323
Views
3
CrossRef citations to date
0
Altmetric
Reviews

New Development of Efficient Processing Techniques on Typical Medicinal Fungi: A Review

, &

References

  • Dos Santos, L. F.; Rubel, R.; Bonatto, S. J. R.; Zanatta, A. L.; Aikawa, J.; Yamaguchi, A. A.; Torres, M. F.; Soccol, V. T.; Habu, S.; Prado, K. B.; et al. Cordyceps Sinensis Biomass Produced by Submerged Fermention in High-Fat Diet Feed Rats Normalizes the Blood Lipid and the Low Testosterone Induced by Diet. Excli J. 2012, 11, 767–775.
  • Chen, J.-L.; Chen, Y.-C.; Yang, S.-H.; Ko, Y.-F.; Chen, S.-Y. Immunological Alterations in Lupus-Prone Autoimmune (NZB/NZW) F1 Mice by Mycelia Chinese Medicinal Fungus Cordyceps Sinensis - Induced Redistributions of Peripheral Mononuclear T Lymphocytes. Clin. Exp. Med. 2009, 9(4), 277–284. DOI: 10.1007/s10238-008-0029-6.
  • Jing, Y.-S.; Cui, X.-L.; Chen, Z.-Y.; Huang, L.-J.; Song, L.-Y.; Liu, T.; Lv, W.-J.; Yu, R.-M. Elucidation and Biological Activities of a New Polysaccharide from Cultured Cordyceps Militaris. Carbohydr. Polym. 2014, 102, 288–296. DOI: 10.1016/j.carbpol.2013.10.048.
  • Zaidman, B. Z.; Yassin, M.; Mahajna, J.; Wasser, S. P. Medicinal Mushroom Modulators of Molecular Targets as Cancer Therapeutics. Appl. Microbiol. Biotechnol. 2005, 67(4), 453–468. DOI: 10.1007/s00253-004-1787-z.
  • Song, F.-Q.; Liu, Y.; Kong, X.-S.; Chang, W.; Song, G. Progress on Understanding the Anticancer Mechanisms of Medicinal Mushroom: Inonotus Obliquus. Asian Pac. J. Cancer Prev. 2013, 14(3), 1571–1578. DOI: 10.7314/APJCP.2013.14.3.1571.
  • De Silva, D. D.; Rapior, S.; Fons, F.; Bahkali, F. A. H.; Hyde, K. D. Medicinal Mushrooms in Supportive Cancer Therapies: An Approach to Anti-Cancer Effects and Putative Mechanisms of Action. Fungal Divers. 2012, 55, 1–35.
  • Novaes, M. R. C. G.; Valadares, F.; Reis, M. C.; Gonçalves, D. R.; Menezes, M. D. C. The Effects of Dietary Supplementation with Agaricales Mushrooms and Other Medicinal Fungi on Breast Cancer: Evidence-Based Medicine. Clinics. 2011, 66(12), 2133–2139.
  • Cheng, -J.-J.; Lin, C.-Y.; Lur, H.-S.; Chen, H.-P.; Lu, M.-K. Properties and Biological Functions of Polysaccharides and Ethanolic Extracts Isolated from Medicinal Fungus, Fomitopsis Pinicola. Process Biochem. 2008, 43(8), 829–834. DOI: 10.1016/j.procbio.2008.03.005.
  • Xu, Z.; Yan, S.; Bi, K.; Han, J.; Chen, Y.; Wu, Z.; Chen, Y.; Liu, H. Isolation and Identification of a New Anti-Inflammatory Cyathane Diterpenoid from the Medicinal Fungus Cyathus Hookeri Berk. Fitoterapia. 2013, 86, 159–162. DOI: 10.1016/j.fitote.2013.03.002.
  • Han, J.; Chen, Y.; Bao, L.; Yang, X.; Liu, D.; Li, S.; Zhao, F.; Liu, H. Anti-Inflammatory and Cytotoxic Cyathane Diterpenoids from the Medicinal Fungus Cyathus Africanus. Fitoterapia. 2013, 84, 22–31. DOI: 10.1016/j.fitote.2012.10.001.
  • Kozarski, M.; Klaus, A.; Niksic, M.; Jakovljevic, D.; Helsper, J. P. F. G.; Van Griensven, L. J. L. D. Antioxidative and Immunomodulating Activities of Polysaccharide Extracts of the Medicinal Mushrooms Agaricus Bisporus, Agaricus Brasiliensis, Ganoderma Lucidum and Phellinus Linteus. Food Chem. 2011, 129(4), 1667–1675.
