2,027
Views
69
CrossRef citations to date
0
Altmetric
Reviews

Cold Plasma as an Emerging Technique for Mycotoxin-Free Food: Efficacy, Mechanisms, and Trends

ORCID Icon &

References

  • Goldblatt, L. Aflatoxin : Scientific Background, Control, and Implications, New York: Academic Press, 1969, pp. 487.
  • Garcia, J. M.; Teixeira, P. Organic versus Conventional Food: A Comparison regarding Food Safety. Food Rev. Int. 2017, 33(4), 424–446. DOI: 10.1080/87559129.2016.1196490.
  • Anfossi, L.; Giovannoli, C.; Baggiani, C. Mycotoxin Detection. Curr. Opin. Biotechnol. 2016, 37, 120–126. DOI: 10.1016/j.copbio.2015.11.005.
  • Sulyok, M.; Krska, R.; Schuhmacher, R. Application of a Liquid Chromatography-Tandem Mass Spectrometric Method to Multi-Mycotoxin Determination in Raw Cereals and Evaluation of Matrix Effects. Food Addit. Contam. 2007, 24(10), 1184–1195. DOI: 10.1080/02652030701510004.
  • Kotretsou, S. I.; Koutsodimou, A. Overview of the Applications of Tandem Mass Spectrometry (MS/MS) in Food Analysis of Nutritionally Harmful Compounds. Food Rev. Int. 2006, 22(2), 125–172. DOI: 10.1080/87559120600574543.
  • Bueno, D.; Istamboulie, G.; Muñoz, R.; Marty, J. L. Determination of Mycotoxins in Food: A Review of Bioanalytical to Analytical Methods. Appl. Spectrosc. Rev. 2015, 50(9), 728–774. DOI: 10.1080/05704928.2015.1072092.
  • Hina, S.; Angela, S.; Assunta, R.; Annalisa, R.; Paolo, M. Silvana, C.Current Methods for Mycotoxins Analysis and Innovative Strategies for Their Reduction in Cereals: An Overview. J. Sci. Food Agric. 2018. DOI: 10.1002/jsfa.8933.
  • Tittlemier, S. A.; Cramer, B.; Dall’Asta, C.; Iha, M. H.; Lattanzio, V. M. T.; Malone, R. J.; Maragos, C.; Solfrizzo, M.; Stranska-Zachariasova, M.; Stroka, J. Developments in Mycotoxin Analysis: An Update for 2017-2018. World Mycotoxin J. 2019, 12(1), 3–29. DOI: 10.3920/WMJ2018.2398.
  • Zhang, L.; Dou, X.-W.; Zhang, C.; Logrieco, A.; Yang, M.-H. A. Review of Current Methods for Analysis of Mycotoxins in Herbal Medicines. Toxins (Basel). 2018, 10(2), 65. DOI: 10.3390/toxins10020065.
  • Kadakal, Ç.; Tepe, T. K. Is Ergosterol a New Microbiological Quality Parameter in Foods or Not? Food Rev. Int. 2018, 1–11. DOI: 10.1080/87559129.2018.1482495.
  • Livingstone, M. C.; Johnson, N. M.; Roebuck, B. D.; Kensler, T. W.; Groopman, J. D. Mycotoxins in Crops: A Threat to Human and Domestic Animal Health. Cancer Res. 2018, 78(13 Supplement), 5401. DOI: 10.1158/1538-7445.AM2018-5401.
  • White, B. L.; Johnson, B. L.; Morgan, R.; Shields, R. G. Changes in the Food Safety Landscape of Pet Foods in the United States. Food Feed Saf. Syst. Anal. 2017, 3–23. DOI: 10.1016/B978-0-12-811835-1.00001-4.
  • Schmale, D. G.; Munkvold, G. P. Mycotoxins in Crops: A Threat to Human and Domestic Animal Health. Plant Heal. Instr. 2009, 715–721. DOI: 10.1094/PHI-I-2009-0715-01.
