3,166
Views
76
CrossRef citations to date
0
Altmetric
Reviews

A Review of Selection Criteria for Starter Culture Development in the Food Fermentation Industry

, , , , , & show all

References

  • Salque, M.; Bogucki, P. I.; Pyzel, J.; Sobkowiak-Tabaka, I.; Grygiel, R.; Szmyt, M.; Evershed, R. P. Earliest Evidence for Cheese Making in the Sixth Millennium Bc in Northern Europe. Nature. 2012, 493(7433), 522–525. DOI: 10.1038/nature11698.
  • Carvalho Neto, D. P.; Pereira, G. V.; de, M.; Finco, A. M. O.; Letti, L. A. J.; Silva, J. G.; Vandenberghe, L. P. S.; Soccol, R. Efficient Coffee Beans Mucilage Layer Removal Using Lactic Acid Fermentation in a Stirred-Tank Bioreactor: Kinetic, Metabolic and Sensorial Studies. Food Biosci. 2018, 26, 80–87. DOI: 10.1016/j.fbio.2018.10.005.
  • de Vuyst, L.;. Lactic Acid Bacteria as Functional Starter Cultures for the Food Fermentation Industry. Trends Food Sci. Technol. 2004, 15(2), 67–78. DOI: 10.1016/j.tifs.2003.09.004.
  • Di Cagno, R.; Coda, R.; De Angelis, M.; Gobbetti, M. Exploitation of Vegetables and Fruits through Lactic Acid Fermentation. Food Microbiol. 2013, 33(1), 1–10. DOI: 10.1016/J.FM.2012.09.003.
  • Wang, J.; Fung, D. Y. C. Alkaline-Fermented Foods: A Review with Emphasis on Pidan Fermentation. Crit. Rev. Microbiol. 1996, 22(2), 101–138. DOI: 10.3109/10408419609106457.
  • Chen, X.; Li, J.; Zhou, T.; Li, J.; Yang, J.; Chen, W.; Xiong, Y. L. Two Efficient Nitrite-Reducing Lactobacillus Strains Isolated from Traditional Fermented Pork (Nanx Wudl) as Competitive Starter Cultures for Chinese Fermented Dry Sausage. Meat Sci. 2016, 121, 302–309. DOI: 10.1016/J.MEATSCI.2016.06.007.
  • Marui, J.; Tada, S.; Fukuoka, M.; Wagu, Y.; Shiraishi, Y.; Kitamoto, N.; Sugimoto, T.; Hattori, R.; Suzuki, S.; Kusumoto, K.-I. Reduction of the Degradation Activity of Umami-Enhancing Purinic Ribonucleotide Supplement in Miso by the Targeted Suppression of Acid Phosphatases in the Aspergillus Oryzae Starter Culture. Int. J. Food Microbiol. 2013, 166(2), 238–243. DOI: 10.1016/j.ijfoodmicro.2013.07.006.
  • Randazzo, C. L.; Pitino, I.; De, L. S.; Scifò, G. O.; Caggia, C. Effect of Wild Strains Used as Starter Cultures and Adjunct Cultures on the Volatile Compounds of the Pecorino Siciliano Cheese. Int. J. Food Microbiol. 2008, 122, 269–278. DOI: 10.1016/j.ijfoodmicro.2007.12.005.
  • Xiong, T.; Li, X.; Guan, Q.; Peng, F.; Xie, M. Starter Culture Fermentation of Chinese Sauerkraut: Growth, Acidification and Metabolic Analyses. Food Control. 2014, 41, 122–127. DOI: 10.1016/J.FOODCONT.2013.12.033.
  • Yulifianti, R.; Ginting, E. Proteolytic Activity of Selected Moulds in the First Fermentation of Black-Seeded Soysauce. Ser. Earth Environ. Sci. 2018, 102, 012097. DOI: 10.1088/1755-1315/102/1/012097.
  • Tamime, A. Y.;. Microbiology of Starter Cultures. In Dairy Microbiology Handbook: The Microbiology of Milk and Milk Products; Robinson, R.K., Ed.; Wiley: New York, 2003; pp 261–366.
  • Johnson, M. E.; Steele, J. L. Fermented Dairy Products. In Food Microbiology: Fundamentals and Frontiers; Doyle, M.P., Buchanan, R.L., Eds.; ASM Press: Washington, 2013; pp 825–840.
  • Blana, V. A.; Grounta, A.; Tassou, C. C.; Nychas, G.-J. E.; Panagou, E. Z. Inoculated Fermentation of Green Olives with Potential Probiotic Lactobacillus Pentosus and Lactobacillus Plantarum Starter Cultures Isolated from Industrially Fermented Olives. Food Microbiol. 2014, 38, 208–218. DOI: 10.1016/J.FM.2013.09.007.
  • Simova, E. D.; Beshkova, D. M.; Angelov, M. P.; Dimitrov, Z. P. Bacteriocin Production by Strain Lactobacillus Delbrueckii Ssp. Bulgaricus BB18 during Continuous Prefermentation of Yogurt Starter Culture and Subsequent Batch Coagulation of Milk. J. Ind. Microbiol. Biotechnol. 2008, 35(6), 559–567. DOI: 10.1007/s10295-008-0317-x.
  • de Souza, C. H. B.; Buriti, F. C. A.; Behrens, J. H.; Saad, S. M. I. Sensory Evaluation of Probiotic Minas Fresh Cheese with Lactobacillus Acidophilus Added Solely or in Co-Culture with a Thermophilic Starter Culture. Int. J. Food Sci. Technol. 2008, 43(5), 871–877. DOI: 10.1111/j.1365-2621.2007.01534.x.
  • Carr, F. J.; Chill, D.; Maida, N. The Lactic Acid Bacteria: A Literature Survey. Crit. Rev. Microbiol. 2002, 28(4), 281–370. DOI: 10.1080/1040-840291046759.
  • Endo, A.; Dicks, L. M. T. Pgysiology of the LAB. In Lactic Acid Bacteria: Biodiversity and Taxonomy; Holzapfel, W.H., Wood, B.J.B., Eds.; Wiley Blackwell: Chichester, 2014; pp 13–30.
  • Marques, W. L.; Raghavendran, V.; Stambuk, B. U.; Gombert, A. K. Sucrose and Saccharomyces Cerevisiae : A Relationship Most Sweet. FEMS Yeast Res. 2016, 16(1), fov107. DOI: 10.1093/femsyr/fov107.
  • Walker, G.; Stewart, G. Saccharomyces Cerevisiae in the Production of Fermented Beverages. Beverages. 2016, 2(4), 30. DOI: 10.3390/beverages2040030.
  • Chiotellis, E.; Campbell, G. M. Proving of Bread Dough II: Measurement of Gas Production and Retention. Food Bioprod. Process. 2003, 81(3), 207–216. DOI: 10.1205/096030803322437974.
  • Piškur, J.; Rozpedowska, E.; Polakova, S.; Merico, A.; Compagno, C. How Did Saccharomyces Evolve to Become a Good Brewer? Trends Genet. 2006, 22(4), 183–186. DOI: 10.1016/j.tig.2006.02.002.
  • Agbogbo, F. K.; Coward-Kelly, G. Cellulosic Ethanol Production Using the Naturally Occurring Xylose-Fermenting Yeast, Pichia Stipitis. Biotechnol. Lett. 2008, 30(9), 1515–1524. DOI: 10.1007/s10529-008-9728-z.
  • Horn, S. J.; Aasen, I. M.; Ostgaard, K. Ethanol Production from Seaweed Extract. J. Ind. Microbiol. Biotechnol. 2000, 25(5), 249–254. DOI: 10.1038/sj.jim.7000065.
  • Yu, Z.; Zhang, H. Pretreatments of Cellulose Pyrolysate for Ethanol Production by Saccharomyces Cerevisiae, Pichia Sp. YZ-1 and Zymomonas Mobilis. Biomass Bioenergy. 2003, 24(3), 257–262. DOI: 10.1016/S0961-9534(02)00147-2.
  • Gullo, M.; Verzelloni, E.; Canonico, M. Aerobic Submerged Fermentation by Acetic Acid Bacteria for Vinegar Production: Process and Biotechnological Aspects. Process Biochem. 2014, 49(10), 1571–1579. DOI: 10.1016/J.PROCBIO.2014.07.003.
  • Solieri, L.; Giudici, P. Yeasts Associated to Traditional Balsamic Vinegar: Ecological and Technological Features. Int. J. Food Microbiol. 2008, 125(1), 36–45. DOI: 10.1016/j.ijfoodmicro.2007.06.022.
  • Saeki, A.; Theeragool, G.; Matsushita, K.; Toyama, H.; Lotong, N.; Adachi, O. Development of Thermotolerant Acetic Acid Bacteria Useful for Vinegar Fermentation at Higher Temperatures. Biosci. Biotechnol. Biochem. 1997, 61(1), 138–145. DOI: 10.1271/bbb.61.138.
  • Garavaglia, J.; Schneider, R. C. S.; Camargo Mendes, S. D.; Welke, J. E.; Zini, C. A.; Caramão, E. B.; Valente, P. Evaluation of Zygosaccharomyces Bailii BCV 08 as a Co-Starter in Wine Fermentation for the Improvement of Ethyl Esters Production. Microbiol. Res. 2015, 173, 59–65. DOI: 10.1016/J.MICRES.2015.02.002.
  • Gullo, M.; Caggia, C.; De Vero, L.; Giudici, P. Characterization of Acetic Acid Bacteria in “Traditional Balsamic Vinegar.”. Int. J. Food Microbiol. 2006, 106(2), 209–212. DOI: 10.1016/j.ijfoodmicro.2005.06.024.
  • Parkouda, C.; Nielsen, D. S.; Azokpota, P.; Ouba, L. I. I.; Amoa-Awua, W. K.; Thorsen, L.; Hounhouigan, J. D.; Jensen, J. S.; Tano-Debrah, K.; Diawara, B.;; et al. The Microbiology of Alkaline-Fermentation of Indigenous Seeds Used as Food Condiments in Africa and Asia. Crit. Rev. Microbiol. 2009, 35(2), 139–156.
  • Kubo, Y.; Inaoka, T.; Hachiya, T.; Miyake, M.; Hase, S.; Nakagawa, R.; Hasegawa, H.; Funane, K.; Sakakibara, Y.; Kimura, K. Development of a Rifampicin-Resistant Bacillus Subtilis Strain for Natto-Fermentation Showing Enhanced Exoenzyme Production. J. Biosci. Bioeng. 2013, 115(6), 654–657. DOI: 10.1016/J.JBIOSC.2012.12.012.
  • Sheih, I. C.;. Preparation of High Free Radical Scavenging Tempeh by a Newly Isolated Rhizopus Sp. R-69 from Indonesia. Food Sci. Agric. Chem. 2000, 2(1), 35–40.
  • Schwan, R. F.; Wheals, A. E. The Microbiology of Cocoa Fermentation and Its Role in Chocolate Quality. Crit. Rev. Food Sci. Nutr. 2004, 44(4), 205–221. DOI: 10.1080/10408690490464104.