  • Buenz, E. J.; Bauer, B. A.; Osmundson, T. W.; Motley, T. J. The Traditional Chinese Medicine Cordyceps Sinensis and Its Effects on Apoptotic Homeostasis. J. Ethnopharmacol. 2005, 96(1–2), 19–29. DOI: 10.1016/j.jep.2004.09.029.
  • Huang, S.-J.; Tsai, S.-Y.; Lee, Y.-L.; Mau, J.-L. Nonvolatile Taste Components of Fruit Bodies and Mycelia of Cordyceps Militaris. LWT-Food Sci. Technol. 2006, 39(6), 577–583. DOI: 10.1016/j.lwt.2005.05.002.
  • Wang, M.; Meng, X.-Y.; Yang, R.-L.; Qin, T.; Wang, X.-Y.; Zhang, K.-Y.; Fei, C.-Z.; Li, Y.; Hu, Y.-L.; Xue, F.-Q. Cordyceps Militaris Polysaccharides Can Enhance the Immunity and Antioxidation Activity in Immunosuppressed Mice. Carbohyd. Polym. 2012, 89(2), 461–466. DOI: 10.1016/j.carbpol.2012.03.029.
  • Olatunji, O. J.; Feng, Y.; Olatunji, O. O.; Tang, J.; Wei, Y.; Ouyang, Z.; Su, Z. Polysaccharides Purified from Cordyceps Cicadae Protects PC12 Cells against Glutamate-Induced Oxidative Damage. Carbohyd. Polym. 2016, 153, 187–195. DOI: 10.1016/j.carbpol.2016.06.108.
  • Rathor, R.; Mishra, K. P.; Pal, M.; Amitabh; Vats, P.; Kirar, V.; Negi, P. S.; Misra, K. Scientific Validation of the Chinese Caterpillar Medicinal Mushroom, Ophiocordyceps Sinensis (Ascomycetes) from India: Immunomodulatory and Antioxidant Activity. Int. J. Med. Mushrooms. 2014, 16(6), 541–553. DOI: 10.1615/IntJMedMushrooms.v16.i6.40.
  • Zhou, X.-W.; Gong, Z.-H.; Sua, Y.; Lin, J.; Tang, K.-X. Cordyceps Fungi: Natural Products, Pharmacological Functions and Developmental Products. J. Pharm. Pharmacol. 2009, 61, 279–291. DOI: 10.1211/jpp.61.03.0002.
  • Li, S.-P.; Yang, F.-Q.; Tsim, K.-W. Quality Control of Cordyceps Sinensis, a Valued Traditional Chinese Medicine. J. Pharm. Biomed. Anal. 2006, 41(5), 1571–1584. DOI: 10.1016/j.jpba.2006.01.046.
  • Duan, X.; Zhang, M.; Mujumdar, A. S. Study on a Combination Drying Technique of Sea Cucumber. Drying Technol. 2007, 25(12), 2011–2019. DOI: 10.1080/07373930701728497.
  • Yan, W.-Q.; Zhang, M.; Huang, -L.-L.; Tang, J.; Mujumdar, A. S.; Sun, J.-C. Studies on Different Combined Microwave Drying of Carrot Pieces. Int. J. Food Sci. Technol. 2010, 45(10), 2141–2148. DOI: 10.1111/j.1365-2621.2010.02380.x.
  • Wang, Y.-L.; Dan, Z.-C. Cordyceps Sinensis Vacuum Freeze-Drying Processing Method. C.N. Patent 105,737,528, July 6, 2016.
  • Li, G.-R.; Wang, X.-D.; Liang, M.; Deng, Z.-X.; Hong, Z.-M.; Tao, S.-C.; Qian, Z.-M. Freeze-Drying Method for Cordyceps Sinensis. C.N. Patent 106, 344,624, Jan 25, 2017.
  • Chen, J.; Sun, C.-H.; Xu, C.; Chen, L.-Y.; Feng, H. Process for Treating Cordyceps Militaris by Vacuum Freeze Drying Method. C.N. Patent 106,931,727, July 7, 2017.
  • Wang, Y.-H.; Wang, H.; Cheng, Z.-Y.; Dong, X.-F.; Wang, J.-S. Microwave Drying Method Capable of Improving Quality of Fermented Cordyceps Militaris. C.N. Patent 103,453,732, Dec 18, 2013.
  • Liu, X.-L.; Zhou, J.-Z.; Huang, K.-H. The Study on the Preparation of Cordyceps Militaris Mycelia by Microwave Vacuum Drying. Jiangsu Agric. Sci. 2010, 1, 263–264.
  • Wu, X. F.; Zhang, M.; Bhandari, B.; Li, Z. Effects of Microwave-Assisted Pulse-Spouted Bed Freeze-Drying (MPSFD) on Volatile Compounds and Structural Aspects of Cordyceps Militaris. J. Sci. Food Agric. 2018, 98(12), 4634–4643. DOI: 10.1002/jsfa.8993.
