1,146
Views
32
CrossRef citations to date
0
Altmetric
Reviews

Melon By-Products: Biopotential in Human Health and Food Processing

, &

References

  • Gustafsson, J.; Cederberg, C.; Sonesson, U.; Van Otterdijk, R. A. M. Global Food Losses and Food Waste: Extent, Causes and Prevention; Food Agri Org United Nations (FAO): Rome, 2011 http://www.divaportal.smash/get/diva2:944159/FULLTEXT01.pdf
  • Malacrida, C. R.; Angelo, P. M.; Andreo, D.; Jorge, N. Composição química e potencial antioxidante de extratos de sementes de melão amarelo em óleo de soja. Agronomy Sci. 2007, 38(4), 372–376.
  • Brazilian Institute of Geographic and Statistics, Agriculture production: 2015. http://www.ibge.gov.br
  • Gurgel, M. T.; Uyeda, C. A.; Gheyi, H. R.; Oliveira, F. H. T.; Fernandes, P. D.; Silva, F. V. Growth of Melon under Salt Stress and Doses of Potassium. Braz. J. Agri. Environ. Eng. 2010, 14, 3–10. DOI: 10.1590/S1415-43662010000100001.
  • FAO. Statistics: 2016. http://faostat3.fao.org
  • Delgado, C. H. O.; Fleuri, L. F. Orange and Mango By-Products: Agro-Industrial Waste as Source of Bioactive Compounds and Botanical versus Commercial Description- A Review. Food Rev. Int. 2016, 32(1), 1–14. DOI: 10.1080/87559129.2015.1041183.
  • Wang, H.; Chen, G.; Guo, X.; Abbasi, A. M.; Liu, R. H. Influence of the Stage of Ripeness on the Phytochemical Profiles, Antioxidant and Antiproliferative Activities in Different Parts of Citrus Reticulata Blanco Cv. Chachiensis. LWT - Food Sci. Tech. 2016, 69, 67–75. DOI: 10.1016/j.lwt.2016.01.021.
  • Rezzadori, K.; Benedetti, S.; Amante, E. R. Proposals for the Residues Recovery: Orange Waste as Raw Material for New Products. Food Bioprod. Process. 2012, 90(4), 606–614. DOI: 10.1016/j.fbp.2012.06.002.
  • Cardona, C. A.; Quintero, J. Á.; Paz, L. C. Production of Bioethanol from the Sugar Cane Bagasse: Status and Perspectives. Bioresource Tech. 2010, 101(13), 4754–4760. DOI: 10.1016/j.biortech.2009.10.097.
  • Soccol, C.; Vandenberghe, L.; Medeiros, A. B. P.; Karp, S.; Buckeridge, M.; Ramos, L. Bioethanol from Lignocelluloses: Status and Perspectives in Brazil. Bioresource Tech. 2010, 101(10), 4820–4825. DOI: 10.1016/j.biortech.2009.11.067.
  • Saad, S. M. I.;. Probiotics and Prebiotics: The State of the Art. J. Braz. Pharma. Sci. 2006, 42(1), 1–16.
  • Suhail, N.; Bilal, N.; Khan, H.; Hasan, S.; Sharma, S.; Khan, F.; Mansoor, T.; Banu, N. Effect of Vitamins C and E on Antioxidant Status of Breast-Cancer Patients Undergoing Chemotherapy. J. Cli. Pharm. Therap. 2012, 37, 22–26. DOI: 10.1111/j.1365-2710.2010.01237.x.
  • Jeffrey, C.; De Wilde, W. J. J. O. A Review of the Subtribe Thladianthinae (Cucurbitaceae). Botany Zhurn. 2006, 91, 766–776.
  • Silva, R. M. F.; Gomes, T. C. B. L.; Albuquerque, M. M.; Silva Júnior, J. O. C.; Barbosa, W. L. R.; Rolim Neto, P. J. Approach on the Different Drying Processes Employed in Obtaining Dried Extracts of Medicinal Plants. Braz. J. Med. Plants. 2012, 14(1), 103–109.
  • Pitrat, M.;. Linkage Groups in Cucumis Melo L. J. Hereditary. 1991, 82, 406–411. DOI: 10.1093/oxfordjournals.jhered.a111112.