  • Schwan, R. F.; Pereira, G. V. M.; Fleet, G. H. Microbial Activities during Cocoa Fermentation. In Cocoa and Coffee Fermentation; Schwan, R.F., Fleet, G.H., Eds.; CRC Press: Boca Raton, 2014; pp 129–192.
  • Pereira, G. V. M.; Neto, E.; Soccol, V. T.; Medeiros, A. B. P.; Woiciechowski, A. L.; Soccol, C. R. Conducting Starter Culture-Controlled Fermentations of Coffee Beans during on-Farm Wet Processing: Growth, Metabolic Analyses and Sensorial Effects. Food Res. Int. 2015, 75, 348–356. DOI: 10.1016/j.foodres.2015.06.027.
  • Pereira, G. V.; M., D.; Soccol, V. T.; Brar, S. K.; Neto, E.; Soccol, C. R. Microbial Ecology and Starter Culture Technology in Coffee Processing. Crit. Rev. Food Sci. Nutr. 2017, 57(13), 2775–2788. DOI: 10.1080/10408398.2015.1067759.
  • Pereira, G. V.; de, M.; Soccol, V. T.; Soccol, C. R. Current State of Research on Cocoa and Coffee Fermentations. Curr. Opin. Food Sci. 2016, 7, 50–57. DOI: 10.1016/J.COFS.2015.11.001.
  • Kovárová-Kovar, K.; Egli, T. Growth Kinetics of Suspended Microbial Cells: From Single-Substrate-Controlled Growth to Mixed-Substrate Kinetics. Microbiol. Mol. Biol. Rev. 1998, 62(3), 646–666.
  • Liu, S.-Q.;. Malolactic Fermentation in Wine - beyond Deacidification. J. Appl. Microbiol. 2002, 92(4), 589–601. DOI: 10.1046/j.1365-2672.2002.01589.x.
  • Malherbe, S.; Menichelli, E.; Du Toit, M.; Tredoux, A.; Muller, N.; Naes, T.; Nieuwoudt, H. The Relationships between Consumer Liking, Sensory and Chemical Attributes of Vitis Vinifera L. Cv. Pinotage Wines Elaborated with Different Oenococcus Oeni Starter Cultures. J. Sci. Food Agric. 2013, 93(11), 2829–2840. DOI: 10.1002/jsfa.6115.
  • Turtura, G. C.; Benfenati, L. Caratteristiche Microbiologiche E Chimiche Dell’Aceto Balsamico Naturale. Ann. Microbiol. 1988, 38, 51–74.
  • Santos, E. M.; González-Fernández, C.; Jaime, I.; Rovira, J. Comparative Study of Lactic Acid Bacteria House Flora Isolated in Different Varieties of `Chorizo’. Int. J. Food Microbiol. 1998, 39(1–2), 123–128. DOI: 10.1016/S0168-1605(97)00128-1.
  • Renouf, V.; Claisse, O.; Lonvaud-Funel, A. Understanding the Microbial Ecosystem on the Grape Berry Surface through Numeration and Identification of Yeast and Bacteria. Aust. J. Grape Wine Res. 2005, 11(3), 316–327. DOI: 10.1111/j.1755-0238.2005.tb00031.x.
  • Rosini, G.; Federici, F.; Martini, A. Yeast Flora of Grape Berries during Ripening. Microb. Ecol. 1982, 8(1), 83–89. DOI: 10.1007/BF02011464.
  • Steinkraus, K. H.;. Industrialization of Indigenous Fermented Foods, 2nd ed.; Marcel Dekker: New York, 2004.
  • Hurtado, A.; Reguant, C.; Bordons, A.; Rozès, N. Lactic Acid Bacteria from Fermented Olives. Food Microbiol. 2012, 31, 1–8. DOI: 10.1016/j.fm.2012.02.003.
  • Fleet, G. H.;. Yeast Interactions and Wine Flavour. Int. J. Food Microbiol. 2003, 86(1–2), 11–22. DOI: 10.1016/S0168-1605(03)00245-9.
  • Rainieri, S.; Pretorius, I. S. Selection and Improvement of Wine Yeasts. Ann. Microbiol. 2000, 50, 15–31.
  • Holzapfel, W. H.;. Appropriate Starter Culture Technologies for Small-Scale Fermentation in Developing Countries. Int. J. Food Microbiol. 2002, 75(3), 197–212. DOI: 10.1016/S0168-1605(01)00707-3.
  • Holzapfel, W.;. Use of Starter Cultures in Fermentation on a Household Scale. Food Control. 1997, 8(5–6), 241–258. DOI: 10.1016/S0956-7135(97)00017-0.
  • Benkerroum, N.; Oubel, H.; Mimoun, L. B. Behavior of Listeria Monocytogenes and Staphylococcus Aureus in Yogurt Fermented with a Bacteriocin-Producing Thermophilic Starter. J. Food Prot. 2002, 65(5), 799–805. DOI: 10.4315/0362-028X-65.5.799.
  • Han, X.; Yang, Z.; Jing, X.; Yu, P.; Zhang, Y.; Yi, H.; Zhang, L. Improvement of the Texture of Yogurt by Use of Exopolysaccharide Producing Lactic Acid Bacteria. Biomed Res. Int. 2016, 2016, 1–6. DOI: 10.1155/2016/7945675.
  • Rahman, I. E. A.; Dirar, H. A.; Osman, M. A. Microbiological and Biochemical Changes and Sensory Evaluation of Camel Milk Fermented by Selected Bacterial Starter Cultures. African J. Food Sci. 2009, 3(12), 398–405.
  • Madera, C.; García, P.; Janzen, T.; Rodríguez, A.; Suárez, J. E. Characterisation of Technologically Proficient Wild Lactococcus Lactis Strains Resistant to Phage Infection. Int. J. Food Microbiol. 2003, 86(3), 213–222. DOI: 10.1016/S0168-1605(03)00042-4.
  • Delavenne, E.; Cliquet, S.; Trunet, C.; Barbier, G.; Mounier, J.; Le Blay, G. Characterization of the Antifungal Activity of Lactobacillus Harbinensis K.V9.3.1Np and Lactobacillus Rhamnosus K.C8.3.1I In Yogurt. Food Microbiol. 2015, 45(Pt A), 10–17. DOI: 10.1016/j.fm.2014.04.017.
  • Kuhl, G. C.; Gusso, A. P.; Porto, B. L. S.; Müller, C. M. O.; Mazzon, R. R.; Oliveira, M. A. L.; Richards, N. S. P.; dos, S.; Lindner, J. D. D. Selection of Lactic Acid Bacteria for the Optimized Production of Sheep’s Milk Yogurt with a High Conjugated Linoleic Acid Content. J. Food Res. 2017, 6(4), 44. DOI: 10.5539/jfr.v6n4p44.
  • Nieto-Arribas, P.; Poveda, J. M.; Seseña, S.; Palop, L.; Cabezas, L. Technological Characterization of Lactobacillus Isolates from Traditional Manchego Cheese for Potential Use as Adjunct Starter Cultures. Food Control. 2009, 20(12), 1092–1098. DOI: 10.1016/j.foodcont.2009.03.001.
  • De Angelis, M.; de Candia, S.; Calasso, M. P.; Faccia, M.; Guinee, T. P.; Simonetti, M. C.; Selection, G. M. Use of Autochthonous Multiple Strain Cultures for the Manufacture of High-Moisture Traditional Mozzarella Cheese. Int. J. Food Microbiol. 2008, 125(2), 123–132. DOI: 10.1016/j.ijfoodmicro.2008.03.043.
  • Ayad, E. H. E.;. Starter Culture Development for Improving Safety and Quality of Domiati Cheese. Food Microbiol. 2009, 26(5), 533–541. DOI: 10.1016/J.FM.2009.03.007.
  • Mills, S.; Serrano, L. M.; Griffin, C.; Connor, P. M. O.; Schaad, G.; Bruining, C.; Hill, C.; Ross, R. P.; Meijer, W. C. Inhibitory Activity of Lactobacillus Plantarum LMG P-26358 against Listeria Innocua When Used as an Adjunct Starter in the Manufacture of Cheese. Microbial Cell Factories. 2011, 10(Suppl 1), 1–11.
  • Nascimento, M. S.; Moreno, I.; Kuaye, A. Y. Applicability of Bacteriocin-Producing Lactobacillus Plantarum, Enterococcus Faecium and Lactococcus Lactis Ssp. Lactis as Adjunct Starter in Minas Frescal Cheesemaking. Int. J. Dairy Technol. 2008, 61(4), 352–357. DOI: 10.1111/j.1471-0307.2008.00426.x.
  • Ho, V. T. T.; Lo, R.; Bansal, N.; Turner, M. S. Characterisation of Lactococcus Lactis Isolates from Herbs, Fruits and Vegetables for Use as Biopreservatives against Listeria Monocytogenes in Cheese. Food Control. 2018, 85, 472–483. DOI: 10.1016/J.FOODCONT.2017.09.036.
  • Pedersen, T. B.; Ristagno, D.; Mcsweeney, P. L. H.; Vogensen, F. K.; Ardö, Y. Potential Impact on Cheese Fl Avour of Heterofermentative Bacteria from Starter Cultures. Int. Dairy J. 2013, 33(2), 112–119. DOI: 10.1016/j.idairyj.2013.03.003.
  • Matijašić, B. B.; Rajšp, M. K.; Perko, B.; Rogelj, I. Inhibition of Clostridium Tyrobutyricum in Cheese by Lactobacillus Gasseri. Int. Dairy J. 2007, 17(2), 157–166. DOI: 10.1016/J.IDAIRYJ.2006.01.011.
  • Rilla, N.; Martínez, B.; Delgado, T.; Rodríguez, A. Inhibition of Clostridium Tyrobutyricum in Vidiago Cheese by Lactococcus Lactis Ssp. Lactis IPLA 729, a Nisin Z Producer. Int. J. Food Microbiol. 2003, 85(1–2), 23–33. DOI: 10.1016/S0168-1605(02)00478-6.
  • Martı́nez-Cuesta, M. C.; Requena, T.; Peláez, C. Use of a Bacteriocin-Producing Transconjugant as Starter in Acceleration of Cheese Ripening. Int. J. Food Microbiol. 2001, 70(1–2), 79–88. DOI: 10.1016/S0168-1605(01)00516-5.
  • Gómez-Ruiz, J. Á.; Cabezas, L.; Martínez-Castro, I.; González-Viñas, M. Á.; Poveda, J. M. Influence of a Defined-Strain Starter and Lactobacillus Plantarum as Adjunct Culture on Volatile Compounds and Sensory Characteristics of Manchego Cheese. Eur. Food Res. Technol. 2008, 227(1), 181–190. DOI: 10.1007/s00217-007-0708-7.
  • Lynch, K. M.; Mcsweeney, P. L. H.; Arendt, E. K.; Uniacke-lowe, T.; Galle, S.; Isolation, C. A. And Characterisation of Exopolysaccharide-Producing Weissella and Lactobacillus and Their Application as Adjunct Cultures in Cheddar Cheese. Int. Dairy J. 2014, 34(1), 125–134. DOI: 10.1016/j.idairyj.2013.07.013.