  • Wang, Y.; Zhang, M.; Mujumdar, A. S.; Mothibe, K. J.; Roknul Azam, S. M. Study of Drying Uniformity in Pulsed Spouted Microwave–Vacuum Drying of Stem Lettuce Slices with Regard to Product Quality. Drying Technol. 2013, 31(1), 91–101. DOI: 10.1080/07373937.2012.721431.
  • Wang, D.; Zhang, M.; Wang, Y.; Martynenko, A. Effect of Pulsed-Spouted Bed Microwave Freeze Drying on Quality of Apple Cuboids. Food Bioprocess Technol. 2018, 11(5), 941–952. DOI: 10.1007/s11947-018-2061-1.
  • Jiang, H.; Zhang, M.; Mujumdar, A. S.; Lim, R. X. Comparison of Drying Characteristic and Uniformity of Banana Cubes Dried by Pulse-Spouted Microwave Vacuum Drying, Freeze Drying and Microwave Freeze Drying. J. Sci. Food Agric. 2014, 94(9), 1827–1834.
  • Cao, X.; Zhang, M.; Qian, H.; Mujumdar, A. S. Drying Based on Temperature-Detection-Assisted Control in Microwave-Assisted Pulse-Spouted Vacuum Drying. J. Sci. Food Agric. 2017, 97(8), 2307–2315. DOI: 10.1002/jsfa.2017.97.issue-8.
  • Cheong, K.-L.; Wang, L.-Y.; Wu, D.-T.; Hu, D.-J.; Zhao, J.; Li, S.-P. Microwave-Assisted Extraction, Chemical Structures, and Chain Conformation of Polysaccharides from a Novel Cordyceps Sinensis Fungus UM01. J. Food Sci. 2016, 81(9), C2167–C2174. DOI: 10.1111/1750-3841.13407.
  • Song, J.-F.; Li, D.-J.; Liu, C.-Q. Response Surface Analysis of Microwave-Assisted Extraction of Polysaccharides from Cultured Cordyceps Militaris. J. Chem. Technol. Biotechnol. 2009, 84(11), 1669–1673. DOI: 10.1002/jctb.v84:11.
  • Cheung, Y.-C.; Wu, J.-Y. Kinetic Models and Process Parameters for Ultrasound-Assisted Extraction of Water-Soluble Components and Polysaccharides from a Medicinal Fungus. Biochem. Eng. J. 2013, 79, 214–220. DOI: 10.1016/j.bej.2013.08.009.
  • Luo, X.; Duan, Y.; Yang, W.; Zhang, H.; Li, C.; Zhang, J. Structural Elucidation and Immunostimulatory Activity of Polysaccharide Isolated by Subcritical Water Extraction from Cordyceps Militaris. Carbohydr. Polym. 2017, 157, 794–802. DOI: 10.1016/j.carbpol.2016.11.031.
  • Cheung, Y. C.; Liu, X. X.; Wang, W. Q.; Wu, J. Y. Ultrasonic Disruption of Fungal Mycelia for Efficient Recovery of Polysaccharide-Protein Complexes from Viscous Fermentation Broth of a Medicinal Fungus. Ultrason. Sonochem. 2015, 22, 243–248. DOI: 10.1016/j.ultsonch.2014.05.006.
  • Yang, H.-D.; Wu, Z.-C.; He, D.-J.; Zhou, H.-B.; Yang, H.-L. Enzyme-Assisted Extraction and Pb2+ Biosorption of Polysaccharide from Cordyceps Militaris. J. Polym. Environ. 2016, 25(4), 1033–1043. DOI: 10.1007/s10924-016-0882-4.
  • Ling, J.-Y.; Zhang, G.-Y.; Lin, J.-Q.; Cui, Z.-J.; Zhang, C.-K. Supercritical Fluid Extraction of Cordycepin and Adenosine from Cordyceps Kyushuensis and Purification by High-Speed Counter-Current Chromatography. Sep. Purif. Technol. 2009, 66(3), 625–629. DOI: 10.1016/j.seppur.2008.12.022.
  • Zhang, W.-C.; Li, B.; Dong, X.-L.; Wang, B.-S.; Wu, Z.-Y. Enzyme-Assisted Extraction of Cordycepin and Adenosine from Cultured Cordyceps Militaris and Purification by Macroporous Resin Column Chromatography. Sep. Sci. Technol. 2017, 52(8), 1350–1358. DOI: 10.1080/01496395.2017.1287736.
