic Acid with Oil from the Microalgae Schizochytrium Sp.: Influence on Nutritional Properties, Sensorial Quality and Oxidation Stability. Food. Chem. 2007, 104, 1087–1096. DOI: 10.1016/j.foodchem.2007.01.021.
  • García-Íñiguez de Ciriano, M.; Larequi, E.; Rehecho, S.; Calvo, M. I.; Cavero, R. Y.; Navarro-Blasco, I.; Astiasarán, I.; Ansorena, D. Selenium, Iodine, W-3 PUFA and Natural Antioxidant from Melissa Officinalis L.: A Combination of Components from Healthier Dry Fermented Sausages Formulation. Meat. Sci. 2010, 85, 274−279. DOI: 10.1016/j.meatsci.2010.01.012.
  • Chee, C. P.; Gallaher, J. J.; Djordjevic, D.; Coupland, J. N. Chemical and Sensory Analysis of Strawberry Flavoured Yogurt Supplemented with an Algae Oil Emulsion. J. Dairy. Res. 2005, 72, 311–316. DOI: 10.1017/S0022029905001068.
  • Chee, C. P.; Djordjevic, D.; Faraji, H.; Decker, E. A.; Hollender, R.; McClements, D. J.; Peterson, D. G.; Roberts, R. F.; Coupland, J. N. Sensory Properties of Vanilla and Strawberry Flavored Ice Cream Supplemented with Omega-3 Fatty Acids. Milchwissenschaft. 2007, 62, 66–69.
  • Gallaher, J. J.; Hollender, D. G.; Peterson, R. F.; Coupland, J. N. Effect of Composition and Antioxidants on the Oxidative Stability of Fluid Milk Supplemented with Algae Oil Emulsion. Int. Dairy. J. 2005, 15, 333–341. DOI: 10.1016/j.idairyj.2004.08.010.
  • FSANZ, 2002 – 09/02 Application A428 DHA-rich dried marine microalgae (Schizochytrium sp.) and DHA-rich oil derived from Schizochytrium sp. as novel food ingredients, Canberra (Australia), Wellington (New Zealand), pp 1–70.
  • FSANZ, 2005 – 2/05 Application A522 DHA-rich micro-algal oil from Ulkenia sp. as a novel food. pp 1–180.
  • Food and Drug Administration: 2003 Guidance for Industry. Bioavailability and Bioequivalence Studies for Orally Administered Drug Products – General Considerations. http://www.fda.gov/downloads/Drugs/../Guidances/ucm070124.pdf.
  • Bleakley, S.; Hayes, M. Algal Proteins: Extraction, Application, and Challenges Concerning Production. Foods. 2017, 6, 1–34. DOI: 10.3390/foods6080062.
  • Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carriere, F.; Boutrou, R.; Corredig, M.; Dupont, D. A Standardised Static in Vitro Digestion Method Suitable for Food - an International Consensus. Food Funct. 2014, 5, 1113–1124. DOI: 10.1039/C3FO60702J.
  • Egger, L.; Menard, O.; Delgado-Andrade, C.; Alvito, P.; Assunção, R.; Balance, S.; Barberá, R.; Brodkorb, A.; Cattenoz, T.; Clemente, A. et al. The Harmonized Infogest in Vitro Digestion Method: From Knowledge to Action. Food Res. Int. 2016, 88, 217–225. DOI: 10.1016/j.foodres.2015.12.006.
  • Becker, E. Micro-Algae as a Source of Protein. Biotechnol. Adv. 2007, 25, 207–210. DOI: 10.1016/j.biotechadv.2006.11.002.
  • Hedenskog, G.; Enebo, L.; Vendlova, J.; Prokes, B. Investigation of Some Methods for Increasing the Digestibility of Microalgae. Biotechnol. Bioeng. 1969, 11, 37–51. DOI: 10.1002/bit.260110104.
  • Devi, M. A.; Subbulakshmi, G.; Devi, K. M.; Venkataraman, L. V. Studies on the Proteins of Mass-Cultivated Blu-Green Alga (Spirulina Platensis). J. Agric. Food Chem. 1981, 29, 522–525. DOI: 10.1021/jf00105a022.
  • Morris, H. J.; Almarales, A.; Carrillo, O.; Bermudez, R. C. Utilisation of Chlorella Vulgaris Cell Biomass for the Production of Enzymatic Protein Hydrolysates. Bioresour. Technol. 2008, 99, 7723–7729. DOI: 10.1016/j.biortech.2008.01.080.
  • Tibbetts, S. M.; Milley, J. E.; Lall, S. P. Chemical Composition and Nutritional Properties of Freshwater and Marine Microalgal Biomass Cultured in Photobioreactors. J. Appl. Phycol. 2014, 27, 1109–1119. DOI: 10.1007/s10811-014-0428-x.