  • Abrunhosa, L.; Morales, H.; Soares, C.; Calado, T.; Vila-Chã, A. S.; Pereira, M. Venâncio, A.A Review of Mycotoxins in Food and Feed Products in Portugal and Estimation of Probable Daily Intakes. Crit. Rev. Food Sci. Nutr. 2016, 56(2), 249–265. DOI: 10.1080/10408398.2012.720619.
  • Mousavi Khaneghah, A.; Fakhri, Y.; Raeisi, S.; Armoon, B.; Sant’Ana, A. S. Prevalence and Concentration of Ochratoxin A, Zearalenone, Deoxynivalenol and Total Aflatoxin in Cereal-Based Products: A Systematic Review and Meta-Analysis. Food Chem. Toxicol. 2018, 118, 830–848. DOI: 10.1016/j.fct.2018.06.037.
  • Commission Regulation (EC) No 1881/2006. Setting Maximum Levels for Certain Contaminants in Foodstuffs. https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32006R1881.
  • Commission Regulation No 2002/32/EC, E. D. The European Parliament and of the Council on Undesirable Substances in Animal Feed. https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:2002L0032:20061020:EN:PDF.
  • Pankaj, S. K.; Shi, H.; Keener, K. M. A. Review of Novel Physical and Chemical Decontamination Technologies for Aflatoxin in Food. Trends Food Sci. Technol. 2018, 71, 73–83. DOI: 10.1016/j.tifs.2017.11.007.
  • He, J.; Zhou, T.; Young, J. C.; Boland, G. J.; Scott, P. M. Chemical and Biological Transformations for Detoxification of Trichothecene Mycotoxins in Human and Animal Food Chains: A Review. Trends Food Sci. Technol. 2010, 21(2), 67–76. DOI: 10.1016/j.tifs.2009.08.002.
  • Campagnollo, F. B.; Ganev, K. C.; Khaneghah, A. M.; Portela, J. B.; Cruz, A. G.; Granato, D.; Corassin, C. H.; Oliveira, C. A. F.; Sant’Ana, A. S. The Occurrence and Effect of Unit Operations for Dairy Products Processing on the Fate of Aflatoxin M1: A Review. Food Control. 2016, 68, 310–329. DOI: 10.1016/j.foodcont.2016.04.007.
  • Zinedine, A.; Soriano, J. M.; Moltó, J. C.; Mañes, J. Review on the Toxicity, Occurrence, Metabolism, Detoxification, Regulations and Intake of Zearalenone: An Oestrogenic Mycotoxin. Food Chem. Toxicol. 2007, 45(1), 1–18. DOI: 10.1016/j.fct.2006.07.030.
  • Bata, Á.; Lásztity, R. Detoxification of Mycotoxin-Contaminated Food and Feed by Microorganisms. Trends Food Sci. Technol. 1999, 10(6–7), 223–228. DOI: 10.1016/S0924-2244(99)00050-3.
  • Freitas-Silva, O.; Venâncio, A. Ozone Applications to Prevent and Degrade Mycotoxins: A Review. Drug Metab. Rev. 2010, 42(4), 612–620. DOI: 10.3109/03602532.2010.484461.
  • Vila-Donat, P.; Marín, S.; Sanchis, V. Ramos, A. J.A Review of the Mycotoxin Adsorbing Agents, with an Emphasis on Their Multi-Binding Capacity, for Animal Feed Decontamination. Food Chem. Toxicol. 2018, 114, 246–259. DOI: 10.1016/j.fct.2018.02.044.
  • Hassan, F. F. Detection and Detoxification of Aflatoxin B1 from Fish Feedstuff Using Microwave and Ozone Gas. Ibn Al-Haitham J. Pure Appl. Sci. 2018, 31(1), 28–36. DOI: 10.30526/31.1.1847.
  • Kalagatur, N. K.; Mudili, V.; Kamasani, J. R.; Siddaiah, C. Discrete and Combined Effects of Ylang-Ylang (Cananga Odorata) Essential Oil and Gamma Irradiation on Growth and Mycotoxins Production by Fusarium Graminearum in Maize. Food Control. 2018, 94, 276–283. DOI: 10.1016/j.foodcont.2018.07.030.