  • Wang, H.-J.; Pan, M.-C.; Chang, C.-K.; Chang, S.-W.; Hsieh, C.-W. Optimization of Ultrasonic-Assisted Extraction of Cordycepin from Cordyceps Militaris Using Orthogonal Experimental Design. Molecules. 2014, 19(12), 20808–20820. DOI: 10.3390/molecules190811211.
  • Li, S.-Z.; Shan, Y.-K.; Ren, B.-L.; Liu, H.-Z.; Ma, J.-X. Cordyceps Sinensis Micro-Powder Preparation and Preparation Method. C.N. Patent 103,705,545, Apr 9, 2014.
  • Zhang, W.-C.; Li, B.; Dong, X.-L.; Jin, L.-Q.; Wang, B.-S. Preparation Method of Cordyceps Militaris Superfine Powder. C.N. Patent 105,030,846, Nov 11, 2015.
  • Luo, Y.-D.; Tang, H. Fresh Cordyceps Sinensis Ultrafine Blunt Powder Tablets and Their Preparation Method. C.N. Patent 103,505,477, Jan 15, 2014.
  • Shiao, M. S.;. Natural Products of the Medicinal Fungus Ganoderma Lucidum: Occurrence, Biological Activities, and Pharmacological Functions. Chem. Rec. 2003, 3(3), 172–180. DOI: 10.1002/tcr.10058.
  • Liu, X.; Yuan, J.-P.; Chung, C.-K.; Chen, X.-J. Antitumor Activity of the Sporoderm-Broken Germinating Spores of Ganoderma Lucidum. Cancer Lett. 2002, 182(2), 155–161. DOI: 10.1016/S0304-3835(02)00080-0.
  • Yuen, J. W.; Gohel, M. D.; Ng, C. F. The Differential Immunological Activities of Ganoderma Lucidum on Human Pre-Cancerous Uroepithelial Cells. J. Ethnopharmacol. 2011, 135(3), 711–718.
  • Joseph, S.; Sabulal, B.; George, V.; Antony, K. R.; Janardhanan, K. K. Antitumor and Anti-Inflammatory Activities of Polysaccharides Isolated from Ganoderma Lucidum. Acta. Pharm. 2011, 61(3), 335–342.
  • Li, Y.-Q.; Wang, S.-F. Anti-Hepatitis B Activities of Ganoderic Acid from Ganoderma Lucidum. Biotechnol. Lett. 2006, 28(11), 837–841. DOI: 10.1007/s10529-006-9007-9.
  • Jong, S. C.; Birmingham, J.-M. Medicinal Benefits of the Mushroom Ganoderma. Adv. Appl. Microbiol. 1992, 37, 101–134.
  • Song, X.-J.; Zhang, M.; Mujumdar, A. S. Optimization of Vacuum Microwave Predrying and Vacuum Frying Conditions to Produce Fried Potato Chips. Drying Technol. 2007, 25(12), 2027–2034.
  • Chin, S. K.; Law, C.-L. Product Quality and Drying Characteristics of Intermittent Heat Pump Drying of Ganoderma Tsugae Murrill. Drying Technol. 2010, 28(12), 1457–1465.
  • Chin, S. K.; Law, C. L.; Supramaniam, C. V.; Cheng, P. G.; Mujumdar, A. S. Convective Drying of Ganoderma Tsugae Murrill and Effect of Temperature on Basidiospores. Drying Technol. 2008, 26(12), 1524–1533.
  • Paterson, R. R.;. Ganoderma - a Therapeutic Fungal Biofactory. Phytochemistry. 2006, 37(50), 1985–2001. DOI: 10.1016/j.phytochem.2006.07.004.
  • Chen, Y.; Xie, M. Y.; Nie, S. P.; Li, C.; Wang, Y. X. Purification, Composition Analysis and Antioxidant Activity of a Polysaccharide from the Fruiting Bodies of Ganoderma Atrum. Food Chem. 2008, 107(1), 231–241. DOI: 10.1016/j.foodchem.2007.08.021.
  • Wang, -Y.-Y.; Khoo, K.-H.; Chen, S. T.; Lin, C. C.; Wong, C. H.; Lin, C. H. Studies on the Immuno-Modulating and Antitumor Activities of Ganoderma Lucidum (Reishi) Polysaccharides: Functional and Proteomic Analyses of a Fucose-Containing Glycoprotein Fraction Responsible for the Activities. Bioorg. Med. Chem. 2002, 10(4), 1057–1062.
  • Chen, T.-Q.; Wu, Y.-B.; Wu, J.-G.; Ma, L.; Dong, Z.-H.; Wu, J.-Z. Efficient Extraction Technology of Antioxidant Crude Polysaccharides from Ganoderma Lucidum (Lingzhi), Ultrasonic-Circulating Extraction Integrating with Superfine-Pulverization. J. Taiwan Inst. Chem. Eng. 2014, 45(1), 57–62. DOI: 10.1016/j.jtice.2013.05.010.