  • Crisóstomo, L. A.; Santos, A. A.; Raij, B. V.; Faria, C. M. B.; Silva, D. J.; Fernandes, F. A. M.; Santos, F. J. S.; Crisóstomo, J. R.; Freitas, J. A. D.; Holanda, J. S.;, et al. Fertilization, Irrigation, Hybrids and Cultural Practices for Melon in the Northeast; Brazilian Agricultural Research Agency:Brazil, 2003; pp 20.
  • Aragao, C. A.;. Quality of Melon Seedlings Produced on Different Substrates. Rev. Caatinga. 2011, 24(3), 209–214.
  • Araújo, J. L. P.; Assis, J. S.; Costa, N. D.; Pinto, J. M.; Dias, R.; De, C. S.; Silva, C. M. J. Integrated Melon Production in the São Francisco Valley: Management and Socioeconomic Aspects. In Integrated Melon Production; Brazilian Agricultural Research Agency: Brazil, 2008; Vol. 3, pp 43–50.
  • Brazilian Agricultural Research Agency. Protected Agriculture, 4, n. 17, 2015. ISSN 2359-3172.
  • Food And Agriculture Organization Of The United Nations FAO. FAO, Latin America and the Caribbean.Good Agricultural Practices for Greenhouse Vegetable Production in the South East European Countries: Rome, 2017.
  • Allwood, J. W.; Cheung, W.; Xu, Y.; Mumm, R. Metabolomics in Melon: A New Opportunity for Aroma Analysis. Phytochemistry. 2014, 99, 61–72. DOI: 10.1016/j.phytochem.2013.12.010.
  • Morais, P. L. D.; Silva, G. G.; Maia, E. N.; Menezes, J. B. Evaluation of the Post-Harvest Technologies Used and the Quality of Melons Produced for Export. Food Sci. Tech. 2009, 29(1), 214–218. DOI: 10.1590/S0101-20612009000100033.
  • Brandão Filho, J. U. T.; Vasconcellos, M. A. S. A cultura do meloeiro. Produção de hortaliças em ambiente protegido: Condições subtropicais; UNESP: São Paulo, 1998; pp 161–194.
  • Miguel, A. C. A.; Albertini, S.; Begiato, G. F.; Dias, J. R. P. S.; Spoto, M. H. F. Agroindustrial Use of Solid Waste from Minimally Processed Melon. Food Sci. Tech. 2008, 28(3), 733–737. DOI: 10.1590/S0101-20612008000300033.
  • Coelho, L. M.; Wosiacki, G. Sensory Evaluation of Baked Goods with the Addition of Apple Pomace Flour. Food Sci. Tech. 2010, 30(3), 582–588. DOI: 10.1590/S0101-20612010000300003.
  • Queiroga, F. M.; Costa, S. A. D.; Pereira, F. H. F.; Maracajá, P. B.; Sousa Filho, A. L. Effect of Boric Acid Doses on Yield and Quality of Harper Melon Fruits. Rev. Green. 2010, 5(5), 132–139.
  • Storck, C. R.; Nunes, G. L.; Oliveira, B. B.; Basso, C. Leaves, Stalk, Pell and Seeds of Vegetables: Nutritional Composition, Utilization and Sensory Analysis in Food Preparations. Sci. Rural. 2013, 43(3), 537–543. DOI: 10.1590/S0103-84782013000300027.
  • Brazilian Food Composition Table/TACO. Food Studies and Researches Nucleus., 4 ed.; Brazil, 2011. pp 161 p.
  • Moura Rolim, P.; de Oliveira Júnior, S. D.; Mendes de Oliveira, A. C. S.; Silvino Dos Santos, E.; Ribeiro de Macedo, G. Nutritional Value, Cellulase Activity and Prebiotic Effect of Melon Residues (Cucumis Melo L. Reticulatus Group) as a Fermentative Substrate. J. Food Nut. Res. 2018, 57(4), 315–327.
  • Mallek-Ayadi, S.; Bahloul, N.; Kechaou, N. Chemical Composition and Bioactive Compounds of Cucumis Melo L. Seeds: Potential Source for New Trends of Plant Oils. Process Saf. Enviromental Prot. 2018, 113, 68–77. DOI: 10.1016/j.psep.2017.09.016.