  • Gavahian, M.; Farahnaky, A. Ohmic-Assisted Hydrodistillation Technology: A Review. Trends Food Sci. Technol. 2018, 72, 153–161. DOI: 10.1016/j.tifs.2017.12.014.
  • Lorenzo, J. M.; Mousavi Khaneghah, A.; Gavahian, M.; Marszałek, K.; Eş, I.; Munekata, P. E. S.; Ferreira, I. C. F. R.; Barba, F. J. Understanding the Potential Benefits of Thyme and Its Derived Products for Food Industry and Consumer Health: From Extraction of Value-Added Compounds to the Evaluation of Bioaccessibility, Bioavailability, Anti-Inflammatory, and Antimicrobial Activities. Crit. Rev. Food Sci. Nutr. 2018, 1–17. DOI: 10.1080/10408398.2018.1477730.
  • Wang, B.; Mahoney, N. E.; Khir, R.; Wu, B.; Zhou, C.; Pan, Z.; Ma, H. Degradation Kinetics of Aflatoxin B1 and B2 in Solid Medium by Using Pulsed Light Irradiation. J. Sci. Food Agric. 2018. DOI: 10.1002/jsfa.9058.
  • Halász, A.; Lásztity, R.; Abonyi, T.; Bata, Á. Decontamination of Mycotoxin-Containing Food and Feed by Biodegradation. Food Rev. Int. 2009, 25(4), 284–298. DOI: 10.1080/87559120903155750.
  • Kabak, B. The Fate of Mycotoxins during Thermal Food Processing. J. Sci. Food Agric. 2009, 89(4), 549–554. DOI: 10.1002/jsfa.3491.
  • Diao, E.; Hou, H.; Dong, H. Ozonolysis Mechanism and Influencing Factors of Aflatoxin B1: Areview. Trends Food Sci. Technol. 2013, 33(1), 21–26. DOI: 10.1016/j.tifs.2013.06.002.
  • Park, B. J.; Takatori, K.; Sugita-Konishi, Y.; Kim, I. H.; Lee, M. H.; Han, D. W.; Chung, K. H.; Hyun, S. O.; Park, J. C. Degradation of Mycotoxins Using Microwave-Induced Argon Plasma at Atmospheric Pressure. Surf. Coatings Technol. 2007, 201(9–11 SPEC. ISS.), 5733–5737. DOI: 10.1016/j.surfcoat.2006.07.092.
  • Chizoba Ekezie, F. G.; Sun, D. W.; Cheng, J. H. A Review on Recent Advances in Cold Plasma Technology for the Food Industry: Current Applications and Future Trends. Trends Food Sci. Technol. 2017, 69, 46–58. DOI: 10.1016/j.tifs.2017.08.007.
  • Gavahian, M.; Chu, Y. H.; Mousavi Khaneghah, A.; Barba, F. J.; Misra, N. N. A Critical Analysis of the Cold Plasma Induced Lipid Oxidation in Foods. Trends Food Sci. Technol. 2018, 77, 32–41. DOI: 10.1016/j.tifs.2018.04.009.
  • Scholtz, V.; Pazlarova, J.; Souskova, H.; Khun, J.; Julak, J. Nonthermal Plasma — A Tool for Decontamination and Disinfection. Biotechnol. Adv. 2015, 33(6), 1108–1119. DOI: 10.1016/j.biotechadv.2015.01.002.
  • Niemira, B. A. Cold Plasma Decontamination of Foods. Annu. Rev. Food Sci. Technol. 2012, 3(1), 125–142. DOI: 10.1146/annurev-food-022811-101132.
  • Becker, K. H.; Kogelschatz, U.; Schoenbach, K. H.; Barker, R. J. Non-Equilibrium Air Plasma at Atmospheric Pressure, Boca Raton: CRC Press, 2005, pp. 1–58.
  • Menkovska, M.; Mangova, M.; Dimitrov, K. Effect of Cold Plasma on Wheat Flour and Bread Making Quality. Maced. J. Anim. Sci. 2014, 4(1), 27–30.