  • Zhu, X.-Y.; Chen, X.; Xie, J.; Wang, P.; Su, W.-K. Mechanochemical-Assisted Extraction and Antioxidant Activity of Polysaccharides from Ganoderma Lucidum Spores. Int. J. Food Sci. Technol. 2012, 47(5), 927–932. DOI: 10.1111/j.1365-2621.2011.02923.x.
  • Matsunaga, Y.; Wahyudiono; Machmudah, S.; Askin, R.; Quitain, A. T.; Sasaki, M.; Goto, M. Hydrothermal Extraction and Micronization of Polysaccharides from Ganoderma Lucidum in a One-Step Process. Bioresources. 2013, 8(1), 461–471.
  • Oludemi, T.; Barros, L.; Prieto, M. A.; Heleno, S. A.; Barreiro, M. F.; Ferreira, I. Extraction of Triterpenoids and Phenolic Compounds from Ganoderma Lucidum: Optimization Study Using the Response Surface Methodology. Food Funct. 2018, 9(1), 209–226. DOI: 10.1039/C7FO01601H.
  • Li, J.-W.; Zhang, -X.-X.; Liu, Y.-F. Supercritical Carbon Dioxide Extraction of Ganoderma Lucidum Spore Lipids. LWT–Food Sci. Technol. 2016, 70, 16–23.
  • Chin, S. K.; Law, C. L.; Supramaniam, C. V.; Cheng, P. G. Thin-Layer Drying Characteristics and Quality Evaluation of Air-Dried Ganoderma Tsugae Murrill. Drying Technol. 2009, 27(9), 975–984. DOI: 10.1080/07373930902904350.
  • Ma, C.-W.; Feng, M.; Zhai, X.; Hu, M.; You, L.; Luo, W.; Zhao, M. Optimization for the Extraction of Polysaccharides from Ganoderma Lucidum and Their Antioxidant and Antiproliferative Activities. J. Taiwan Inst. Chem. Eng. 2013, 44(6), 886–894. DOI: 10.1016/j.jtice.2013.01.032.
  • Gao, Q.-L.; Preparation of Oral Lyophilized Ganoderma Lucidum Powder. C.N. Patent 106,955,293, July 18, 2017.
  • Chen, Z.; Chai, H.-L.; Hu, Q.-H.; Wang, H.-F.; Jiang, Y.-M.; Zhang, Y. Method of Breaking the Wall of Ganoderma Lucidum Spores Powder. C.N. Patent 106,635,804, May 10, 2017.
  • Liu, -Y.-Y. A.; Kind of Ganoderma Lucidum Spores Powder Granules. C.N. Patent 106,619,746, May 10, 2017.
  • Sun, J.-Y.; Process for Making Broken-Wall Ganoderma Lucidum Spores Powder by Adopting Ultra-Micro Nanotechnology. C.N. Patent 106,963,790, July 21, 2017.
  • Kurozawa, L. E.; Azoubel, P. M.; Murr, F. E. X.; Park, K. J. Drying Kinetic of Fresh and Osmotically Dehydrated Mushroom (Agaricus Blazei). J. Food Process. Eng. 2012, 35(2), 295–313. DOI: 10.1111/j.1745-4530.2010.00590.x.
  • Kawamura, M.; Kasai, H. Delayed Cell Cycle Progression and Apoptosis Induced by Hemicellulase-Treated Agaricus Blazei. J. Evidence-Based Complementary Altern. Med. 2007, 4(1), 83–94. DOI: 10.1093/ecam/nel059.
  • Bernardshaw, S.; Hetland, G.; Ellertsen, L. K.; Tryggestad, A. M. A.; Johnson, E. An Extract of the Medicinal Mushroom Agaricus Blazei Murill Differentially Stimulates Production of Pro-Inflammatory Cytokines in Human Monocytes and Human Vein Endothelial Cells in Vitro. Inflammation. 2005, 29(4–6), 147–153. DOI: 10.1007/s10753-006-9010-2.
  • De Miranda, A. M.; Ribeiro, G. M.; Cunha, A. C.; Silva, L. S.; Dos Santos, R. C.; Pedrosa, M. L.; Silva, M. E. Hypolipidemic Effect of the Edible Mushroom Agaricus Blazei in Rats Subjected to a Hypercholesterolemic Diet. J. Physiol. Biochem. 2014, 70(1), 215–224. DOI: 10.1007/s13105-013-0295-y.