  • Cavonius, L. R.; Albers, E.; Undeland, I. In Vitro Bioaccessibility of Proteins and Lipids of pH-shift Processed Nannochloropsis Oculata Microalga. Food. Funct. 2016, 7, 2016–2024. DOI: 10.1039/C5FO01144B.
  • Hori, K.; Ueno-Mohri, T.; Okita, T.; Ishibashi, G. Chemical Composition, in Vitro Protein Digestibility and in Vitro Available Iron of Blue Green Alga, Nostoc Commune. Plant Foods Hum. Nutr. 1990, 40, 223–229. DOI: 10.1007/BF01104146.
  • Joubert, Y.; Fleurence, J. Simultaneous Extraction of Proteins and DNA by an Enzymatic Treatment of the Cell Wall of Palmaria Palmata (Rhodophyta). J. Appl. Phycol. 2008, 20, 55–61. DOI: 10.1007/s10811-007-9180-9.
  • Wong, K.; Cheung, P. C. Nutritional Evaluation of Some Subtropical Red and Green Seaweeds Part II. In Vitro Protein Digestibility and Amino Acid Profiles of Protein Concentrates. Food. Chem. 2001, 72, 11–17. DOI: 10.1016/S0308-8146(00)00176-X.
  • Řezanka, T.; Lukavský, J.; Nedbalová, L.; Sigler, K. Production of Structured Triacylglycerols from Microalgae. Phytochem. 2014, 104, 95–104. DOI: 10.1016/j.phytochem.2014.04.013.
  • Kagan, M. L.; West, A. L.; Zante, C.; Calder, P. C. Acute Appearance of Fatty Acids in Human Plasma – A Comparative Study between Polar-Lipid Rich Oil from the Microalgae Nannochloropsis Oculata and Krill Oil in Healthy Young Males. Lipids Health Dis. 2013, 12, 102. DOI: 10.1186/1476-511X-12-102.
  • Hulatt, C. J.; Wijffels, R. H.; Bolla, S.; Kiron, V. Production of Fatty Acids and Protein by Nannochloropsis in Flat-Plate Photobioreactors. PLoS. ONE. 2017, 12, 1–17. DOI: 10.1371/journal.pone.0170440.
  • Schuchardt, J. P.; Schneider, I.; Meyer, H.; Neubronner, J.; von Schacky, C.; Hahn, A. Incorporation of EPA and DHA into Plasma Phospholipids in Response to Different Omega-3 Fatty Acid Formulations - a Comparative Bioavailability Study of Fish Oil Vs. Krill Oil. Lipids. Health. Dis. 2011, 10, 145. DOI: 10.1186/1476-511X-10-232.
  • de Mello-Sampayo, C.; Paterna, A.; Polizzi, A.; Duarte, D.; Batista, I.; Pinto, R.; Gonçalves, P.; Raymundo, A.; Batista, A. P.; Gouveia, L.; et al. Evaluation of Marine Microalga Diacronema Vlkianum Biomass Fatty Acid Assimilation in Wistar Rats. Molecules. 2017, 22, 1097. DOI: 10.3390/molecules22071097.
  • Arterburn, L. M.; Oken, H. A.; Hoffman, J. P.; Bailey-Hall, E.; Chung, G.; Rom, D.; Hamersley, J.; McCarthy, D. Bioequivalence of Docosahexaenoic Acid from Different Algal Oils in Capsules and in a DHA-fortified Food. Lipids. 2007, 42, 1011–1024. DOI: 10.1007/s11745-007-3019-7.
  • Hawthorne, K. M.; Abrams, S. A.; Heird, W. C. Docosahexaenoic Acid (DHA) Supplementation of Orange Juice Increases Plasma Phospholipid DHA Content of Children. J. Am. Diet. Assoc. 2009, 109, 708–712. DOI: 10.1016/j.jada.2008.12.024.
  • Lane, K. E.; Li, W.; Smith, C.; Derbyshire, E. The Bioavailability of an Omega-3-Rich Algal Oil Is Improved by Nanoemulsion Technology Using Yogurt as a Food Vehicle. In. J. Food Sci. Technol. 2014, 49, 1264–1271. DOI: 10.1111/ijfs.12455.
  • Skrovankova, S. Seaweed Vitamins as Nutraceuticals. In Marine Medicinal Foods: Implications and Applications, Macro and Microalgae; Kim, S.K., Ed.; Elsevier: San Diego, 2011; pp 357–369.
  • Goh, L. P.; Loh, S. P.; Fatimah, M. Y.; Perumal, K. Bioaccessibility of Carotenoids and T Tocopherols in Marine Microalgae, Nannochloropsis Sp. And Chaetoceros Sp. Mal. J. Nutr. 2009, 15, 77–86.
  • Failla, M. L.; Huo, T.; Thakkar, S. K. In Vitro Screening of Relative Bioaccessibility of Carotenoids from Foods. Asia. Pac. J. Clin. Nutr. 2008, 17, 200–203.