  • Los, A.; Ziuzina, D.; Akkermans, S.; Boehm, D.; Cullen, P. J.; VanImpe, J.; Bourke, P. Improving Microbiological Safety and Quality Characteristics of Wheat and Barley by High Voltage Atmospheric Cold Plasma Closed Processing. Food Res. Int. 2018, 106, 509–521. DOI: 10.1016/j.foodres.2018.01.009.
  • Ji, H.; Dong, S.; Han, F.; Li, Y.; Chen, G.; Li, L.; Chen, Y. Effects of Dielectric Barrier Discharge (DBD) Cold Plasma Treatment on Physicochemical and Functional Properties of Peanut Protein. Food Bioprocess Technol. 2018, 11(2), 344–354. DOI: 10.1007/s11947-017-2015-z.
  • Coutinho, N. M.; Silveira, M. R.; Rocha, R. S.; Moraes, J.; Ferreira, M. V. S.; Pimentel, T. C.; Freitas, M. Q.; Silva, M. C.; Raices, R. S. L.; Ranadheera, C. S.; et al. Cold Plasma Processing of Milk and Dairy Products. Trends Food Sci. Technol. 2018, 74, 56–68. DOI: 10.1016/j.tifs.2018.02.008.
  • Gavahian, M.; Chu, Y.-H.; Jo, C. Prospective Applications of Cold Plasma for Processing Poultry Products: Benefits, Effects on Quality Attributes, and Limitations. Compr. Rev. Food Sci. Food Saf. 2019, 1–18. DOI: 10.1111/1541-4337.12460.
  • Kim, J. H.; Min, S. C. Moisture Vaporization-Combined Helium Dielectric Barrier Discharge-Cold Plasma Treatment for Microbial Decontamination of Onion Flakes. Food Control. 2018, 84, 321–329. DOI: 10.1016/j.foodcont.2017.08.018.
  • Wu, T. Y.; Sun, N. N.; Chau, C. F. Application of Corona Electrical Discharge Plasma on Modifying the Physicochemical Properties of Banana Starch Indigenous to Taiwan. J. Food Drug Anal. 2018, 26(1), 244–251. DOI: 10.1016/j.jfda.2017.03.005.
  • Bai, Y.; Chen, J.; Mu, H.; Zhang, C.; Li, B. Reduction of Dichlorvos and Omethoate Residues by O2plasma Treatment. J. Agric. Food Chem. 2009, 57(14), 6238–6245. DOI: 10.1021/jf900995d.
  • Plattner, J.; Kazner, C.; Naidu, G.; Wintgens, T.; Vigneswaran, S. Removal of Selected Pesticides from Groundwater by Membrane Distillation. Environ. Sci. Pollut. Res. 2018, 25(21), 20336–20347. DOI: 10.1007/s11356-017-8929-1.
  • Zhou, R.; Zhou, R.; Yu, F.; Xi, D.; Wang, P.; Li, J.; Wang, X.; Zhang, X.; Bazaka, K.; Ostrikov, K. (Ken). Removal of Organophosphorus Pesticide Residues from Lycium Barbarum by Gas Phase Surface Discharge Plasma. Chem. Eng. J. 2018, 342, 401–409. DOI: 10.1016/j.cej.2018.02.107.
  • Misra, N. N.; Moiseev, T.; Patil, S.; Pankaj, S. K.; Bourke, P.; Mosnier, J. P.; Keener, K. M.; Cullen, P. J. Cold Plasma in Modified Atmospheres for Post-Harvest Treatment of Strawberries. Food Bioprocess Technol. 2014, 7(10), 3045–3054. DOI: 10.1007/s11947-014-1356-0.
  • Gavahian, M.; Mousavi Khaneghah, A. Cold Plasma as a Tool for the Elimination of Food Contaminants: Recentadvances and Future Trends. Crit. Rev. Food Sci. Nutr. 2019, 1–12. DOI: 10.1080/10408398.2019.1584600.