  • Laur, L. M.; Tian, L. Provitamin A and Vitamin C Contents in Selected California-Grown Cantaloupe and Honeydew Melons and Imported Melons. J. Food Comps. Anal. 2011, 24, 194–2011. DOI: 10.1016/j.jfca.2010.07.009.
  • Lester, G. M.;. (Cucumis Melo L.) Fruit Nutritional Quality and Health Funcionality. HortTech. 1997, 7(3), 222–227. DOI: 10.21273/HORTTECH.7.3.222.
  • Rolim, P. M.; Fidelis, G. P.; Padilha, C. E. A.; Santos, E. S.; Rocha, H. A. O.; Macedo, G. R. Phenolic Profile, Antioxidant Activity from Peel and Seed of Melon (Cucumis Melo L. Var. Reticulatus) and Its Antiproliferative Effect in Cancer Cells. Braz. J. Med. Biol. Res. 2018, 51(4), 1–14. DOI: 10.1590/1414-431X20176069.
  • Mallek-Ayadi, S.; Bahloul, N.; Kechaou, N. Characterization, Phenolic Compounds and Functional Properties of Cucumis Melo L. Peels. Food Chem. 2017, 221, 1691–1697. DOI: 10.1016/j.foodchem.2016.10.117.
  • Maran, J.; Priya, B. Supercritical Fluid Extraction of Oil from Muskmelon (Cucumis Melo) Seeds. J. Taiwan Inst. Chem. Eng. 2015, 47, 71–78. DOI: 10.1016/j.jtice.2014.10.007.
  • Lazos, E. S.;. Nutritional, Fatty Acid, and Oil Characteristics of Pumpkin and Melon Seeds. J. Food Sci. 1986, 51, 1382–1383. DOI: 10.1111/j.1365-2621.1986.tb13133.x.
  • Yanty, N. A. M.; Lai, O. M.; Osman, A.; Long, K.; Ghazali, H. M. Physicochemical Properties of Cucumis Melo Var. Inodorus (Honeydew Melon) Seed and Seed Oil. J. Food Lipids. 2008, 15, 42–55. DOI: 10.1111/jfl.2008.15.issue-1.
  • Mirjana, M.; Ksenija, P. J. Characteristics and Composition of Melon Seed Oil. J. Agr. Sci. 2005, 50(1), 41–47. DOI: 10.2298/JAS0501041M.
  • Brignoli, C. A.; Kinsella, J. E.; Weihrauch, J. L. Comprehensive Evaluation of Fatty Acids in Foods. V. Unhydrogenated Fats and Oils. J. Am. Diet. Assoc. 1976, 68(3), 224–229.
  • Melo, M. L. S.; Narain, N.; Bora, O. S. Characterization of Some Nutritional Constituents of Melon (Cucumis Melo Hybrid AF-522) Seeds. Food Chem. 2000, 68, 411–414. DOI: 10.1016/S0308-8146(99)00209-5.
  • Rashid, U.; Rehman, H. A.; Hussain, I.; Ibrahim, M.; Haider, M. S. Muskmelon (Cucumis Melo) Seed Oil: A Potential Non-Food Oil Source for Biodiesel Production. Energy. 2011, 36(9), 5632–5639. DOI: 10.1016/j.energy.2011.07.004.
  • Fu,; Fu, L.; Xu, B.-T.; Xu, X.-R.; Gan, R.-Y.; Zhang, Y.; Xia, E.-Q.; Li, H.-B. Antioxidant Capacities and Total Phenolic Contents of 62 Fruits. Food Chem. 2011, 129(2), 345–350. DOI: 10.1016/j.foodchem.2011.04.079.
  • Sharpe, P. C.; Richardson, D. R.; Kalinowski, D. S.; Bernhardt, P. V. Synthetic and Natural Products as Iron Chelators. Current Topics Med. Chem. 2011, 11, 591–607. DOI: 10.2174/156802611794785163.
  • Kahkonen, M. P.; Hopia, A. I.; Hainonen, M. Berry Phenolics and Their Antioxidant Activity. J. Agri. Food Chem. 2001, 49(8), 4076–4082. DOI: 10.1021/jf010152t.