  • Garde, S.; Tomillo, J.; Gaya, P.; Medina, M.; Nuñez, M. Proteolysis in Hispánico Cheese Manufactured Using a Mesophilic Starter, a Thermophilic Starter, and Bacteriocin-Producing Lactococcus Lactis Subsp. Lactis INIA 415 Adjunct Culture. J. Agric. Food Chem. 2002, 50(12), 3479–3485. DOI: 10.1021/jf011291d.
  • Terzić-Vidojević, A.; Tonković, K.; Leboš Pavunc, A.; Beganović, J.; Strahinić, I.; Kojić, M.; Veljović, K.; Golić, N.; Kos, B.; Čadež, N.;, et al. Evaluation of Autochthonous Lactic Acid Bacteria as Starter Cultures for Production of White Pickled and Fresh Soft Cheeses. LWT - Food Sci. Technol. 2015, 63(1), 298–306. DOI: 10.1016/J.LWT.2015.03.050.
  • Milesi, M. M.; Mcsweeney, P. L. H.; Hynes, E. R. Viability and Contribution to Proteolysis of an Adjunct Culture of Lactobacillus Plantarum in Two Model Cheese Systems : Cheddar Cheese-Type and Soft-Cheese Type. J. Appl. Microbiol. 2008, 105, 884–892. doi:10.1111/j.1365-2672.2008.03813.x
  • Psani, M.; Kotzekidou, P. Technological Characteristics of Yeast Strains and Their Potential as Starter Adjuncts in Greek-Style Black Olive Fermentation. World J. Microbiol. Biotechnol. 2006, 22(12), 1329–1336. DOI: 10.1007/s11274-006-9180-y.
  • Bevilacqua, A.; Beneduce, L.; Sinigaglia, M.; Corbo, M. R. Selection of Yeasts as Starter Cultures for Table Olives. J. Food Sci. 2013, 78(5), M742–M751. DOI: 10.1111/1750-3841.12117.
  • Ruiz-Barba, J. L.; Jiménez-Díaz, R. A Novel Lactobacillus Pentosus-Paired Starter Culture for Spanish-Style Green Olive Fermentation. Food Microbiol. 2012, 30(1), 253–259. DOI: 10.1016/J.FM.2011.11.004.
  • Panagou, E. Z.; Schillinger, U.; Franz, C. M. A. P.; Nychas, G. E. Microbiological and Biochemical Profile of Cv. Conservolea Naturally Black Olives during Controlled Fermentation with Selected Strains of Lactic Acid Bacteria. Food Microbiol. 2008, 25(2), 348–358. DOI: 10.1016/j.fm.2007.10.005.
  • Xiong, T.; Song, S.; Huang, X.; Feng, C.; Liu, G.; Huang, J.; Screening, X. M. Identification of Functional Lactobacillus Specific for Vegetable Fermentation. J. Food Sci. 2013, 78(1), M84–M89. DOI: 10.1111/j.1750-3841.2012.03003.x.
  • Tolonen, M.; Rajaniemi, S.; Pihlava, J.; Johansson, T. Formation of Nisin, Plant-Derived Biomolecules and Antimicrobial Activity in Starter Culture Fermentations of Sauerkraut. Food Microbiol. 2004, 21(2), 167–179. DOI: 10.1016/S0740-0020(03)00058-3.
  • Chang, J. Y.; Chang, H. C. Growth Inhibition of Foodborne Pathogens by Kimchi Prepared with Bacteriocin-Producing Starter Culture. J. Food Sci. 2011, 76(1), M72–M78. DOI: 10.1111/j.1750-3841.2010.01965.x.
  • Rao, Y.; Chang, W.; Xiang, W.; Li, M.; Che, Z.; Tang, J. Screening and Performance of L Actobacillus Plantarum E11 with Bacteriocin-Like Substance Secretion as Fermentation Starter of Sichuan Pickle. J. Food Saf. 2013, 33(4), 445–452. DOI: 10.1111/jfs.12075.
  • Beganović, J.; Pavunc, A. L.; Gjuračić, K.; Špoljarec, M.; Šušković, J.; Kos, B. Improved Sauerkraut Production with Probiotic Strain Lactobacillus Plantarum L4 and Leuconostoc Mesenteroides LMG 7954. J. Food Sci. 2011, 76(2), M124–M129. DOI: 10.1111/j.1750-3841.2010.02030.x.
  • Jung, J. Y.; Lee, S. H.; Lee, H. J.; Seo, H.-Y.; Park, W.-S.; Jeon, C. O. Effects of Leuconostoc Mesenteroides Starter Cultures on Microbial Communities and Metabolites during Kimchi Fermentation. Int. J. Food Microbiol. 2012, 153(3), 378–387. DOI: 10.1016/j.ijfoodmicro.2011.11.030.
  • Yan, P.-M.; Xue, W.-T.; Tan, -S.-S.; Zhang, H.; Chang, X.-H. Effect of Inoculating Lactic Acid Bacteria Starter Cultures on the Nitrite Concentration of Fermenting Chinese Paocai. Food Control. 2008, 19(1), 50–55. DOI: 10.1016/J.FOODCONT.2007.02.008.
  • Baka, A. M.; Papavergou, E. J.; Pragalaki, T.; Bloukas, J. G.; Kotzekidou, P. Effect of Selected Autochthonous Starter Cultures on Processing and Quality Characteristics of Greek Fermented Sausages. LWT - Food Sci. Technol. 2011, 44(1), 54–61. DOI: 10.1016/J.LWT.2010.05.019.
  • Bedia, M.; Méndez, L.; Bañón, S. Evaluation of Different Starter Cultures (Staphylococci Plus Lactic Acid Bacteria) in Semi-Ripened Salami Stuffed in Swine Gut. Meat Sci. 2011, 87(4), 381–386. DOI: 10.1016/J.MEATSCI.2010.11.015.
  • Casquete, R.; Benito, M. J.; Martín, A.; Ruiz-Moyano, S.; Hernández, A.; Córdoba, M. G. Effect of Autochthonous Starter Cultures in the Production of “Salchichón”, a Traditional Iberian Dry-Fermented Sausage, with Different Ripening Processes. LWT - Food Sci. Technol. 2011, 44(7), 1562–1571. DOI: 10.1016/J.LWT.2011.01.028.
  • Cenci-Goga, B. T.; Rossitto, P. V.; Sechi, P.; Parmegiani, S.; Cambiotti, V.; Cullor, J. S. Effect of Selected Dairy Starter Cultures on Microbiological, Chemical and Sensory Characteristics of Swine and Venison (Dama Dama) Nitrite-Free Dry-Cured Sausages. Meat Sci. 2012, 90(3), 599–606. DOI: 10.1016/j.meatsci.2011.09.022.
  • Klingberg, T. D.; Axelsson, L.; Naterstad, K.; Elsser, D.; Budde, B. B. Identification of Potential Probiotic Starter Cultures for Scandinavian-Type Fermented Sausages. Int. J. Food Microbiol. 2005, 105, 419–431. DOI: 10.1016/j.ijfoodmicro.2005.03.020.
  • Lee, J.; Kim, C.; Kunz, B. Identification of Lactic Acid Bacteria Isolated from Kimchi and Studies on Their Suitability for Application as Starter Culture in the Production of Fermented Sausages. Meat Sci. 2006, 72, 437–445. DOI: 10.1016/j.meatsci.2005.08.013.
  • Neffe-Skocińska, K.; Okoń, A.; Kołożyn-Krajewska, D.; Dolatowski, Z. Amino Acid Profile and Sensory Characteristics of Dry Fermented Pork Loins Produced with a Mixture of Probiotic Starter Cultures. J. Sci. Food Agric. 2017, 97(9), 2953–2960. DOI: 10.1002/jsfa.8133.
  • Ratanaburee, A.; Kantachote, D.; Charernjiratrakul, W.; Sukhoom, A. Enhancement of γ-Aminobutyric Acid (GABA) in Nham (Thai Fermented Pork Sausage) Using Starter Cultures of Lactobacillus Namurensis NH2 and Pediococcus Pentosaceus HN8. Int. J. Food Microbiol. 2013, 167(2), 170–176. DOI: 10.1016/J.IJFOODMICRO.2013.09.014.
  • Ravyts, F.; Barbuti, S.; Frustoli, M. A.; Parolari, G.; Saccani, G.; De Vuyst, L.; Competitiveness, L. F. Antibacterial Potential of Bacteriocin-Producing Starter Cultures in Different Types of Fermented Sausages. J. Food Prot. 2008, 71(9), 1817–1827.
  • Rubio, R.; Aymerich, T.; Bover-cid, S.; Guàrdia, M. D.; Arnau, J.; Garriga, M. Probiotic Strains Lactobacillus Plantarum 299V and Lactobacillus Rhamnosus GG as Starter Cultures for Fermented Sausages. LWT - Food Sci. Technol. 2013, 54(1), 51–56. DOI: 10.1016/j.lwt.2013.05.014.
  • Rubio, R.; Jofré, A.; Martín, B.; Aymerich, T.; Garriga, M. Characterization of Lactic Acid Bacteria Isolated from Infant Faeces as Potential Probiotic Starter Cultures for Fermented Sausages. Food Microbiol. 2014, 38, 303–311. DOI: 10.1016/j.fm.2013.07.015.
  • Bover-Cid, S.; Izquierdo-Pulido, M.; Vidal-Carou, M. C. Mixed Starter Cultures to Control Biogenic Amine Production in Dry Fermented Sausages. J. Food Prot. 2000, 63(11), 1556–1562. DOI: 10.4315/0362-028X-63.11.1556.
  • Maria, A.; Simion, C.; Vizireanu, C.; Alexe, P.; Franco, I.; Carballo, J. Effect of the Use of Selected Starter Cultures on Some Quality, Safety and Sensorial Properties of Dacia Sausage, a Traditional Romanian Dry-Sausage Variety. Food Control. 2014, 35(1), 123–131. DOI: 10.1016/j.foodcont.2013.06.047.
  • Talon, R.; Leroy, S.; Lebert, I.; Giammarinaro, P.; Chacornac, J.; Latorre-moratalla, M.; Vidal-carou, C.; Zanardi, E.; Conter, M.; Safety Improvement, L. A. Preservation of Typical Sensory Qualities of Traditional Dry Fermented Sausages Using Autochthonous Starter Cultures. Int. J. Food Microbiol. 2008, 126, 227–234. DOI: 10.1016/j.ijfoodmicro.2008.05.031.
  • Wang, X. H.; Ren, H. Y.; Liu, D. Y.; Zhu, W. Y.; Wang, W. Effects of Inoculating Lactobacillus Sakei Starter Cultures on the Microbiological Quality and Nitrite Depletion of Chinese Fermented Sausages. Food Control. 2013, 32(2), 591–596. DOI: 10.1016/j.foodcont.2013.01.050.