  • Abbasian, E. G.; Bayat, M.; Nosrati, A. C. Study of the Effect of Plasma Jet on Fusarium Isolates with Ability to Produce DON Toxins. World Fam. Med. J.l/Middle East J. Fam. Med. 2017, 15(9), 204–207. DOI: 10.5742/MEWFM.2017.93126.
  • tenBosch, L.; Pfohl, K.; Avramidis, G.; Wieneke, S.; Viöl, W.; Karlovsky, P. Plasma-Based Degradation of Mycotoxins Produced by Fusarium, Aspergillus and Alternaria Species. Toxins (Basel). 2017, 9(3). DOI: 10.3390/toxins9030097.
  • Devi, Y.; Thirumdas, R.; Sarangapani, C.; Deshmukh, R. R.; Annapure, U. S. Influence of Cold Plasma on Fungal Growth and Aflatoxins Production on Groundnuts. Food Control. 2017, 77, 187–191. DOI: 10.1016/j.foodcont.2017.02.019.
  • Kříž, P.; Bartoš, P.; Havelka, Z.; Kadlec, J.; Olšan, O.; Špatenka, P.; Dienstbier, M. Influence of Plasma Treatment in Open Air on Mycotoxin Content and Grain Nutriments. Plasma Med. 2015, 5(2–4), 145–158. DOI: 10.1615/PlasmaMed.2016015752.
  • Ren, C. R.; Xiao, J. X.; Wang, S. Q.; Jiang, W. L.; Zhang, Y.; Liu, Z. Effect of Peanut Components on the Degradation of Aflatoxin B_1 Treated by Atmospheric Pressure Plasma. Sci. Technol. Cereal. Oils Foods. 2017, 2, 7.
  • Sakudo, A.; Toyokawa, Y.; Misawa, T.; Imanishi, Y. Degradation and Detoxification of Aflatoxin B1 Using Nitrogen Gas Plasma Generated by a Static Induction Thyristor as a Pulsed Power Supply. Food Control. 2017, 73, 619–626. DOI: 10.1016/j.foodcont.2016.09.014.
  • Shi, H.; Cooper, B.; Stroshine, R. L.; Ileleji, K. E.; Keener, K. M. Structures of Degradation Products and Degradation Pathways of Aflatoxin B1by High-Voltage Atmospheric Cold Plasma (HVACP) Treatment. J. Agric. Food Chem. 2017, 65(30), 6222–6230. DOI: 10.1021/acs.jafc.7b01604.
  • Shi, H.; Ileleji, K.; Stroshine, R. L.; Keener, K.; Jensen, J. L. Reduction of Aflatoxin in Corn by High Voltage Atmospheric Cold Plasma. Food Bioprocess Technol. 2017, 10(6), 1042–1052. DOI: 10.1007/s11947-017-1873-8.
  • Spadaro, D.; Garibaldi, A.; Prelle, A.; Vallauri, D.; Siciliano, I.; Cavallero, M. C.; Gullino, M. L. Efficacy of Cold Plasma in the Reduction of Aflatoxins on Hazelnuts. J. PLANT Pathol. 2015, 97, 23. DOI: 10.4454/JPP.V97I4SUP.005.
  • Suhem, K.; Matan, N.; Nisoa, M.; Matan, N. Inhibition of Aspergillus Flavus on Agar Media and Brown Rice Cereal Bars Using Cold Atmospheric Plasma Treatment. Int. J. Food Microbiol. 2013, 161(2), 107–111. DOI: 10.1016/j.ijfoodmicro.2012.12.002.
  • Ouf, S. A.; Basher, A. H.; Mohamed, A. A. H. Inhibitory Effect of Double Atmospheric Pressure Argon Cold Plasma on Spores and Mycotoxin Production of Aspergillus Niger Contaminating Date Palm Fruits. J. Sci. Food Agric. 2015, 95(15), 3204–3210. DOI: 10.1002/jsfa.7060.