  • Berg, J. M.; Tymoczko, J. L.; Stryer, L. Biochemistry. 5th ed.; W H Freeman: New York, 2002. Available from https://www.ncbi.nlm.nih.gov/books/NBK21154/
  • Dias, M. I.; Sousa, M. J.; Alves, R. C.; Ferreira, C. F. R. I. Exploring Plant Tissue Culture to Improve the Production of Phenolic Compounds: A Review. Ind. Crops Prod. 2016, 82, 9–22. DOI: 10.1016/j.indcrop.2015.12.016.
  • Wink, M.;. Compartmentation of Secondary Metabolites and Xenobiotics in Plant Vacuoles. Adv. Bot. Res. 1997, 25, 141–169.
  • Manach, C.; Scalbert, A.; Morand, C.; Rémesy, C.; Jiménez, L. Polyphenols: Foods Sources and Bioavailability. Am. J. Clin. 2004, 79(5), 727–747. DOI: 10.1093/ajcn/79.5.727.
  • Gill, S. S.; Tuteja, N. Reactive Oxygen Species and Antioxidant Machinery in Abiotic Stress Tolerance in Crop Plants. Plant Physiol. Biochem. 2010, 48(12), 909–930. DOI: 10.1016/j.plaphy.2010.08.016.
  • Sharma, S. P.; Leskovar, D. I.; Crosby, K. M.; Volder, A.; Ibrahim, A. M. H. Root Growth, Yield, and Fruit Quality Responses of Reticulatus and Inodorus Melons (Cucumis Melo L.) To Deficit Subsurface Drip Irrigation. Agri. Water Manag. 2014, 136, 75–85. DOI: 10.1016/j.agwat.2014.01.008.
  • D’archivio, M.;. Bioavailability of the Polyphenols: Status and Controversies. Int. J. Mol. Sci. 2010, 11, 1321–1342. DOI: 10.3390/ijms11041321.
  • Amaro, A. L.; Domingos, A. O.; Almeida, P. F. Biologically Active Compounds in Melon: Modulation by Preharvest, Post-Harvest, and Processing Factors. In Processing and Impact on Active Components in Food, Elsevier, 2015; Vol. chapter 20, pp 165–171.
  • Karlund, A.; Moor, U.; Sandell, M.; Karjalainen, R, O. The Impact of Harvesting, Storage and Processing Factors on Health-Promoting Phytochemicals in Berries and Fruits. Processes. 2014, 2, 596–624. DOI: 10.3390/pr2030596.
  • Kaushik, U.; Aeri, V.; Mir, S. R. Cucurbitacins – An Insight into Medicinal Leads from Nature. Pharmacog. Ver. 2015, 9(17), 12–18.
  • Prado, E.; Phenolic Composition and Antioxidant Activity of Tropical Fruits. Dissertation (Master). Luiz de Queiroz College of Agriculture. Brazil, 2009. 106 p.
  • Fogelman, E.; Kaplan, A.; Tanami, Z.; Ginzberg, I. Antioxidant Activity Associated with Chilling Injury Tolerance of Muskmelon (Cucumis Melo L.) Rind. Sci. Horti. 2011, 128(3), 267–273. DOI: 10.1016/j.scienta.2011.01.034.
  • Young, I. S.; Woodside, J. V. Antioxidants in Health and Disease. J. Clin. Pathol. 2001, 54, 176–186.
  • Kolayli, S.; Kara, M.; Tezcan, F.; Erim, F. B.; Sahin, H.; Ulusoy, E.; Aliyazicioglu, R. Comparative Study of Chemical and Biochemical Properties of Different Melon Cultivars: Standard, Hybrid, and Grafted Melons. J. Agric. Food Chem. 2010, 58, 9764–9769. DOI: 10.1021/jf102408y.
  • Vinson, J. A.; Su, X.; Zubik, L.; Bose, P. Phenol Antioxidant Quantity and Quality in Foods: Fruits. J. Agri. Food Chem. 2001, 49(11), 5315–5321. DOI: 10.1021/jf0009293.
  • Macheix, J. J.; Fleuriet, A.; Billot, J. Fruit Phenolics; CRC Press: Boca Raton, 1990; pp 378.
  • Fleshman, M. K.; Lester, G. E.; Ried, K. M.; Kopec, R. E.; Narayanasamy, S.; Curley, R. W.; Schwartz, S. J.; Harrison, E. H. Carotene and Novel Apocarotenoid Concentrations in Orange-Fleshed Cucumis Melo Melons: Determinations of β-Carotene Bioaccessibility and Bioavailability. J. Agric. Food Chem. 2011, 59(9), 4448–4454. DOI: 10.1021/jf200416a.