  • Gardini, F.; Martuscelli, M.; Crudele, M. A.; Paparella, A.; Suzzi, G. Use of Staphylococcus Xylosus as a Starter Culture in Dried Sausages: Effect on the Biogenic Amine Content. Meat Sci. 2002, 61(3), 275–283. DOI: 10.1016/S0309-1740(01)00193-0.
  • Lu, S.; Xu, X.; Zhou, G.; Zhu, Z.; Meng, Y.; Sun, Y. Effect of Starter Cultures on Microbial Ecosystem and Biogenic Amines in Fermented Sausage. Food Control. 2010, 21(4), 444–449. DOI: 10.1016/j.foodcont.2009.07.008.
  • Benkerroum, N.; Daoudi, A.; Hamraoui, T.; Ghalfi, H.; Thiry, C.; Duroy, M.; Evrart, P.; Roblain, D.; Thonart, P. Lyophilized Preparations of Bacteriocinogenic Lactobacillus Curvatus and Lactococcus Lactis Subsp. Lactis as Potential Protective Adjuncts to Control Listeria Monocytogenes in Dry-Fermented Sausages. J. Appl. Microbiol. 2005, 98(1), 56–63. DOI: 10.1111/j.1365-2672.2004.02419.x.
  • Gao, Y.; Li, D.; Liu, X. Bacteriocin-Producing Lactobacillus Sakei C2 as Starter Culture in Fermented Sausages. Food Control. 2014, 35(1), 1–6. DOI: 10.1016/J.FOODCONT.2013.06.055.
  • Casaburi, A.; Di Monaco, R.; Cavella, S.; Toldrá, F.; Ercolini, D.; Villani, F. Proteolytic and Lipolytic Starter Cultures and Their Effect on Traditional Fermented Sausages Ripening and Sensory Traits. Food Microbiol. 2008, 25(2), 335–347. DOI: 10.1016/j.fm.2007.10.006.
  • Ammor, S.; Dufour, E.; Zagorec, M.; Chaillou, S.; Characterization, C. I. Selection of Lactobacillus Sakei Strains Isolated from Traditional Dry Sausage for Their Potential Use as Starter Cultures. Food Microbiol. 2005, 22(6), 529–538. DOI: 10.1016/J.FM.2004.11.016.
  • Babić, I.; Markov, K.; Kovačević, D.; Trontel, A.; Slavica, A.; Đugum, J.; Čvek, D.; Svetec, I. K.; Posavec, S.; Frece, J. Identification and Characterization of Potential Autochthonous Starter Cultures from a Croatian “Brand” Product “Slavonski Kulen.”. Meat Sci. 2011, 88(3), 517–524. DOI: 10.1016/J.MEATSCI.2011.02.003.
  • Moonmangmee, D.; Adachi, O.; Ano, Y.; Shinagawa, E.; Toyama, H.; Theeragool, G.; Lotong, N.; Isolation, M. K. Characterization of Thermotolerant Gluconobacter Strains Catalyzing Oxidative Fermentation at Higher Temperatures. Biosci. Biotechnol. Biochem. 2000, 64(11), 2306–2315. DOI: 10.1271/bbb.64.2306.
  • Ndoye, B.; Lebecque, S.; Dubois-Dauphin, R.; Tounkara, L.; Guiro, A.-T.; Kere, C.; Diawara, B.; Thonart, P. Thermoresistant Properties of Acetic Acids Bacteria Isolated from Tropical Products of Sub-Saharan Africa and Destined to Industrial Vinegar. Enzyme Microb. Technol. 2006, 39(4), 916–923. DOI: 10.1016/J.ENZMICTEC.2006.01.020.
  • Steels, H.; Bond, C. J.; Collins, M. D.; Roberts, I. N.; Stratford, M.; James, S. A. Zygosaccharomyces Lentus Sp. Nov., A New Member of the Yeast Genus Zygosaccharomyces Barker. Int. J. Syst. Bacteriol. 1999, 49(1), 319–327. DOI: 10.1099/00207713-49-1-319.
  • Ciani, M.;. Wine Vinegar Production Using Base Wines Made with Different Yeast Species. J. Sci. Food Agric. 1998, 78(2), 290–294. DOI: 10.1002/(SICI)1097-0010(199810)78:2<290::AID-JSFA120>3.0.CO;2-A.
  • Saeki, A.;. Studies on Acetic Acid Fermentation. III Continuous Production of Vinegar with Immobilized Saccharomycodes Ludwigii Cells and Immobilized Acetobacter Aceti Cells Entrapped in Calcium Alginate Gel Beads. J. Jpn. Soc. Food Sci. 1990, 37, 722–725.
  • Granchi, L.; Ganucci, D.; Messini, A.; Vincenzini, M. Oenological Properties of Hanseniaspora Osmophila and Kloeckera Corticis from Wines Produced by Spontaneous Fermentations of Normal and Dried Grapes. FEMS Yeast Res. 2002, 2(3), 403–407.
  • Araújo, T. M.; Souza, M. T.; Diniz, R. H. S.; Yamakawa, C. K.; Soares, L. B.; Lenczak, J. L.; de Castro Oliveira, J. V.; Goldman, G. H.; Barbosa, E. A.; Campos, A. C. S.;, et al. Cachaça Yeast Strains: Alternative Starters to Produce Beer and Bioethanol. Antonie Van Leeuwenhoek.2018, 111(10), 1749–1766. DOI: 10.1007/s10482-018-1063-3.
  • Canonico, L.; Comitini, F.; Ciani, M. Torulaspora Delbrueckii Contribution in Mixed Brewing Fermentations with Different Saccharomyces Cerevisiae Strains. Int. J. Food Microbiol. 2017, 259, 7–13. DOI: 10.1016/J.IJFOODMICRO.2017.07.017.
  • Holt, S.; Mukherjee, V.; Lievens, B.; Verstrepen, K. J.; Thevelein, J. M. Bioflavoring by Non-Conventional Yeasts in Sequential Beer Fermentations. Food Microbiol. 2018, 72, 55–66. DOI: 10.1016/J.FM.2017.11.008.
  • Figueiredo, B. I. C.; Saraiva, M. A. F.; Pimenta, P. P. S.; Testasicca, M. C. S.; Sampaio, G. M. S.; Da Cunha, A. C.; Afonso, L. C. C.; de Queiroz, M. V.; Castro, I. M.; Brandão, R. L. New Lager Brewery Strains Obtained by Crossing Techniques Using Cachaça (Brazilian Spirit) Yeasts. Appl. Environ. Microbiol. 2017, 83(20), e01582–17. DOI: 10.1128/AEM.01582-17.
  • De Francesco, G.; Turchetti, B.; Sileoni, V.; Marconi, O.; Perretti, G. Screening of New Strains of Saccharomycodes Ludwigii and Zygosaccharomyces Rouxii to Produce Low-Alcohol Beer. J. Inst. Brew. 2015, 121(1), 113–121. DOI: 10.1002/jib.185.
  • Tronchoni, J.; Curiel, J. A.; Morales, P.; Torres-Pérez, R.; Gonzalez, R. Early Transcriptional Response to Biotic Stress in Mixed Starter Fermentations Involving Saccharomyces Cerevisiae and Torulaspora Delbrueckii. Int. J. Food Microbiol. 2017, 241, 60–68. DOI: 10.1016/J.IJFOODMICRO.2016.10.017.
  • Toh, D. W. K.; Chua, J. Y.; Liu, S. Q. Impact of Simultaneous Fermentation with Saccharomyces Cerevisiae and Torulaspora Delbrueckii on Volatile and Non-Volatile Constituents in Beer. LWT. 2018, 91, 26–33. DOI: 10.1016/J.LWT.2018.01.025.
  • Saerens, S.; Swiegers, J. Production of Low-Alcohol or Alcohol-Free Beer with Pichia Kluyveri Yeast Strains, March 2014.
  • Osburn, K.; Amaral, J.; Metcalf, S. R.; Nickens, D. M.; Rogers, C. M.; Sausen, C.; Caputo, R.; Miller, J.; Li, H.; Tennessen, J. M.;, et al. Primary Souring: A Novel Bacteria-Free Method for Sour Beer Production. Food Microbiol. 2018, 70, 76–84. DOI: 10.1016/J.FM.2017.09.007.
  • Lucio, O.; Pardo, I.; Krieger-Weber, S.; Heras, J. M.; Ferrer, S. Selection of Lactobacillus Strains to Induce Biological Acidification in Low Acidity Wines. LWT - Food Sci. Technol. 2016, 73, 334–341. DOI: 10.1016/J.LWT.2016.06.031.
  • Wang, S.; Li, S.; Zhao, H.; Gu, P.; Chen, Y.; Zhang, B.; Zhu, B. Acetaldehyde Released by Lactobacillus Plantarum Enhances Accumulation of Pyranoanthocyanins in Wine during Malolactic Fermentation. Food Res. Int. 2018, 108, 254–263. DOI: 10.1016/j.foodres.2018.03.032.
  • Brizuela, N. S.; Bravo-Ferrada, B. M.; Pozo-Bayón, M. Á.; Semorile, L.; Elizabeth Tymczyszyn, E. Changes in the Volatile Profile of Pinot Noir Wines Caused by Patagonian Lactobacillus Plantarum and Oenococcus Oeni Strains. Food Res. Int. 2018, 106, 22–28. DOI: 10.1016/J.FOODRES.2017.12.032.
  • Gobbi, M.; Comitini, F.; Domizio, P.; Romani, C.; Lencioni, L.; Mannazzu, I.; Lachancea Thermotolerans, C. M. And Saccharomyces Cerevisiae in Simultaneous and Sequential Co-Fermentation: A Strategy to Enhance Acidity and Improve the Overall Quality of Wine. Food Microbiol. 2013, 33(2), 271–281. DOI: 10.1016/j.fm.2012.10.004.
  • Villena, M. A.; Iranzo, J. F. Ú.; Pérez, A. I. B. β-Glucosidase Activity in Wine Yeasts: Application in Enology. Enzyme Microb. Technol. 2007, 40(3), 420–425. DOI: 10.1016/J.ENZMICTEC.2006.07.013.
  • Benito, S.; Morata, A.; Palomero, F.; González, M. C.; Suárez-Lepe, J. A. Formation of Vinylphenolic Pyranoanthocyanins by Saccharomyces Cerevisiae and Pichia Guillermondii in Red Wines Produced following Different Fermentation Strategies. Food Chem. 2011, 124(1), 15–23. DOI: 10.1016/J.FOODCHEM.2010.05.096.
  • Giovani, G.; Rosi, I.; Quantification, B. M. Characterization of Cell Wall Polysaccharides Released by Non-Saccharomyces Yeast Strains during Alcoholic Fermentation. Int. J. Food Microbiol. 2012, 160(2), 113–118. DOI: 10.1016/j.ijfoodmicro.2012.10.007.
  • Viana, F.; Belloch, C.; Vallés, S.; Manzanares, P. Monitoring a Mixed Starter of Hanseniaspora Vineae–Saccharomyces Cerevisiae in Natural Must: Impact on 2-Phenylethyl Acetate Production. Int. J. Food Microbiol. 2011, 151(2), 235–240. DOI: 10.1016/j.ijfoodmicro.2011.09.005.