  • Dasan, B. G.; Mutlu, M.; Boyaci, I. H. Decontamination of Aspergillus Flavus and Aspergillus Parasiticus Spores on Hazelnuts via Atmospheric Pressure Fluidized Bed Plasma Reactor. Int. J. Food Microbiol. 2016, 216, 50–59. DOI: 10.1016/j.ijfoodmicro.2015.09.006.
  • Šimončicová, J.; Kaliňáková, B.; Kováčik, D.; Medvecká, V.; Lakatoš, B.; Kryštofová, S.; Hoppanová, L.; Palušková, V.; Hudecová, D.; Ďurina, P.; et al. Cold Plasma Treatment Triggers Antioxidative Defense System and Induces Changes in Hyphal Surface and Subcellular Structures of Aspergillus Flavus. Appl. Microbiol. Biotechnol. 2018, 102(15), 6647–6658. DOI: 10.1007/s00253-018-9118-y.
  • Klarhöfer, L.; Viöl, W.; Maus-Friedrichs, W. Electron Spectroscopy on Plasma Treated Lignin and Cellulose. Holzforschung. 2010, 64(3), 331–336. DOI: 10.1515/HF.2010.048.
  • Siciliano, I.; Spadaro, D.; Prelle, A.; Vallauri, D.; Cavallero, M. C.; Garibaldi, A.; Gullino, M. L. Use of Cold Atmospheric Plasma to Detoxify Hazelnuts from Aflatoxins. Toxins (Basel). 2016, 8(5), 125. DOI: 10.3390/toxins8050125.
  • Ouf, S. A.; Mohamed, A. A. H.; El-Sayed, W. S. Fungal Decontamination of Fleshy Fruit Water Washes by Double Atmospheric Pressure Cold Plasma. Clean - Soil Air Water. 2016, 44(2), 134–142. DOI: 10.1002/clen.201400575.
  • Durek, J.; Schlüter, O.; Roscher, A.; Durek, P.; Fröhling, A. Inhibition or Stimulation of Ochratoxin A Synthesis on Inoculated Barley Triggered by Diffuse Coplanar Surface Barrier Discharge Plasma. Front. Microbiol. 2018, 9. DOI: 10.3389/fmicb.2018.02782.
  • tenBosch, L.; Pfohl, K.; Avramidis, G.; Wieneke, S.; Viöl, W.; Karlovsky, P.; Ten Bosch, L.; Pfohl, K.; Avramidis, G.; Wieneke, S.; et al. Plasma-Based Degradation of Mycotoxins Produced by Fusarium, Aspergillus and Alternaria Species. Toxins (Basel). 2017, 9(3), 97. DOI: 10.3390/toxins9030097.
  • Gröning, P.; Collaud, M.; Dietler, G.; Schlapbach, L. Plasma Modification of Polymethylmethacrylate and Polyethyleneterephthalate Surfaces. J. Appl. Phys. 1994, 76(2), 887–892. DOI: 10.1063/1.357765.
  • Vaseghi, N.; Bayat, M.; Nosrati, A. C.; Ghorannevis, M. Plasma Jet Impacts on Citrinin Production in Isolates Belonging to Penicillium Spp. Int. J. Mol. Clin. Microbiol. 2017, 7(2), 875–889.
  • Whitehead, J. C. The Chemistry of Cold Plasma. In Cold Plasma in Food and Agriculture, N. N. Misra, O. Schlüter, and P. J. Cullen, Eds., New York: Academic Press, 2016, pp. 53–81. doi:10.1016/B978-0-12-801365-6.00003-2
  • Hayashi, N.; Yagyu, Y.; Yonesu, A.; Shiratani, M. Sterilization Characteristics of the Surfaces of Agricultural Products Using Active Oxygen Species Generated by Atmospheric Plasma and UV Light. Jpn. J. Appl. Phys. 2014, 53(5 SPEC. ISSUE 1), 05FR03. DOI: 10.7567/JJAP.53.05FR03.