  • Vouldoukis, I.; Lacan, D.; Kamate, C.; Coste, P.; Calenda, A.; Mazier, D.; Conti, M.; Dugas, B. Antioxidant and Anti-Inflammatory Properties of a Cucumismelo L Extract Rich in Superoxide Dismutase Activity. J. Ethnopharmacol. 2004, 94, 67–75. DOI: 10.1016/j.jep.2004.04.023.
  • Ismail, H. I.; Kim, W. C.; Mariod, A. A.; Ismail, M. Phenolic Content Andantioxidant Activity of Cantaloupe (Cucumis Melo) Methanolic Extrac. Food Chem. 2010, 119, 643–647. DOI: 10.1016/j.foodchem.2009.07.023.
  • Zeb, A.;. Phenolic Profile and Antioxidant Activity of Melon (Cucumis Melo L.) Seeds from Pakistan. Foods. 2016, 5, 67. DOI: 10.3390/foods5040067.
  • Sabino, L. B. S.; Gonzaga, M. L. C.; Soares, D. J.; Lima, A. C. S.; Lima, J. S. S.; Almeida, M. M. B.; Sousa, P. H. M.; Figueiredo, R. W. Bioactive Compounds, Antioxidant Activity, and Minerals in Flours Prepared with Tropical Fruit Peels. Acta Aliment. 2015, 44(4), 520–526. DOI: 10.1556/066.2015.44.0023.
  • Sonia, N. S.; Mini, C.; Geethalekshmi, P. R. Vegetable Peels as Natural Antioxidants for Processed Foods – A Review. Agri. Rev. 2016, 37,1, 35–41.
  • Maietti, A.; Tedeschi, P.; Stagno, C.; Bordiga, M.; Travaglia, F.; Locatelli, M.; Arlorio, M.; Brandolini, V. Analytical Traceability of Melon (Cucumis Melo Var Reticulatus): Proximate Composition, Bioactive Compounds, and Antioxidant Capacity in Relation to Cultivar, Plant Physiology State, and Seasonal Variability. J. Food Sci. 2012, 77(6), C646–52. DOI: 10.1111/j.1750-3841.2012.02712x.
  • Zeb, A.;. Phenolic Profile and Antioxidant Activity of Melon (Cucumis Melo L.) Seeds from Pakistan. Foods. 2016, 5, 67. DOI: 10.3390/foods5040067.
  • Benmeziane, A.; Boulekbache-Makhlouf, L.; Mapelli-Brahm, P.; Khodja, N.; Remini, H.; Madani, K.; Meléndez-Martínez, A. J. Extraction of Carotenoids from Cantaloupe Waste and Determination of Its Mineral Composition. Food Res. Int. 2018, 111, 391–398. DOI: 10.1016/j.foodres.2018.05.044.
  • Constantinou, A.; Stoner, G.; Mehta, R.; Rao, K.; Runyan, C.; Moon, R. The Dietary Anticâncer Agente Ellagic Acid Is a Potente Inhibitor of DNA Topoisomerases in Vitro. Nutr. Cancer. 1995, 23(2), 121–130. DOI: 10.1080/01635589509514368.
  • Dayem, A. A.; Choi, H. Y.; Kim, J. H.; Cho, S. G. Role of Oxidative Stress in Stem, Cancer, and Cancer Stem Cells. Cancers. 2010, 2(2), 859–884. DOI: 10.3390/cancers2020859.
  • Rixe, O.; Fojo, T. Is Cell Death a Critical End Point for Anticancer Therapies or Is Cytostasis Sufficient? Cli. Cancer Res. 2007, 13(24), 7280–7287. DOI: 10.1158/1078-0432.CCR-07-2141.
  • Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M. T. D.; Mazur, M.; Telser, J. Free Radicals and Antioxidants in Normal Physiological Functions and Human Disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. DOI: 10.1016/j.biocel.2006.07.001.