  • Niu, Y.-C.; Liu, J.-C.; Zhao, X.-M.; Wu, -X.-X. A Low Molecular Weight Polysaccharide Isolated from Agaricus Blazei Suppresses Tumor Growth and Angiogenesis in Vivo. Oncol. Rep. 2009, 21(1), 145–152.
  • Wang, R.; Zhang, M.; Mujumdar, A. S. Effect of Osmotic Dehydration on Microwave Freeze-Drying Characteristics and Quality of Potato Chips. Drying Technol. 2010, 28(6), 798–806. DOI: 10.1080/07373937.2010.482700.
  • Xin, Y.; Zhang, M.; Adhikari, B. Effect of Trehalose and Ultrasound-Assisted Osmotic Dehydration on the State of Water and Glass Transition Temperature of Broccoli (Brassica Oleracea L. Var. Botrytis L.). J. Food Eng. 2013, 119(3), 640–647. DOI: 10.1016/j.jfoodeng.2013.06.035.
  • Jia, S.-Y.; Li, F.; Liu, Y.; Ren, H.-T.; Gong, G.-L.; Wang, -Y.-Y.; Wu, S.-H. Effects of Extraction Methods on the Antioxidant Activities of Polysaccharides from Agaricus Blazei Murrill. Int. J. Biol. Macromol. 2013, 62, 66–69. DOI: 10.1016/j.ijbiomac.2013.08.031.
  • Zhang, Z.; Lv, G.; Pan, H.; Shi, L.; Fan, L. Optimization of the Microwave-Assisted Extraction Process for Polysaccharides in Himematsutake (Agaricus Blazei Murrill) and Evaluation of Their Antioxidant Activities. Food Sci. Technol. Int., Tokyo. 2011, 17(6), 461–470.
  • Zhang, Z.-F.; Lv, G.-Y.; Pan, H.-J.; Fan, L.-F. Optimisation of the Microwave-Assisted Extraction Process for Six Phenolic Compounds in Agaricus Blazei Murrill. Int. J. Food Sci. Technol. 2012, 47(1), 24–31. DOI: 10.1111/j.1365-2621.2011.02802.x.
  • Vetvicka, V.; Vetvickova, J. Immune-Enhancing Effects of Maitake (Grifola Frondosa) and Shiitake (Lentinula Edodes) Extracts. Ann. Transl. Med. 2014, 2(2), 14.
  • Lin, C.-H.; Chang, C.-Y.; Lee, K. R.; Lin, H. J.; Lin, W. C.; Chen, T. H.; Wan, L. Cold-Water Extracts of Grifola Frondosa and Its Purified Active Fraction Inhibit Hepatocellular Carcinoma in Vitro and in Vivo. Exp. Biol. Med. 2016, 241(13), 1374–1385. DOI: 10.1177/1535370216640149.
  • Mao, G.; Zou, Y.; Feng, W.; Wang, W.; Zhao, T.; Ye, C.; Zhu, Y.; Wu, X.; Yang, L.; Wu, X. Extraction, Preliminary Characterization and Antioxidant Activity of Se-Enriched Maitake Polysaccharide. Carbohydr. Polym.. 2014, 101, 213–219. DOI: 10.1016/j.carbpol.2013.09.034.
  • Shin, Y.-J.; Lee, S.-C. Antioxidant Activity and β-glucan Contents of Hydrothermal Extracts from Maitake (Grifola Frondosa). Food Sci. Biotechnol. 2013, 23(1), 277–282. DOI: 10.1007/s10068-014-0038-z.
  • Kubo, K.; Aoki, H.; Nanba, H. Anti-Diabetic Activity Present in the Fruit Body of Grifola Frondosa (Maitake). Biol. Pharm. Bull. 1994, 17(8), 1106–1110. DOI: 10.1248/bpb.17.1106.
  • Shih, I. L.; Chou, B. W.; Chen, C. C.; Wu, J. Y.; Hsieh, C. Y. Study of Mycelial Growth and Bioactive Polysaccharide Production in Batch and Fed-Batch Culture of Grifola Frondosa. Bioresour. Technol. 2008, 99(4), 785–793. DOI: 10.1016/j.biortech.2007.01.030.
  • Sim, K. Y.; Liew, J. Y.; Ding, X. Y.; Choong, W. S.; Intan, S. Effect of Vacuum and Oven Drying on the Radical Scavenging Activity and Nutritional Contents of Submerged Fermented Maitake (Grifola Frondosa) Mycelia. Food Sci. Technol. 2017, 37(1), 131–135. DOI: 10.1590/1678-457x.28816.