  • Gille, A.; Trautmann, A.; Posten, C.; Briviba, K. Bioaccessibility of Carotenoids from Chlorella Vulgaris and Chlamydomonas Reinhardtii. Int. J. Food Sci. Nutr. 2016, 67, 507–513. DOI: 10.1080/09637486.2016.1181158.
  • Tang, G.; Suter, P. M. Vitamin A, Nutrition, and Health Values of Algae: SpirulinA, ChlorellA, and Dunaliella. J. Pharm. Nutr. Sci. 2011, 1, 111–118. DOI: 10.6000/1927-5951.2011.01.02.04.
  • Mendes-Pinto, M. M.; Raposo, M. F. J.; Bowen, J.; Young, A. J.; Morais, R. Evaluation of Different Cell Disruption Processes on Encysted Cells of Haematococcus Pluvialis: Effects on Astaxanthin Recovery and Implications for Bio-Availability. J. Appl. Phycol. 2001, 13, 19–24. DOI: 10.1023/A:1008183429747.
  • Okada, Y.; Ishikura, M.; Maoka, T. Bioavailability of Astaxanthin in Haematococcus Algal Extract: The Effects of Timing of Diet and Smoking Habits. Biosci. Biotechnol. Biochem. 2009, 73, 1928–1932. DOI: 10.1271/bbb.90078.
  • Carlsson, A. S.; van Beilen, J. B.; Möller, R.; Clayton, D. EPOBIO Project Report: Micro- and Macro-Algae: Utility for Industrial Applications; Ed, Bowles, D. CPL Press: UK, 2007 1–86.
  • Norsker, N.-H.; Barbosa, M. J.; Vermuë, M. H.; Wijffels, R. H. Microalgal Production - A Close Look at the Economics. Biotechnol. Adv. 2011, 29, 24–27. DOI: 10.1016/j.biotechadv.2010.08.005.
  • Acién, F. G.; Fernández, J. M.; Magán, J. J.; Molina, E. Production Cost of a Real Microalgae Production Plant and Strategies to Reduce It. Biotechnol. Adv. 2012, 30, 1344–1353. DOI: 10.1016/j.biotechadv.2012.02.005.
  • Ruiz, J.; Olivieri, G.; de Vree, J.; Bosma, R.; Willems, P.; Reith, J. H.; Eppink, M. H. M.; Kleinegris, D. M. M.; Wijffels, R. H.; Barbosa, M. J. Towards Industrial Products from Microalgae. Energy Environ. Sci. 2016, 9, 3036–3043. DOI: 10.1039/C6EE01493C.
  • García, J. L.; de Vincente, M.; Galán, B. Microalgae, Old Sustainable Food and Fashion Nutraceuticals. Microb. Biotechnol. 2017, 10, 1017–1024. DOI: 10.1111/1751-7915.12745.
  • Glemser, M.; Heining, M.; Schmidt, J.; Becker, A.; Garbe, D.; Buchholz, R.; Brück, T. Application of Light-Emitting Diodes (Leds) in Cultivation of Phototrophic Microalgae: Current State and Perspectives. Appl. Microbiol. Biotechnol. 2016, 100, 1077–1088. DOI: 10.1007/s00253-015-7144-6.
  • Sun, Y.; Huang, Y.; Liao, Q.; Fu, Q.; Zhu, X. Enhancement of Microalgae Production by Embedding Hollow Light Guides to a Flat-Plate Photobioreactor. Bioresour. Technol. 2016, 207, 31–38. DOI: 10.1016/j.biortech.2016.01.136.
  • Zeriouh, O.; Reinoso-Moreno, J. V.; López-Rosales, L.; Cerón-García, M. D. C.; Sánchez-Mirón, A.; García-Camacho, F.; Sánchez-Mirón, A.; García-Camacho, F.; Molina-Grima, E. Biofouling in Photobioreactors for Marine Microalgae. Crit. Rev. Biotechnol. 2017, 20, 1–18.
  • Khan, M. I.; Shin, J. H.; Kim, J. D. The Promising Future of Microalgae: Current Status, Challenges, and Optimization of a Sustainable and Renewable Industry for Biofuels, Feed, and Other Products. Microb. Cell. Fact. 2018, 17, 36. DOI: 10.1186/s12934-018-0879-x.
  • Havlik, I.; Scheper, T.; Reardon, K. F. Monitoring of Microalgal Processes. Adv. Biochem. Eng. Biotechnol. 2016, 153, 89–142.
  • Reijnders, M. J.; van Heck, R. G.; Lam, C. M.; Scaife, M. A.; Dos Santos, V. A.; Smith, A. G.; Schaap, P. J. Green Genes: Bioinformatics and Systems-Biology Innovations Drive Algal Biotechnology. Trends. Biotechnol. 2014, 32, 617–626. DOI: 10.1016/j.tibtech.2014.10.003.
  • Al-Thawadi, S.;. Public Perception of Algal Consumption as an Alternative Food in the Kingdom of Bahrain. J. Basic Appl. Sci. Uni. Bahrain. 2018, 25, 1–12.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.