  • Anfang, N.; Brajkovich, M.; Goddard, M. R. Co-Fermentation with Pichia Kluyveri Increases Varietal Thiol Concentrations in Sauvignon Blanc. Aust. J. Grape Wine Res. 2009, 15(1), 1–8. DOI: 10.1111/j.1755-0238.2008.00031.x.
  • Moreira, N.; Mendes, F.; Guedes de Pinho, P.; Hogg, T.; Vasconcelos, I. Heavy Sulphur Compounds, Higher Alcohols and Esters Production Profile of Hanseniaspora Uvarum and Hanseniaspora Guilliermondii Grown as Pure and Mixed Cultures in Grape Must. Int. J. Food Microbiol. 2008, 124(3), 231–238. DOI: 10.1016/j.ijfoodmicro.2008.03.025.
  • Beckner Whitener, M. E.; Carlin, S.; Jacobson, D.; Weighill, D.; Divol, B.; Conterno, L.; Du Toit, M.; Vrhovsek, U. Early Fermentation Volatile Metabolite Profile of Non-Saccharomyces Yeasts in Red and White Grape Must: A Targeted Approach. LWT - Food Sci. Technol. 2015, 64(1), 412–422. DOI: 10.1016/j.lwt.2015.05.018.
  • Sadineni, V.; Kondapalli, N.; Obulam, V. S. R. Effect of Co-Fermentation with Saccharomyces Cerevisiae and Torulaspora Delbrueckii or Metschnikowia Pulcherrima on the Aroma and Sensory Properties of Mango Wine. Ann. Microbiol. 2012, 62(4), 1353–1360. DOI: 10.1007/s13213-011-0383-6.
  • Comitini, F.; Gobbi, M.; Domizio, P.; Romani, C.; Lencioni, L.; Mannazzu, I.; Ciani, M. Selected Non-Saccharomyces Wine Yeasts in Controlled Multistarter Fermentations with Saccharomyces Cerevisiae. Food Microbiol. 2011, 28(5), 873–882. DOI: 10.1016/j.fm.2010.12.001.
  • De Benedictis, M.; Bleve, G.; Grieco, F.; Tristezza, M.; Tufariello, M.; Grieco, F. An Optimized Procedure for the Enological Selection of Non-Saccharomyces Starter Cultures. Antonie Van Leeuwenhoek. 2011, 99(2), 189–200. DOI: 10.1007/s10482-010-9475-8.
  • Rantsiou, K.; Dolci, P.; Giacosa, S.; Torchio, F.; Tofalo, R.; Torriani, S.; Suzzi, G.; Rolle, L.; Cocolin, L. Candida Zemplinina Can Reduce Acetic Acid Produced by Saccharomyces Cerevisiae in Sweet Wine Fermentations. Appl. Environ. Microbiol. 2012, 78(6), 1987–1994. DOI: 10.1128/AEM.06768-11.
  • Tofalo, R.; Schirone, M.; Torriani, S.; Rantsiou, K.; Cocolin, L.; Perpetuini, G.; Suzzi, G. Diversity of Candida Zemplinina Strains from Grapes and Italian Wines. Food Microbiol. 2012, 29(1), 18–26. DOI: 10.1016/J.FM.2011.08.014.
  • Hu, K.; Jin, G.-J.; Xu, Y.-H.; Tao, Y.-S. Wine Aroma Response to Different Participation of Selected Hanseniaspora Uvarum in Mixed Fermentation with Saccharomyces Cerevisiae. Food Res. Int. 2018, 108, 119–127. DOI: 10.1016/j.foodres.2018.03.037.
  • Sun, S. Y.; Chen, Z. X.; Jin, C. W. Combined Influence of Lactic Acid Bacteria Starter and Final PH on the Induction of Malolactic Fermentation and Quality of Cherry Wines. LWT. 2018, 89, 449–456. DOI: 10.1016/J.LWT.2017.11.023.
  • Jiang, J.; Sumby, K. M.; Sundstrom, J. F.; Grbin, P. R.; Jiranek, V. Directed Evolution of Oenococcus Oeni Strains for More Efficient Malolactic Fermentation in a Multi-Stressor Wine Environment. Food Microbiol. 2018, 73, 150–159. DOI: 10.1016/J.FM.2018.01.005.
  • Benito, S.; Palomero, F.; Morata, A.; Calderón, F.; Suárez-Lepe, J. A. New Applications for Schizosaccharomyces Pombe in the Alcoholic Fermentation of Red Wines. Int. J. Food Sci. Technol. 2012, 47(10), 2101–2108. DOI: 10.1111/j.1365-2621.2012.03076.x.
  • Barbosa, E. A.; Souza, M. T.; Diniz, R. H. S.; Godoy-Santos, F.; Faria-Oliveira, F.; Correa, L. F. M.; Alvarez, F.; Coutrim, M. X.; Afonso, R. J. C. F.; Castro, I. M.;, et al. Quality Improvement and Geographical Indication of Cachaça (Brazilian Spirit) by Using Locally Selected Yeast Strains. J. Appl. Microbiol. 2016, 121(4), 1038–1051. DOI: 10.1111/jam.13216.
  • Gomes, F. C. O.; Silva, C. L. C.; Marini, M. M.; Oliveira, E. S.; Rosa, C. A. Use of Selected Indigenous Saccharomyces Cerevisiae Strains for the Production of the Traditional Cachaça in Brazil. J. Appl. Microbiol. 2007, 103(6), 2438–2447. DOI: 10.1111/j.1365-2672.2007.03486.x.
  • Silva, C. L. C.; Vianna, C. R.; Cadete, R. M.; Santos, R. O.; Gomes, F. C. O.; Oliveira, E. S.; Rosa, C. A.; Selection, G. Chemo-Sensory Evaluation of Flocculent Starter Culture Strains of Saccharomyces Cerevisiae in the Large-Scale Production of Traditional Brazilian Cachaça. Int. J. Food Microbiol. 2009, 131(2–3), 203–210. DOI: 10.1016/j.ijfoodmicro.2009.02.027.
  • Duarte, W. F.; Amorim, J. C.; Schwan, R. F. The Effects of Co-Culturing Non-Saccharomyces Yeasts with S. Cerevisiae on the Sugar Cane Spirit (Cachaça) Fermentation Process. Antonie Van Leeuwenhoek. 2013, 103(1), 175–194. DOI: 10.1007/s10482-012-9798-8.
  • de Souza, A. P. G.; Vicente, M.; de, A.; Klein, R. C.; Fietto, L. G.; Coutrim, M. X.; Afonso, R. J.; de, C. F.; Araújo, L. D.; Da Silva, P. H. A.;, et al. Strategies to Select Yeast Starters Cultures for Production of Flavor Compounds in Cachaça Fermentations. Antonie Van Leeuwenhoek. 2012, 101(2), 379–392. DOI: 10.1007/s10482-011-9643-5.
  • Campos, C. R.; Silva, C. F.; Dias, D. R.; Basso, L. C.; Amorim, H. V.; Schwan, R. F. Features of Saccharomyces Cerevisiae as a Culture Starter for the Production of the Distilled Sugar Cane Beverage, Cachaça in Brazil. J. Appl. Microbiol. 2009, 108(6), 1871–1879. DOI: 10.1111/j.1365-2672.2009.04587.x.
  • Watanabe, T.; Owari, K.; Hori, K.; Takahashi, K. Selection of Koji Mold Strain for Making Functional Miso as Rich Antimutagenic Activity. Nippon Shokuhin Kagaku Kogaku Kaishi. 2004, 51(12), 698–702. DOI: 10.3136/nskkk.51.698.
  • Kubo, Y.; Rooney, A. P.; Tsukakoshi, Y.; Nakagawa, R.; Hasegawa, H.; Kimura, K. Phylogenetic Analysis of Bacillus Subtilis Strains Applicable to Natto (Fermented Soybean) Production. Appl. Environ. Microbiol. 2011, 77(18), 6463–6469. DOI: 10.1128/AEM.00448-11.
  • Wei, Q.; Wolf-Hall, C.; Chang, K. C. Natto Characteristics as Affected by Steaming Time, Bacillus Strain, and Fermentation Time. J. Food Sci. 2001, 66(1), 167–173. DOI: 10.1111/j.1365-2621.2001.tb15601.x.
  • Sugiyama, S.;. Selection of Micro-Organisms for Use in the Fermentation of Soy Sauce. Food Microbiol. 1984, 1(4), 339–347. DOI: 10.1016/0740-0020(84)90067-4.
  • Heskamp, M.-L.; Barz, W. Expression of Proteases by Rhizopus Species during Tempeh Fermentation of Soybeans. Nahrung/Food. 1998, 42(01), 23–28. DOI: 10.1002/(SICI)1521-3803(199802)42:01<23::AID-FOOD23>3.0.CO;2-3.
  • Supriyanto,; Fujio, Y.; Hayakawa, I. Statistical Characterization of Tempeh Starter from the Aroma Components of Soybean Tempeh. In Developments in Food Engineering; Yano, T., Matsuno, R., Nakamura, K. Eds.; Springer US: Boston, MA, 1994; pp 522–524. DOI: 10.1007/978-1-4615-2674-2_167.
  • Pereira, G. V. M.; Carvalho Neto, D. P.; Medeiros, A. B. P.; Soccol, V. T.; Neto, E.; Woiciechowski, A. L.; Soccol, C. R. Potential of Lactic Acid Bacteria to Improve the Fermentation and Quality of Coffee during On-Farm Processing. Int. J. Food Sci. Technol. 2016, 51(7), 1689–1695. DOI: 10.1111/ijfs.13142.
  • Pereira, G. V.; de, M.; Soccol, V. T.; Pandey, A.; Medeiros, A. B. P.; Lara, J. M. R. A.; Gollo, A. L.; Soccol, C. R. Isolation, Selection and Evaluation of Yeasts for Use in Fermentation of Coffee Beans by the Wet Process. Int. J. Food Microbiol. 2014, 188, 60–66. DOI: 10.1016/j.ijfoodmicro.2014.07.008.
  • Lee, L. W.; Tay, G. Y.; Cheong, M. W.; Curran, P.; Yu, B.; Liu, S. Q. Modulation of the Volatile and Non-Volatile Profiles of Coffee Fermented with Yarrowia Lipolytica: II. Roasted Coffee. LWT. 2017, 80, 32–42. DOI: 10.1016/J.LWT.2017.01.070.
  • Silva, C. F.; Vilela, D. M.; de Souza Cordeiro, C.; Duarte, W. F.; Dias, D. R.; Schwan, R. F. Evaluation of a Potential Starter Culture for Enhance Quality of Coffee Fermentation. World J. Microbiol. Biotechnol. 2013, 29(2), 235–247. DOI: 10.1007/s11274-012-1175-2.
  • Lee, L. W.; Cheong, M. W.; Curran, P.; Yu, B.; Liu, S. Q. Modulation of Coffee Aroma via the Fermentation of Green Coffee Beans with Rhizopus Oligosporus: II. Effects of Different Roast Levels. Food Chem. 2016, 211, 925–936. DOI: 10.1016/j.foodchem.2016.05.073.