  • Yang, L.-Q.; Qu, H.-Y.; Mao, G.-H.; Zhao, T.; Fang, L.; Zhu, B.-L.; Zhang, B.-T.; Wu, X.-Y. Optimization of Subcritical Water Extraction of Polysaccharides from Grifola Frondosa Using Response Surface Methodology. Pharmacogn. Mag. 2013, 9(34), 120–129. DOI: 10.4103/0973-1296.117859.
  • Fan, Y.; Wu, X.; Zhang, M.; Zhao, T.; Zhou, Y.; Han, L.; Yang, L. Physical Characteristics and Antioxidant Effect of Polysaccharides Extracted by Boiling Water and Enzymolysis from Grifola Frondosa. Int. J. Biol. Macromol. 2011, 48(5), 798–803. DOI: 10.1016/j.ijbiomac.2011.03.013.
  • Wu, S.-J.; Chen, Y.-W.; Wang, C.-Y.; Shyu, Y.-T. Anti-Inflammatory Properties of High Pressure-Assisted Extracts of Grifola Frondosain Lipopolysaccharide-Activated RAW 264.7 Macrophages. Int. J. Food Sci. Technol. 2017, 52(3), 671–678. DOI: 10.1111/ijfs.2017.52.issue-3.
  • Chen, H.; Tian, T.; Miao, H.; Zhao, Y. Y. Traditional Uses, Fermentation, Phytochemistry and Pharmacology of Phellinus Linteus: A Review. Fitoterapia. 2016, 113, 6–26. DOI: 10.1016/j.fitote.2016.07.010.
  • Li, S.-C.; Yang, X.-M.; Ma, H.-L.; Yan, J.-K.; Guo, D.-Z. Purification, Characterization and Antitumor Activity of Polysaccharides Extracted from Phellinus Igniarius Mycelia. Carbohydr. Polym. 2015, 133, 24–30. DOI: 10.1016/j.carbpol.2015.07.013.
  • Sliva, D.;. Medicinal Mushroom Phellinus Linteus as an Alternative Cancer Therapy. Exp. Ther. Med. 2010, 1(3), 407–411. DOI: 10.3892/etm_00000063.
  • Yan, J.-K.; Wang, -Y.-Y.; Wang, Z. B.; Ma, H. L.; Pei, J. J.; Wu, J. Y. Structure and Antioxidative Property of a Polysaccharide from an Ammonium Oxalate Extract of Phellinus Linteus. Int. J. Biol. Macromol. 2016, 91, 92–99. DOI: 10.1016/j.ijbiomac.2016.05.063.
  • Kim, G. Y.; Lee, J. Y.; Lee, J. O.; Rvu, C. H.; Choi, B. T. Partial Characterization and Immunostimulatory Effect of a Novel Polysaccharide-Protein Complex Extracted from Phellinus Linteus. Biosci. Biotechnol., Biochem. 2006, 70(5), 1218–1226. DOI: 10.1271/bbb.70.1218.
  • Kim, G. Y.; Park, H. S.; Nam, B. H.; Lee, S. J.; Lee, J. D. Purification and Characterization of Acidic Proteo-Heteroglycan from the Fruiting Body of Phellinus Linteus (Berk. & MA Curtis) Teng. Bioresour. Technol. 2003, 89(1), 81–87. DOI: 10.1016/S0960-8524(02)00273-0.
  • Zhao, Y.; Wang, L.; Zhang, W.-S.; Li, S.-B.; Lu, N. Method for Drying Phellinus Linteus. C.N. Patent 103,948,644, July 30, 2014.
  • Zhang, W.-S.; Su, J.; Xu, C.-P.; Niu, F.-J.; Liu, S.-M. Application of Refrigeration Technique in Phellinus Linteus Drying. C.N. Patent 103,948,642, July 30, 2014.
  • Kim, Y. K.; Iwahashi, H. Properties of Polysaccharides Extracted from Phellinus Linteus Using High Hydrostatic Pressure Processing and Hot Water Treatment. J. Food Process. Eng. 2015, 38(2), 197–206. DOI: 10.1111/jfpe.12153.
  • Xu, Y.; Zhao, X.-Y.; Cao, H.; Sheng, S.; Wang, J.; Wu, F.-A. Enzyme-Catalyzed Extraction and Antioxidant Activity of Polysaccharides from Phellinus Igniarius. Curr. Top. Nutraceutical Res. 2016, 14(2), 171–180.
  • Park, H. G.; Shim, Y. Y.; Choi, S. O.; Park, W. M. New Method Development for Nanoparticle Extraction of Water-Soluble β-(1→3)-D-glucan from Edible Mushrooms, Sparassis Crispa and Phellinus Linteus. J. Agric. Food Chem. 2009, 57(6), 2147–2154. DOI: 10.1021/jf802940x.