  • Conforti, F.; Ioele, G.; Statti, G. A.; Marrelli, M.; Ragno, G.; Menichini, F. Antiproliferative Activity against Human Tumor Cell Lines and Toxicity Test on Mediterranean Dietary Plants. Food Chem. Toxicol. 2008, 46, 3325–3332. DOI: 10.1016/j.fct.2008.08.004.
  • Skrovankova, S.; Sumczynski, D.; Mlcek, J.; Jurikova, T.; Sochor, J. Bioactive Compounds and Antioxidant Activity in Different Types of Berries. Battino M, Ed. Int. J. Mol. Sci. 2015, 16(10), 24673–24706. DOI: 10.3390/ijms161024673.
  • Haliwell, B.;. Dietary Polyphenols: Good, Bad, or Indifferent for Your Health? Cardio Res. 2007, 73(2), 341–347. DOI: 10.1016/j.cardiores.2006.10.004.
  • Vieira, A.; Abar, L.; Vingeliene, S.; Chan, D. S. Fruits, Vegetables and Lung Cancer Risk: A Systematic Review and Meta-Analysis. Annals Oncol. 2016, 27(1), 81–96. DOI: 10.1093/annonc/mdv381.
  • Griffiths, K.; Aggarwal, B. B.; Singh, R. B.; Buttar, H.; Wilson, D.; De Meester, F. Food Antioxidants and TheirAnti-Inflammatory Properties: A Potential Role in Cardiovascular Diseases and Cancer Prevention. Diseases. 2016, 4(3), 28–32. DOI: 10.3390/diseases4030028.
  • Murthy, P. S.; Naidu, M. M. Recovery of Phenolic Antioxidants and Functional Compounds from Coffee Industry By-Products. Food Bioprocess. Tech. 2012, 5(3), 897–903. DOI: 10.1007/s11947-010-0363-z.
  • Ray, R. B.; Amit, R.; Robert, S.; Pratibha, N. Bitter Melon (Momordica Charantia) Extract Inhibits Breast Cancer Cell Proliferation by Modulating Cell Cycle Regulatory Genes and Promotes Apoptosis. Cancer Res. 2010, 70, 5. DOI: 10.1158/0008-5472.CAN-09-3438.
  • Kim, M. A.; Duan, Y.; Seong, J. H.; Chung, H. S.; Kim, H. S. Antioxidative Activity of Feral Haw (Crataegus Pinnatifida) Seed Extracts Using Various Solvents. Korean J. Food Cookery Sci. 2014, 30(1), 33–40. DOI: 10.9724/kfcs.2014.30.1.033.
  • Widowati, W.; Widyanto, R. M.; Laksmitawati, D. R.; Erawijantari, P. P.; Wijaya, L.; Sandra, F. Phytochemical, Free Radical Scavenging and Cytotoxic Assay of Cucumis Melo L. Extract and β-Carotene. J. Adv. Agri. Tech. 2015, 2(2), 114–119.
  • Reutter, B.; Lant, P.; Reynolds, C.; Joe, L. Food Waste Consequences: Environmentally Extended Input-Output as a Framework for Analysis. J. Clean. Prod. 2017, 153, 506–514. DOI: 10.1016/j.jclepro.2016.09.104.
  • Gondim, J. A. M.; Moura, M. F. V.; Dantas, A. S.; Medeiros, K. M. S. Centesimal Composition and Minerals in Fruits Peels. Food Sci. Tech.. 2005, 25(4), 825–827. DOI: 10.1590/S0101-20612005000400032.
  • Marchetto, A. M. P.; Ataide, H. H.; Masson, M. L. F. Evaluation of Wasted Parts of Food in the Vegetable Sector Aiming Its Reuse. Demetra. 2008, 9, 823–831.
  • Balat, M.;. Production of Bioethanol from Lignocellulosic Materials via the Biochemical Pathway: A Review. Ener. Convers. Manag. 2011, 5, 858–875. DOI: 10.1016/j.enconman.2010.08.013.
  • Harmsen, P.; Huijgen, W.; Bermudez, L.; Bakker, R. Literature review of physical and chemical pretreatment processes for lignocellulosic biomass. 2010.
  • Snehasish, B.; Okako, O.; Jochen, Z.; Jeffrey, M. Catchmark. Impact of Plant Matrix Polysaccharides on Cellulose Produced by Surface-Tethered Cellulose Synthases. Carbohydr. Polym. 2017, 162, 93–99. DOI: 10.1016/j.carbpol.2017.01.005.