  • Pereira, G. V.; de, M.; Miguel, M. G.; da, C. P.; Ramos, C. L.; Schwan, R. F. Microbiological and Physicochemical Characterization of Small-Scale Cocoa Fermentations and Screening of Yeast and Bacterial Strains to Develop a Defined Starter Culture. Appl. Environ. Microbiol. 2012, 78(15), 5395–5405. DOI: 10.1128/AEM.01144-12.
  • Lefeber, T.; Janssens, M.; Camu, N.; De Vuyst, L. Kinetic Analysis of Strains of Lactic Acid Bacteria and Acetic Acid Bacteria in Cocoa Pulp Simulation Media toward Development of a Starter Culture for Cocoa Bean Fermentation. Appl. Environ. Microbiol. 2010, 76(23), 7708–7716. DOI: 10.1128/AEM.01206-10.
  • Lefeber, T.; Papalexandratou, Z.; Gobert, W.; Camu, N.; De Vuyst, L. On-Farm Implementation of a Starter Culture for Improved Cocoa Bean Fermentation and Its Influence on the Flavour of Chocolates Produced Thereof. Food Microbiol. 2012, 30(2), 379–392. DOI: 10.1016/j.fm.2011.12.021.
  • Batista, N. N.; Ramos, C. L.; Dias, D. R.; Pinheiro, A. C. M.; Schwan, R. F. The Impact of Yeast Starter Cultures on the Microbial Communities and Volatile Compounds in Cocoa Fermentation and the Resulting Sensory Attributes of Chocolate. J. Food Sci. Technol. 2016, 53(2), 1101–1110. DOI: 10.1007/s13197-015-2132-5.
  • Crafack, M.; Keul, H.; Eskildsen, C. E.; Petersen, M. A.; Saerens, S.; Blennow, A.; Skovmand-Larsen, M.; Swiegers, J. H.; Petersen, G. B.; Heimdal, H.;, et al. Impact of Starter Cultures and Fermentation Techniques on the Volatile Aroma and Sensory Profile of Chocolate. Food Res. Int. 2014, 63, 306–316. DOI: 10.1016/J.FOODRES.2014.04.032.
  • Jespersen, L.; Nielsen, D.; Honholt, S.; Occurrence, J. M. Diversity of Yeasts Involved in Fermentation of West African Cocoa Beans. FEMS Yeast Res. 2005, 5(4–5), 441–453. DOI: 10.1016/j.femsyr.2004.11.002.
  • Sandhya, M. V. S.; Yallappa, B. S.; Varadaraj, M. C.; Puranaik, J.; Rao, L. J.; Janardhan, P.; Murthy, P. S. Inoculum of the Starter Consortia and Interactive Metabolic Process in Enhancing Quality of Cocoa Bean (Theobroma Cacao) Fermentation. LWT - Food Sci. Technol. 2016, 65, 731–738. DOI: 10.1016/J.LWT.2015.09.002.
  • Batista, N. N.; Ramos, C. L.; Ribeiro, D. D.; Pinheiro, A. C. M.; Schwan, R. F. Dynamic Behavior of Saccharomyces Cerevisiae, Pichia Kluyveri and Hanseniaspora Uvarum during Spontaneous and Inoculated Cocoa Fermentations and Their Effect on Sensory Characteristics of Chocolate. LWT - Food Sci. Technol. 2015, 63(1), 221–227. DOI: 10.1016/J.LWT.2015.03.051.
  • Gibbons, J. G.; Rinker, D. C. The Genomics of Microbial Domestication in the Fermented Food Environment. Curr. Opin. Genet. Dev. 2015, 35, 1–8. DOI: 10.1016/J.GDE.2015.07.003.
  • Gallone, B.; Mertens, S.; Gordon, J. L.; Maere, S.; Verstrepen, K. J.; Origins, S. J.; Evolution, D. Diversity of Saccharomyces Beer Yeasts. Curr. Opin. Biotechnol. 2018, 49, 148–155. DOI: 10.1016/j.copbio.2017.08.005.
  • Gallone, B.; Steensels, J.; Prahl, T.; Soriaga, L.; Saels, V.; Herrera-Malaver, B.; Merlevede, A.; Roncoroni, M.; Voordeckers, K.; Miraglia, L.;, et al. Domestication and Divergence of Saccharomyces Cerevisiae Beer Yeasts. Cell.2016, 166(6), 1397–1410.e16. DOI: 10.1016/j.cell.2016.08.020.
  • Fleet, G. H.;. Wine Yeasts for the Future. FEMS Yeast Res. 2008, 8(7), 979–995. DOI: 10.1111/j.1567-1364.2008.00427.x.
  • Vendramin, V.; Treu, L.; Campanaro, S.; Lombardi, A.; Corich, V.; Genome Comparison, G. A. Physiological Characterization of Eight Streptococcus Thermophilus Strains Isolated from Italian Dairy Products. Food Microbiol. 2017, 63, 47–57. DOI: 10.1016/J.FM.2016.11.002.
  • Saichana, N.; Matsushita, K.; Adachi, O.; Frébort, I.; Frebortova, J. Acetic Acid Bacteria: A Group of Bacteria with Versatile Biotechnological Applications. Biotechnol. Adv. 2015, 33(6), 1260–1271. DOI: 10.1016/j.biotechadv.2014.12.001.
  • Ouattara, H. D.; Ouattara, H. G.; Droux, M.; Reverchon, S.; Nasser, W.; Niamke, S. L. Lactic Acid Bacteria Involved in Cocoa Beans Fermentation from Ivory Coast: Species Diversity and Citrate Lyase Production. Int. J. Food Microbiol. 2017, 256, 11–19. DOI: 10.1016/j.ijfoodmicro.2017.05.008.
  • Yousef, A. E.; Courtney, P. D. Basics of Stress Adaptation and Implications in New-Generation Foods. In Microbial Stress Adaptation and Food Safety; Yousef, A.E., Juneja, V.K., Eds.; CRC Press: Boca Raton, 2003, 2–8.
  • Bauer, F. F.; Pretorius, I. S. Yeast Stress Response and Fermentation Efficiency: How to Survive the Making of Wine -A Review. S. Afr. J. Enol. Vitic. 2000, 21, 27–46.
  • Csonka, L. N.;. Physiological and Genetic Responses of Bacteria to Osmotic Stress. Microbiol. Rev. 1989, 53(1), 121–147.
  • Mas, A.; Torija, M. J.; García-Parrilla, M.; del, C.; Troncoso, A. M. Acetic Acid Bacteria and the Production and Quality of Wine Vinegar. Sci. World J. 2014, 2014, 1–6. DOI: 10.1155/2014/394671.
  • Trček, J.; Mira, N. P.; Jarboe, L. R. Adaptation and Tolerance of Bacteria against Acetic Acid. Appl. Microbiol. Biotechnol. 2015, 99(15), 6215–6229. DOI: 10.1007/s00253-015-6762-3.
  • Trček, J.; Ramuš, J.; Raspor, P. Phenotypic Characterization and RAPD-PCR Profiling of Acetobacter Sp. Isolated from Spirit Vinegar Production. Food Technol. Biotechnol. 1997, 35(1), 63–67.
  • Meersman, E.; Steensels, J.; Struyf, N.; Paulus, T.; Saels, V.; Mathawan, M.; Allegaert, L.; Vrancken, G.; Verstrepen, K. J. Tuning Chocolate Flavor through Development of Thermotolerant Saccharomyces Cerevisiae Starter Cultures with Increased Acetate Ester Production. Appl. Environ. Microbiol. 2016, 82(2), 732–746. DOI: 10.1128/AEM.02556-15.
  • Sieuwerts, S.; Molenaar, D.; van Hijum, S. A. F. T.; Beerthuyzen, M.; Stevens, M. J. A.; Janssen, P. W. M.; Ingham, C. J.; de Bok, F. A. M.; de Vos, W. M.; van Hylckama Vlieg, J. E. T. Mixed-Culture Transcriptome Analysis Reveals the Molecular Basis of Mixed-Culture Growth in Streptococcus Thermophilus and Lactobacillus Bulgaricus. Appl. Environ. Microbiol. 2010, 76(23), 7775–7784. DOI: 10.1128/AEM.01122-10.
  • Parsons, J. B.; Rock, C. O. Bacterial Lipids: Metabolism and Membrane Homeostasis. Prog. Lipid Res. 2013, 52(3), 249–276. DOI: 10.1016/J.PLIPRES.2013.02.002.
  • Tolner, B.; Poolman, B.; Konings, W. N. Adaptation of Microorganisms and Their Transport Systems to High Temperatures. Comp. Biochem. Physiol. A. Physiol. 1997, 118(3), 423–428. DOI: 10.1016/S0300-9629(97)00003-0.
  • Bai, F. W.; Anderson, W. A.; Moo-Young, M. Ethanol Fermentation Technologies from Sugar and Starch Feedstocks. Biotechnol. Adv. 2008, 26(1), 89–105. DOI: 10.1016/J.BIOTECHADV.2007.09.002.
  • Soubeyrand, V.; Julien, A.; Sablayrolles, J.-M. Rehydration Protocols for Active Dry Wine Yeasts and the Search for Early Indicators of Yeast Activity. Am. J. Enol. Vitic. 2006, 57, 4.
  • Berthels, N.; Corderootero, R.; Bauer, F.; Thevelein, J.; Pretorius, I. S. Discrepancy in Glucose and Fructose Utilisation during Fermentation by Wine Yeast Strains. FEMS Yeast Res. 2004, 4(7), 683–689. DOI: 10.1016/j.femsyr.2004.02.005.
  • Chatonnet, P.; Dubourdieu, D.; Boidron, J. N. The Influence of Brettanomyces/Dekkera Sp. Yeasts and Lactic Acid Bacteria on the Ethylphenol Content of Red Wines. Am. J. Enol. Vitic. 1995, 46(4), 463–468.
  • Adachi, O.; Moonmangmee, D.; Toyama, H.; Yamada, M.; Shinagawa, E.; Matsushita, K. New Developments in Oxidative Fermentation. Appl. Microbiol. Biotechnol. 2003, 60(6), 643–653. DOI: 10.1007/s00253-002-1155-9.
  • Gullo, M.; Giudici, P. Acetic Acid Bacteria in Traditional Balsamic Vinegar: Phenotypic Traits Relevant for Starter Cultures Selection. Int. J. Food Microbiol. 2008, 125(1), 46–53. DOI: 10.1016/j.ijfoodmicro.2007.11.076.
  • Solieri, L.; Chand Dakal, T.; Giudici, P. Zygosaccharomyces Sapae Sp. Nov., Isolated from Italian Traditional Balsamic Vinegar. Int. J. Syst. Evol. Microbiol. 2013, 63(Pt 1), 364–371. DOI: 10.1099/ijs.0.043323-0.
  • Sievers, M.; Teuber, M. The Microbiology and Taxonomy of Acetobacter Europaeus in Commercial Vinegar Production. J. Appl. Bacteriol. 1995, 79, 84–95.