  • Avramidis, G.; Stüwe, B.; Wascher, R.; Bellmann, M.; Wieneke, S.; vonTiedemann, A.; Viöl, W. Fungicidal Effects of an Atmospheric Pressure Gas Discharge and Degradation Mechanisms. Surf. Coatings Technol. 2010, 205(SUPPL. 1), S405–S408. DOI: 10.1016/j.surfcoat.2010.08.141.
  • Lee, G. J.; Sim, G. B.; Choi, E. H.; Kwon, Y. W.; Kim, J. Y.; Jang, S.; Kim, S. H. Optical and Structural Properties of Plasma-Treated Cordyceps Bassiana Spores as Studied by Circular Dichroism, Absorption, and Fluorescence Spectroscopy. J. Appl. Phys. 2015, 117(2). DOI: 10.1063/1.4905194.
  • Dasan, B. G.; Boyaci, I. H.; Mutlu, M. Nonthermal Plasma Treatment of Aspergillus Spp. Spores on Hazelnuts in an Atmospheric Pressure Fluidized Bed Plasma System: Impact of Process Parameters and Surveillance of the Residual Viability of Spores. J. Food Eng. 2017, 196, 139–149. DOI: 10.1016/j.jfoodeng.2016.09.028.
  • Panngom, K.; Lee, S. H.; Park, D. H.; Sim, G. B.; Kim, Y. H.; Uhm, H. S.; Park, G.; Choi, E. H. Non-Thermal Plasma Treatment Diminishes Fungal Viability and up-Regulates Resistance Genes in a Plant Host. PLoS One. 2014, 9(6), e99300. DOI: 10.1371/journal.pone.0099300.
  • Hashizume, H.; Ohta, T.; Takeda, K.; Ishikawa, K.; Hori, M.; Ito, M. Quantitative Clarification of Inactivation Mechanism of Penicillium Digitatum Spores Treated with Neutral Oxygen Radicals. Jpn. J. Appl. Phys. 2015, 54(1 Supplement), 01AG05. DOI: 10.7567/JJAP.54.01AG05.
  • Wang, S. Q.; Huang, G. Q.; Li, Y. P.; Xiao, J. X.; Zhang, Y.; Jiang, W. L. Degradation of Aflatoxin B1 by Low-Temperature Radio Frequency Plasma and Degradation Product Elucidation. Eur. Food Res. Technol. 2015, 241(1), 103–113. DOI: 10.1007/s00217-015-2439-5.
  • Timmons, C.; Pai, K.; Jacob, J.; Zhang, G.; Ma, L. M. Inactivation of Salmonella Enterica, Shiga Toxin-Producing Escherichia Coli, and Listeria Monocytogenes by a Novel Surface Discharge Cold Plasma Design. Food Control. 2018, 84, 455–462. DOI: 10.1016/j.foodcont.2017.09.007.
  • Bourke, P.; Ziuzina, D.; Boehm, D.; Cullen, P. J.; Keener, K. The Potential of Cold Plasma for Safe and Sustainable Food Production. Trends Biotechnol. 2018, 36(6), 615–626. DOI: 10.1016/j.tibtech.2017.11.001.
  • Liao, X.; Su, Y.; Liu, D.; Chen, S.; Hu, Y.; Ye, X.; Wang, J.; Ding, T. Application of Atmospheric Cold Plasma-Activated Water (PAW) Ice for Preservation of Shrimps (Metapenaeus Ensis). Food Control. 2018, 94, 307–314. DOI: 10.1016/j.foodcont.2018.07.026.
  • Szili, E. J.; Hong, S. H.; Oh, J. S.; Gaur, N.; Short, R. D. Tracking the Penetration of Plasma Reactive Species in Tissue Models. Trends Biotechnol. 2018, 36(6), 594–602. DOI: 10.1016/j.tibtech.2017.07.012.
  • Barba, F. J.; Koubaa, M.; doPrado-Silva, L.; Orlien, V.; de Souza Sant’Ana, A. Mild Processing Applied to the Inactivation of the Main Foodborne Bacterial Pathogens: A Review. Trends Food Sci. Technol. 2017, 66, 20–35. DOI: 10.1016/j.tifs.2017.05.011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.