  • Keegstra, K.;. Plant Cell Walls. Plant Physiol. 2010, 154(2), 483–486. DOI: 10.1104/pp.110.161240.
  • Castro, A. M.; Carvalho, M. L.; Leite, S. G. F.; Pereira Júnior, N. Cellulases from Penicillium Funiculosum: Production, Properties and Application to Cellulose Hydrolysis. J. Ind. Microbiol. Biotech.. 2010, 37, 151–158. DOI: 10.1007/s10295-009-0656-2.
  • Sette, L.; De Oliveira, V.; Rodrigues, M. F. A. Microbial Lignocellulolytic Enzymes: Industrial Applications and Future Perspectives. Microb. Bioact. 2008, 29, 18–20.
  • Agbor, V. B.; Cicek, N.; Sparling, R.; Berlin, A.; Levin, D. B. Biomass Pretreatment: Fundamentals toward Application. Biotech. Adv. 2011, 29, 675–685. DOI: 10.1016/j.biotechadv.2011.05.005.
  • Thomas, B.; Krystona, A. B.; Georgieva, P. P. Role of Oxidative Stress and DNA Damage in Human Carcinogenesis. Mutation Res. 2011, 711, 193–201. DOI: 10.1016/j.mrfmmm.2010.12.016.
  • Singhania, R. R.; Sukumaran, R. K.; Patel, A. K.; Larroche, C.; Pandey, A. Advancement and Comparative Profiles in the Production Technologies Using Solid-State and Submerged Fermentation for Microbial Cellulases. Enz. Microbial. Tech. 2010, 46(7), 541–549. DOI: 10.1016/j.enzmictec.2010.03.010.
  • Chandel, A. K.; Chandrasekhar, G.; Silva, M. B.; Silva, S. S. The Realm of Cellulases in Biorefinery Development. Critical Rev. Biotech. 2012, 32, 187–202. DOI: 10.3109/07388551.2011.595385.
  • Sánchez, C.;. Lignocellulosic Residues: Biodegradation and Bioconversion by Fungi. Biotech. Adv. 2009, 27, 185–194. DOI: 10.1016/j.biotechadv.2008.11.001.
  • Couto, S. R.; Sanromán, M. A. Application of Solid-State Fermentation to Food Industry-A Review. Jfe. 2006, 76, 291–302. DOI: 10.1016/j.jfoodeng.2005.05.022.
  • Krishna, C.;. Solid-State Fermentation Systems - An Overview. Crit. Rev. Biotechnol. 2005, 25, 1–30. DOI: 10.1080/07388550590925383.
  • Oostra, J.; Le, C. E.; Van Den Heuvel, J.; Tramper, J.; Rinzema, A. Intra-Particle Oxygen Diffusion Limitation in Solid-State Fermentation. Biotech. Bioeng. 2001, 75, 13–24. DOI: 10.1002/bit.1159.
  • Abe, K.; Gomi, K.; Hasegawa, F.; Machida, M. Impact of Aspergillus Oryzae Genomics on Industrial Production of Metabolites. Mycopath. 2006, 162(3), 143–153. DOI: 10.1007/s11046-006-0049-2.
  • Hoa, B. T.; Hung, P. V. Optimization of Nutritional Composition and Fermentation Conditions for Cellulase and Pectinase Production by Aspergillus Oryzae Using Response Surface Methodology. Int. Food Res. J. 2013, 20(6), 3269–3274.
  • Takahashi, J. A.; Carvalho, S. A. Nutritional Potencial of Biomass and Metabolites from Filamentous Fungi. Curr. Res. Tech. Edu. Topics Appl. Microbiol. Biotech. 2010, 2, 1126–1135.
  • Wei, H.; Da-Na, L.; Yi-Wen, S.; Jun-Hong, T.; Yong-Feng, L.; Nan-Qi, R. Biohydrogen Production from Food Waste Hydrolysate Using Continuous Mixed Immobilized Sludge Reactors. Bio. Tech. 2015, 180, 54–58. DOI: 10.1016/j.biortech.2014.12.067.
  • Mufti, A.; Kim, K.; Yu, Y. J. Purification and Characterization of a Serine Protease from Cucumis Trigonus Roxburghi. Phytochemistry. 2006, 67, 870–875. DOI: 10.1016/j.phytochem.2006.02.020.