  • Trcek, J.; Toyama, H.; Czuba, J.; Misiewicz, A.; Matsushita, K. Correlation between Acetic Acid Resistance and Characteristics of PQQ-Dependent ADH in Acetic Acid Bacteria. Appl. Microbiol. Biotechnol. 2006, 70(3), 366–373. DOI: 10.1007/s00253-005-0073-z.
  • Steiner, P.; Sauer, U. Long-Term Continuous Evolution of Acetate ResistantAcetobacter Aceti. Biotechnol. Bioeng. 2003, 84(1), 40–44. DOI: 10.1002/bit.10741.
  • Mamlouk, D.; Gullo, M. Acetic Acid Bacteria: Physiology and Carbon Sources Oxidation. Indian J. Microbiol. 2013, 53(4), 377–384. DOI: 10.1007/s12088-013-0414-z.
  • Solieri, L.; Giudici, P. Yeast Starter Selection for Traditional Balsamic Vinegar. Ind. Delle Bevande. 2005, 34, 526–531.
  • Wang, Z.-M.; Lu, Z.-M.; Shi, J.-S.; Xu, Z.-H. Exploring Flavour-Producing Core Microbiota in Multispecies Solid-State Fermentation of Traditional Chinese Vinegar. Sci. Rep. 2016, 6(1), 26818. DOI: 10.1038/srep26818.
  • Buckenhüskes, H. J.;. Selection Criteria for Lactic Acid Bacteria to Be Used as Starter Cultures for Various Food Commodities. FEMS Microbiol. Rev. 1993, 12(1–3), 253–271. DOI: 10.1016/0168-6445(93)90067-J.
  • Bacus, J. N.;. Fermented Meat and Poultry Products. Adv. Meat Res. 1986, 2, 123–164.
  • Breidt, F.; McFeeters, R. F.; Perez-Diaz, I.; Lee, C. H. Fermented Vegetables. In Food Microbiology: Fundamentals and Frontiers; Doyle, M.P., Buchanan, R.L., Eds.; ASM Press: Washington, 2013; pp 841–856.
  • Kargozari, M.; Moini, S.; Akhondzadeh Basti, A.; Emam-Djomeh, Z.; Gandomi, H.; Revilla Martin, I.; Ghasemlou, M.; Carbonell-Barrachina, Á. A. Effect of Autochthonous Starter Cultures Isolated from Siahmazgi Cheese on Physicochemical, Microbiological and Volatile Compound Profiles and Sensorial Attributes of Sucuk, a Turkish Dry-Fermented Sausage. Meat Sci. 2014, 97(1), 104–114. DOI: 10.1016/J.MEATSCI.2014.01.013.
  • Erkkilä, S.; Petäjä, E. Screening of Commercial Meat Starter Cultures at Low PH and in the Presence of Bile Salts for Potential Probiotic Use. Meat Sci. 2000, 55(3), 297–300. DOI: 10.1016/S0309-1740(99)00156-4.
  • Villani, F.; Casaburi, A.; Pennacchia, C.; Filosa, L.; Russo, F.; Ercolini, D. Microbial Ecology of the Soppressata of Vallo Di Diano, a Traditional Dry Fermented Sausage from Southern Italy, and in Vitro and in Situ Selection of Autochthonous Starter Cultures. Appl. Environ. Microbiol. 2007, 73(17), 5453–5463. DOI: 10.1128/AEM.01072-07.
  • Lorenzo, J. M.; Munekata, P. E. S.; Domínguez, R. Role of Autochthonous Starter Cultures in the Reduction of Biogenic Amines in Traditional Meat Products. Curr. Opin. Food Sci. 2017, 14, 61–65. DOI: 10.1016/J.COFS.2017.01.009.
  • Bover-Cid, S.; Hugas, M.; Izquierdo-Pulido, M.; Vidal-Carou, M. C. Reduction of Biogenic Amine Formation Using a Negative Amino Acid-Decarboxylase Starter Culture for Fermentation of Fuet Sausages. J. Food Prot. 2000, 63(2), 237–243. DOI: 10.4315/0362-028X-63.2.237.
  • Komprda, T.; Smělá, D.; Pechová, P.; Kalhotka, L.; Štencl, J.; Klejdus, B. Effect of Starter Culture, Spice Mix and Storage Time and Temperature on Biogenic Amine Content of Dry Fermented Sausages. Meat Sci. 2004, 67, 607–616. DOI: 10.1016/j.meatsci.2004.01.003.
  • Tosukhowong, A.; Visessanguan, W.; Pumpuang, L.; Tepkasikul, P.; Panya, A.; Valyasevi, R. Biogenic Amine Formation in Nham, a Thai Fermented Sausage, and the Reduction by Commercial Starter Culture, Lactobacillus Plantarum BCC 9546. Food Chem. 2011, 129(3), 846–853. DOI: 10.1016/j.foodchem.2011.05.033.
  • Yongjin, H.; Wenshui, X.; Xiaoyong, L. Changes in Biogenic Amines in Fermented Silver Carp Sausages Inoculated with Mixed Starter Cultures. Food Chem. 2007, 104, 188–195. DOI: 10.1016/j.foodchem.2006.11.023.
  • Dicks, L. M. T.; Mellett, F. D.; Hoffman, L. C. Use of Bacteriocin-Producing Starter Cultures of Lactobacillus Plantarum and Lactobacillus Curvatus in Production of Ostrich Meat Salami. Meat Sci. 2004, 66(3), 703–708. DOI: 10.1016/J.MEATSCI.2003.07.002.
  • Noonpakdee, W.; Santivarangkna, C.; Jumriangrit, P.; Sonomoto, K.; Panyim, S. Isolation of Nisin-Producing Lactococcus Lactis WNC 20 Strain from Nham, a Traditional Thai Fermented Sausage. Int. J. Food Microbiol. 2003, 81, 137–145.
  • Steinkraus, K. H.;. Lactic Acid Fermentation in the Production of Foods from Vegetables, Cereals and Legumes. Antonie van Leeuwenhoek. 1983, 49, 337–348.
  • Daeschel, M. A.; McFeeters, R. F.; Fleming, H. P.; Klaenhammer, T. R.; Sanozky, R. B. Mutation and Selection of Lactobacillus Plantarum Strains that Do Not Produce Carbon Dioxide from Malate. Appl. Environ. Microbiol. 1984, 47(2), 419–420.
  • Kondyli, E.; Katsiari, M. C.; Masouras, T.; Voutsinas, L. P. Free Fatty Acids and Volatile Compounds of Low-Fat Feta-Type Cheese Made with a Commercial Adjunct Culture. Food Chem. 2002, 79, 199–205. DOI: 10.1016/S0308-8146(02)00132-2.
  • McSweeney, P. L. H.; Sousa, M. J. Biochemical Pathways for the Production of Flavour Compounds in Cheeses during Ripening: A Review. Lait. 2000, 80(3), 293–324. DOI: 10.1051/lait:2000127.
  • Smid, E. J.; Kleerebezem, M. Production of Aroma Compounds in Lactic Fermentations. Annu. Rev. Food Sci. Technol. 2014, 5(1), 313–326. DOI: 10.1146/annurev-food-030713-092339.
  • Smit, G.; Smit, B.; Engels, W. Flavour Formation by Lactic Acid Bacteria and Biochemical Flavour Profiling of Cheese Products. FEMS Microbiol. Rev. 2005, 29(3), 591–610. DOI: 10.1016/j.femsre.2005.04.002.
  • Cheng, H.;. Volatile Flavor Compounds in Yogurt: A Review. Crit. Rev. Food Sci. Nutr. 2010, 50(10), 938–950. DOI: 10.1080/10408390903044081.
  • Guldfeldt, L. U.; Sorensen, K. I.; Stroman, P.; Behrndt, H.; Williams, D.; Johansen, E. Effect of Starter Cultures with a Genetically Modified Peptidolytic or Lytic System on Cheddar Cheese Ripening. Int. Dairy J. 2001, 11, 373–382. DOI: 10.1016/S0958-6946(01)00066-8.
  • Menéndez, S.; Centeno, J. A.; Godínez, R.; Rodríguez-Otero, J. L. Effects of Lactobacillus Strains on the Ripening and Organoleptic Characteristics of Arzúa-Ulloa Cheese. Int. J. Food Microbiol. 2000, 59(1–2), 37–46.
  • Nieto-Arribas, P.; Seseña, S.; Poveda, J. M.; Palop, L.; Genotypic, C. L. Technological Characterization of Leuconostoc Isolates to Be Used as Adjunct Starters in Manchego Cheese Manufacture. Food Microbiol. 2010, 27, 85–93. DOI: 10.1016/j.fm.2009.08.006.
  • Ott, A.; Fay, L. B.; Determination, C. A. Origin of the Aroma Impact Compounds of Yogurt Flavor. J. Agric. Food Chem. 1997, 45(3), 850–858. DOI: 10.1021/JF960508E.
  • Tamime, A. Y.; Robinson, R. K. In Yoghurt: Science and Technology; CRC Press: Boca Raton, 1985.
  • Liong, M.-T.; Lee, B.-H.; Choi, S.-B.; Lew, L.-C.; Lau, A.-S.-Y.; Daliri, E. B.-M. Cholesterol-Lowering Effects of Probiotics and Prebiotics. In Probiotics and Prebiotics: Current Research and Future Trends; Venema, K., Do Carmo, A.P. Eds.; Caister Academic Press: Norfolk, 2015; pp 429–446. DOI: 10.21775/9781910190098.29.
  • Marchesi, J. R.; Adams, D. H.; Fava, F.; Hermes, G. D. A.; Hirschfield, G. M.; Hold, G.; Quraishi, M. N.; Kinross, J.; Smidt, H.; Tuohy, K. M.;, et al. The Gut Microbiota and Host Health: A New Clinical Frontier. Gut.2016, 65(2), 330–339. DOI: 10.1136/gutjnl-2015-309990.
  • Zoumpopoulou, G.; Pot, B.; Tsakalidou, E.; Dairy Probiotics:, P. K. Beyond the Role of Promoting Gut and Immune Health. Int. Dairy J. 2017, 67, 46–60. DOI: 10.1016/J.IDAIRYJ.2016.09.010.
  • Pereira, G.; V. de, M.; Coelho, B. D. O.; Magalhães Júnior, A. I.; Thomaz-Soccol, V.; Soccol, C. R. How to Select A Probiotic? A Review and Update of Methods and Criteria. Biotechnol. Adv. 2018, in press. DOI: 10.1016/j.biotechadv.2018.09.003.
  • Kołożyn-Krajewska, D.; Dolatowski, Z. J. Probiotic Meat Products and Human Nutrition. Process Biochem. 1761–1772, 2012(47). DOI: 10.1016/j.procbio.2012.09.017.
  • Ross, R. P.; Desmond, C.; Fitzgerald, G. F.; Stanton, C. Overcoming the Technological Hurdles in the Development of Probiotic Foods. J. Appl. Microbiol. 2005, 98(6), 1410–1417. DOI: 10.1111/j.1365-2672.2005.02654.x.