  • Chu, B.-F.; Lin, H.-C.; Huang, X.-W.; Huang, H.-Y.; Wu, C. P.; Kao, M.-C. An Ethanol Extract of Poria Cocos Inhibits the Proliferation of Non-Small Cell Lung Cancer A549 Cells via the Mitochondria-Mediated Caspase Activation Pathway. J. Funct. Foods. 2016, 23, 614–627.
  • Jeong, J. W.; Lee, H. H.; Han, M. H.; Kim, G. Y.; Hong, S. H.; Park, C.; Choi, Y. H. Ethanol Extract of Poria Cocos Reduces the Production of Inflammatory Mediators by Suppressing the NF-kappaB Signaling Pathway in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages. BMC Complementary Altern. Med. 2014, 14(1), 101. DOI: 10.1186/1472-6882-14-101.
  • Zhao, -Y.-Y.; Feng, Y.-L.; Du, X.; Xi, Z.-H.; Cheng, X. L.; Wei, F. Diuretic Activity of the Ethanol and Aqueous Extracts of the Surface Layer of Poria Cocos in Rat. J. Ethnopharmacol. 2012, 144(3), 775–778. DOI: 10.1016/j.jep.2012.09.033.
  • Li, T.-H.; Hou, -C.-C.; Chang, C.-L.; Yang, W.-C. Anti-Hyperglycemic Properties of Crude Extract and Triterpenes from Poria Cocos. J. Evidence-Based Complementary Altern. Med. 2011. DOI: 10.1155/2011/128402.
  • Chen, X.; Zhang, L.; Cheung, P. C. Immunopotentiation and Anti-Tumor Activity of Carboxymethylated-Sulfated β-(1→3)-D-Glucan from Poria Cocos. Int. Immunopharmacol. 2010, 10(4), 398–405. DOI: 10.1016/j.intimp.2010.06.022.
  • Chen, -Y.-Y.; Chang, H.-M. Antiproliferative and Differentiating Effects of Polysaccharide Fraction from Fu-Ling (Poria Cocos) on Human Leukemic U937 and HL-60 Cells. Food Chem. Toxicol. 2004, 42(5), 759–769. DOI: 10.1016/j.fct.2004.01.018.
  • Xu, Y.; Zhang, M.; Tu, D.; Sun, J.; Zhou, L.; Mujumdar, A. S. A Two-Stage Convective Air and Vacuum Freeze-Drying Technique for Bamboo Shoots. Int. J. Food Sci. Technol. 2005, 40(6), 589–595. DOI: 10.1111/j.1365-2621.2005.00956.x.
  • Wang, R.; Zhang, M.; Mujumdar, A. S.; Sun, J.-C. Microwave Freeze–Drying Characteristics and Sensory Quality of Instant Vegetable Soup. Drying Technol. 2009, 27(9), 962–968. DOI: 10.1080/07373930902902040.
  • Song, X.-J.; Zhang, M.; Mujumdar, A. S.; Fan, L. Drying Characteristics and Kinetics of Vacuum Microwave–Dried Potato Slices. Drying Technol. 2009, 27(9), 969–974. DOI: 10.1080/07373930902902099.
  • Zhong, L.-P.; Zhong, Z.-X. A Rapid Drying Method for Poria Cocos. C.N. Patent 104,880,053, Sept 2, 2015.
  • Duan, X.; Zhang, M.; Li, X.; Mujumdar, A. S. Ultrasonically Enhanced Osmotic Pretreatment of Sea Cucumber Prior to Microwave Freeze Drying. Drying Technol. 2008, 26(4), 420–426. DOI: 10.1080/07373930801929201.
  • Zheng, Z.-A.; Zhang, W.-P.; Gao, Z.-J.; Zhang, P.; Xue, L.-Y.; Zhao, Z.-S.-Y.; Wang, J.; Jiang, Q.-W. A Vacuum Pulsating Method and Device for Drying Poria Cocos. C.N. Patent 107,166,897, Sept 15, 2017.
  • Wang, Y.-J.; Cheng, Z.; Mao, J.-W.; Fan, M.-G.; Wu, X.-Q. Optimization of Ultrasonic-Assisted Extraction Process of Poria Cocos Polysaccharides by Response Surface Methodology. Carbohydr. Polym. 2009, 77(4), 713–717. DOI: 10.1016/j.carbpol.2009.02.011.
  • Wang, -N.-N.; Zhang, Y.; Wang, X.-P.; Huang, X.-W.; Fei, Y.; Yu, Y.; Shou, D. Antioxidant Property of Water-Soluble Polysaccharides from Poria Cocos Wolf Using Different Extraction Methods. Int. J. Biol. Macromol. 2016, 83, 103–110.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.