  • Anjum, M.; Khalid, A.; Qadeer, S.; Miandad, R. Synergistic Effect of Co-Digestion to Enhance Anaerobic Degradation of Catering Waste and Orange Peel for Biogas Production. Waste Manag. Res. 2017, 35(9), 967–977. DOI: 10.1177/0734242X17715904.
  • Gagaoua, M.; Ziane, F.; Rabah, S. N.; Boucherba, N.; El-Okki, A. A. K. E.; Bouanane-Darenfed, A.; Hafid, K. Three Phase Partitioning, a Scalable Method for the Purification Andrecovery of Cucumisin, a Milk-Clotting Enzyme, from the Juice of Cucumis Melo Var. Reticulatus. Inter. J. Biol. Macromol. 2017, 102, 515–525. DOI: 10.1016/j.ijbiomac.2017.04.060.
  • Alavi, F.; Jamshidian, M.; Rezaei, K. Applying Native Proteases from Melon to Hydrolyze Kilka Fish Proteins (Clupeonella Cultriventris Caspia) Compared to Commercial Enzyme Alcalase. Food Chem. 2019, 277, 314–322. DOI: 10.1016/j.foodchem.2018.10.122.
  • Vieira, R. F. F. A.; Carvalho, C. L. S.; Carvalho, I. R. A.; Candido, C. J.; Santos, E. F.; Novello, D. Addition of Melon Peel Flour in Cupcakes Alter Physico Chemical Composition and Children Acceptability. Connexion Ci. 2017, 12(12), 22–30. DOI: 10.24862/cco.v12i2.611.
  • Silva, J. B.; Marques, T. R.; Simão, A. A.; Correa, A. D.; Pinheiro, A. C. M.; Silva, R. L. Development and Chemical and Sensory Characterization of Pumpkin Seed Flour-Based Cereal Bars. Food Sci. Tech. 2014, 34(2), 346–352. DOI: 10.1590/fst.2014.0054.
  • Garcia, D. M.; Alencar, U. R.; Mota, B. G.; Borges, I. R.; Souza, P. O. Determination of Technological Characteristics of Flours Produced from Pulp Residues of Papaya, Melon and Guava and Their Use in the Preparation of Cookies. ScientiaTec. 2017, 4(1), 29–41.
  • Medeiros, A. K. O. C.; Gomes, C. C.; Amaral, M. L. Q. A.; Medeiros, L. D. G.; Medeiros, I.; Porto, D. L.; Aragão, C. F. S.; Maciel, B. L. L.; Morais, A. H. A.; Passos, T. S. Nanoencapsulation Improved Water Solubility and Color Stability of Carotenoids Extracted from Cantaloupe Melon (Cucumis Melo L.). Food Chem. 2019, 270, 562–572. DOI: 10.1016/j.foodchem.2018.07.099.
  • Han, W.; Fang, J.; Liu, Z. X. Techno-Economic Evaluation of a Combined Bioprocess for Fermentative Hydrogen Production from Food Waste. Bio. Tech. 2016, 202, 107–112. DOI: 10.1016/j.biortech.2015.11.072.
  • Damiani, C.; Silva, F. A.; Rodovalho, E. C.; Becker, F. S.; Asquieri, E. R.; Oliveira, R. A.; Lage, M. E. Utilization of Waste Vegetable for the Production of Seasoned Cassava Flour. Alim. Nutr. 2011, 22(4), 657–662.
  • Han, W.; Yun-Yi, H.; Shi-Yi, L.; Jin-Gang, H.; Qiu-Lin, N.; Hong-Ting, Z.; Jun-Hong, T. Simultaneous Dark Fermentative Hydrogen and Ethanol Production from Waste Bread in a Mixed Packed Tank Reactor. J. Clean. Prod.. 2017, 141, 608–611. DOI: 10.1016/j.jclepro.2016.09.143.
  • Salehi1, R.; Taghizadeh-Alisaraei1, A.; Jahanbakhshi, A.; Shahidi, F. Evaluation and Measurement of Bioethanol Extraction from Melon Waste (Qassari Cultivar). AgricEngInt: CIGR J. 2018, 20, 127–131. http://www.cigrjournal.org

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.