  • Da Conceição, L. E. F. R.; Saraiva, M. A. F.; Diniz, R. H. S.; Oliveira, J.; Barbosa, G. D.; Alvarez, F.; Da Mata Correa, L. F.; Mezadri, H.; Coutrim, M. X.; Afonso, R. J.;, et al. Biotechnological Potential of Yeast Isolates from Cachaça: The Brazilian Spirit. J. Ind. Microbiol. Biotechnol.2015, 42(2), 237–246. DOI: 10.1007/s10295-014-1528-y.
  • Torriani, S.; Felis, G. E.; Selection Criteria, F. F. Tools for Malolactic Starters Development: An Update. Ann. Microbiol. 2011, 61(1), 33–39. DOI: 10.1007/s13213-010-0072-x.
  • Quirós, M.; Rojas, V.; Gonzalez, R.; Morales, P. Selection of Non-Saccharomyces Yeast Strains for Reducing Alcohol Levels in Wine by Sugar Respiration. Int. J. Food Microbiol. 2014, 181, 85–91. DOI: 10.1016/J.IJFOODMICRO.2014.04.024.
  • Contreras, A.; Hidalgo, C.; Henschke, P. A.; Chambers, P. J.; Curtin, C.; Varela, C. Evaluation of Non-Saccharomyces Yeasts for the Reduction of Alcohol Content in Wine. Appl. Environ. Microbiol. 2014, 80(5), 1670–1678. DOI: 10.1128/AEM.03780-13.
  • Rossouw, D.; Bauer, F. F. Exploring the Phenotypic Space of Non-Saccharomyces Wine Yeast Biodiversity. Food Microbiol. 2016, 55, 32–46. DOI: 10.1016/J.FM.2015.11.017.
  • Englezos, V.; Rantsiou, K.; Torchio, F.; Rolle, L.; Gerbi, V.; Cocolin, L. Exploitation of the Non-Saccharomyces Yeast Starmerella Bacillaris (Synonym Candida Zemplinina) in Wine Fermentation: Physiological and Molecular Characterizations. Int. J. Food Microbiol. 2015, 199, 33–40. DOI: 10.1016/j.ijfoodmicro.2015.01.009.
  • Gobbi, M.; De Vero, L.; Solieri, L.; Comitini, F.; Oro, L.; Giudici, P.; Ciani, M. Fermentative Aptitude of Non-Saccharomyces Wine Yeast for Reduction in the Ethanol Content in Wine. Eur. Food Res. Technol. 2014, 239(1), 41–48. DOI: 10.1007/s00217-014-2187-y.
  • López, M. C.; Mateo, J. J.; Maicas, S. Screening of β-Glucosidase and β-Xylosidase Activities in Four Non- Saccharomyces Yeast Isolates. J. Food Sci. 2015, 80(8), C1696–C1704. DOI: 10.1111/1750-3841.12954.
  • Vicente, M. D. A.; Fietto, L. G.; Castro, I.; de, M.; Gonçalves Dos Santos, A. N.; Coutrim, M. X.; Brandão, R. L. Isolation of Saccharomyces Cerevisiae Strains Producing Higher Levels of Flavoring Compounds for Production of “Cachaça” the Brazilian Sugarcane Spirit. Int. J. Food Microbiol. 2006, 108(1), 51–59. DOI: 10.1016/J.IJFOODMICRO.2005.10.018.
  • Kaewkrod, A.; Niamsiri, N.; Likitwattanasade, T.; Lertsiri, S. Activities of Macerating Enzymes are Useful for Selection of Soy Sauce Koji. LWT. 2018, 89, 735–739. DOI: 10.1016/J.LWT.2017.11.020.
  • Luh, B. S.;. Industrial Production of Soy Sauce. J. Ind. Microbiol. 1995, 14(6), 467–471. DOI: 10.1007/BF01573959.
  • Kanbe, C.; Uchida, K. Citrate Metabolism by Pediococcus Halophilus. Appl. Environ. Microbiol. 1987, 53(6), 1257–1262.
  • Hesseltine, C. W.; Miso, S. K., III. Pure Culture Fermentation with Saccharomyces Rouxii. Appl. Microbiol. 1961, 9(6), 515–518.
  • Omolola, M. O.; Otunola, E. T. Preliminary Studies on Tempeh Flour Produced from Three Different Rhizopus Species. Int. J. Biotechnol. Food Sci. 2013, 1(5), 90–96.
  • Starzyńska-Janiszewska, A.; Stodolak, B.; Mickowska, B. Effect of Controlled Lactic Acid Fermentation on Selected Bioactive and Nutritional Parameters of Tempeh Obtained from Unhulled Common Bean (Phaseolus Vulgaris) Seeds. J. Sci. Food Agric. 2014, 94(2), 359–366. DOI: 10.1002/jsfa.6385.
  • Keuth, S.; Bisping, B. Formation of Vitamins by Pure Cultures of Tempe Moulds and Bacteria during the Tempe Solid Substrate Fermentation. J. Appl. Bacteriol. 1993, 75(5), 427–434. DOI: 10.1111/j.1365-2672.1993.tb02798.x.
  • De Vuyst, L.; Weckx, S. The Cocoa Bean Fermentation Process: From Ecosystem Analysis to Starter Culture Development. J. Appl. Microbiol. 2016, 121(1), 5–17. DOI: 10.1111/jam.13045.
  • Evangelista, S. R.; Miguel, M. G. C. P.; Cordeiro, C. S.; Silva, C. F.; Pinheiro, A. C. M.; Schwan, R. F. Inoculation of Starter Cultures in a Semi-Dry Coffee (Coffea Arabica) Fermentation Process. Food Microbiol. 2014, 44, 87–95. DOI: 10.1016/j.fm.2014.05.013.
  • Evangelista, S. R.; Silva, C. F.; Miguel, M. G. P.; da, C.; Cordeiro, C.; de, S.; Pinheiro, A. C. M.; Duarte, W. F.; Schwan, R. F. Improvement of Coffee Beverage Quality by Using Selected Yeasts Strains during the Fermentation in Dry Process. Food Res. Int. 2014, 61, 183–195. DOI: 10.1016/j.foodres.2013.11.033.
  • Laulund, S.; Wind, A.; Derkx, P. M. F.; Regulatory, Z. V. Safety Requirements for Food Cultures. Microorganisms. 2017, 5, 28. DOI: 10.3390/microorganisms5020028.
  • Ricci, A.; Allende, A.; Bolton, D.; Chemaly, M.; Davies, R.; Girones, R.; Koutsoumanis, K.; Salvador, P.; Lindqvist, R.; Nørrung, B.;, et al. Update of the List of QPS-Recommended Biological Agents Intentionally Added to Food or Feed as Notified to EFSA 8: Suitability of Taxonomic Units Notified to EFSA until March 2018. Efsa J.2018, 16(7), 5315. DOI: 10.2903/j.efsa.2018.5315.
  • Barlow, S.; Chesson, A.; Collins, J.; Fernandes, T.; Flynn, A.; Hardy, T.; Jansson, B.; Knaap, A.; Kuiper, H.; Le, N. P.;; et al. Opinion of the Scientific Committee on a Request from EFSA Related to a Generic Approach to the Safety Assessment by EFSA of Microorganisms Used in Food/Feed and the Production of Food/Feed Additives. Efsa J. 2005, 226, 1–12.
  • FDA. Microorganisms & Microbial-Derived Ingredients Used in Food (Partial List).
  • Ohi, H.; Okazaki, N.; Uno, S.; Miura, M.; Hiramatsu, R. Chromosomal DNA Patterns and Gene Stability of Pichia Pastoris. Yeast. 1998, 14(10), 895–903. DOI: 10.1002/(SICI)1097-0061(199807)14:10<895::AID-YEA288>3.0.CO;2-9.
  • Vancanneyt, M.; Huys, G.; Lefebvre, K.; Vankerckhoven, V.; Goossens, H.; Swings, J. Intraspecific Genotypic Characterization of Lactobacillus Rhamnosus Strains Intended for Probiotic Use and Isolates of Human Origin. Appl. Environ. Microbiol. 2006, 72(8), 5376–5383. DOI: 10.1128/AEM.00091-06.
  • Grunert, K. G.; Bredahl, L.; Scholderer, J. Four Questions on European Consumers ’ Attitudes toward the Use of Genetic Modification in Food Production. Innov. Food Sci. Emerg. Technol. 2003, 4, 435–445. DOI: 10.1016/S1466-8564.
  • Mills, S.; Sullivan, O. O.; Hill, C.; Fitzgerald, G.; Ross, R. P. The Changing Face of Dairy Starter Culture Research : From Genomics to Economics. Int. J. Dairy Technol. 2010, 63(2), 149–170. DOI: 10.1111/j.1471-0307.2010.00563.x.
  • de Vos, W. M.;. Safe and Sustainable Systems for Food-Grade Fermentations by Genetically Modified Lactic Acid Bacteria. Int. Dairy J. 1999, 9, 3–10. DOI: 10.1016/S0958-6946(99)00038-2.
  • Howell, K. S.; Klein, M.; Swiegers, J. H.; Hayasaka, Y.; Elsey, G. M.; Fleet, G. H.; Høj, P. B.; Pretorius, I. S.; Lopes, M. A. B. Genetic Determinants of Volatile-Thiol Release by Saccharomyces Cerevisiae during Wine Fermentation. Appl. Environ. Microbiol. 2005, 71(9), 5420–5426. DOI: 10.1128/AEM.71.9.5420.
  • Wu, Q.; Tun, H. M.; Leung, F. C.; Shah, N. P. Genomic Insights into High Exopolysaccharide-Producing Dairy Starter Bacterium Streptococcus Thermophilus ASCC 1275. Sci. Rep. 2014, 4, 4974. DOI: 10.1038/srep04974.
  • Kastner, S.; Perreten, V.; Bleuler, H.; Hugenschmidt, G.; Lacroix, C.; Meile, L. Antibiotic Susceptibility Patterns and Resistance Genes of Starter Cultures and Probiotic Bacteria Used in Food. Syst. Appl. Microbiol. 2006, 29, 145–155. DOI: 10.1016/j.syapm.2005.07.009.
  • Broadbent, J. R.; Hughes, J. E.; Welker, D. L.; Tompkins, T. A.; Steele, L. Complete Genome Sequence for Lactobacillus Helveticus CNRZ 32, an Industrial Cheese Starter and Cheese Flavor Adjunct. Genome Announc. 2013, 1(4), 1–2. DOI: 10.1128/genomeA.00590-13.Copyright.
  • Rosenstein, R.; Nerz, C.; Biswas, L.; Resch, A.; Raddatz, G.; Schuster, S. C.; Götz, F. Genome Analysis of the Meat Starter Culture Bacterium Staphylococcus Carnosus TM300. Appl. Environ. Microbiol. 2009, 75(3), 811–822. DOI: 10.1128/AEM.01982-08.
  • Ferrocino, I.; Cocolin, L. Current Perspectives in Food-Based Studies Exploiting Multi-Omics Approaches. Curr. Opin. Food Sci. 2017, 13, 10–15. DOI: 10.1016/j.cofs.2017.01.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.