883
Views
22
CrossRef citations to date
0
Altmetric
Reviews

Labeling Regulations and Quality Control of Honey Origin: A Review

, , , , , , , & show all

References

  • Ransome, H. M.;. The Sacred Bee in Ancient Times and Folklore; Dover Publications: Mineola, New York, 2004.
  • Crittenden, A. N.;. The Importance of Honey Consumption in Human Evolution. Food Foodways. 2011, 19, 257–273. DOI: 10.1080/07409710.2011.630618.
  • Abdulla, C. O.; Ayubi, A.; Zufiquer, F.; Santhanam, G.; Ahmed, M. A. S.; Deeb, J. Myth Explodes: Infant Botulism following Honey Ingestion. BMJ Case Rep. 2012, 2012, bcr1120115153–bcr1120115153. DOI: 10.1136/bcr.11.2011.5153.
  • Zmijewska, E.; Teper, D.; Linkiewicz, A.; Sowa, S. Pollen from Genetically Modified Plants in Honey - Problems with Quantification and Proper Labeling. J. Apic. Sci. 2013, 57, 5–19. DOI: 10.2478/JAS-2013-0013.
  • Villanueva-Gutiérrez, R.; Echazarreta-González, C.; Roubik, D. W.; Moguel-Ordóñez, Y. B. Transgenic Soybean Pollen (glycine Max L.) In Honey from the Yucatán Peninsula, Mexico. Sci. Rep. 2014, 4, 4022. DOI: 10.1038/srep04022.
  • Michaud, V.;. Antibiotic Residues in Honey - the FEEDM View. Apiacta. 2005, 40, 52–54.
  • Ochi, T.;. Former Japanese Beekeeper Speaks Out about Antibiotics in Chinese Honey [2]. Am. Bee J. 2005, 145, 937–938.
  • Korkmaz, S. D.; Kuplulu, O.; Cil, G. I.; Akyuz, E. Detection of Sulfonamide and Tetracycline Antibiotic Residues in Turkish Pine Honey. Int. J. Food Prop. 2017, 20(sup1), S50–S55. DOI: 10.1080/10942912.2017.1288135.
  • Cuevas-Glory, L. F.; Pino, J. A.; Santiago, L. S.; Sauri-Duch, E. A Review of Volatile Analytical Methods for Determining the Botanical Origin of Honey. Food Chem. 2007, 103, 1032–1043. DOI: 10.1016/j.foodchem.2006.07.068.
  • Silici, S.;. Determination of Volatile Compounds of Pine Honeys. Turkish J. Biol. 2011, 35, 641–645. DOI: 10.3906/biy-1009-112.
  • Bianchin, J. N.; Nardini, G.; Merib, J.; Dias, A. N.; Martendal, E.; Carasek, A. Screening of Volatile Compounds in Honey Using a New Sampling Strategy Combining Multiple Extraction Temperatures in a Single Assay by HS-SPME–GC–MS. Food Chem. 2014, 145, 1061–1065. DOI: 10.1016/j.foodchem.2013.08.139.
  • Pattamayutanon, P.; Angeli, S.; Thakeow, P.; Abraham, J.; Disayathanoowat, T.; Chantawannakul, P. Volatile Organic Compounds of Thai Honeys Produced from Several Floral Sources by Different Honey Bee Species. Plos One. 2017. DOI: 10.1371/journal.pone.0172099.
  • Alvarez-Suarez, J. M.; Tulipani, S.; Romandini, S.; Vidal, S. A.; Battino, M. Methodological Aspects about Determination of Phenolic Compounds and in Vitro Evaluation of Antioxidant Capacity in the Honey: A Review. Curr. Anal. Chem. 2009, 5, 293–302. doi: 10.2174/157341109789077768.
  • Pyrzynska, C.; Biesaga, M. Analysis of Phenolic Acids and Flavonoids in Honey. Trac-Trends Anal. Chem. 2009, 28, 893–902. DOI: 10.1016/j.trac.2009.03.015.
  • Ciulu, M.; Spano, N.; Pilo, M. I.; Sanna, G. Recent Advances in the Analysis of Phenolic Compounds in Unifloral Honeys. Molecules. 2016, 21(451), 451. DOI: 10.3390/molecules21040451.
  • Cianciosi, D.; Forbes-Hernández, T. Y.; Afrin, S.; Gasparrini, M.; Reboredo-Rodriguez, P.; Manna, P. P.; Zhang, J.; Bravo Lamas, L.; Martínez Flórez, S.; Agudo Toyos, P.; et al. Phenolic Compounds in Honey and Their Associated Health Benefits: A Review. Molecules. 2018, 23, 2322. DOI: 10.3390/molecules23092322.
  • Pohl, P.;. Determination of Metal Content in Honey by Atomic Absorption and Emission Spectrometries. Trac-Trends Anal. Chem. 2009, 28, 117–128. DOI: 10.1016/j.trac.2008.09.015.
  • Uršulin-Tristenjak, N.; Levanić, D.; Primorac, L.; Bošnir, J.; Vahčić, N.; Šarić, G. Mineral Profile of Croatian Honey and Differences Due to Its Geographic Origin. Czech J. Food Sci. 2015, 33, 156–164. DOI: 10.17221/502/2014-CJFS.
  • Altun, S. K.; Dinç, H., .; Paksoy, N.; Karaçal Temamoğullari, F.; Savrunlu, M. Analyses of Mineral Content and Heavy Metal of Honey Samples from South and East Region of Turkey by Using ICP-MS. Int. J. Anal. Chem. ID 6391454. 2017. DOI: 10.1155/2017/6391454.
  • Kaskoniene, V.; Venskutonis, P. R. Floral Markers in Honey of Various Botanical and Geographic Origins: A Review. Compr. Rev. Food Sci. Food Saf. 2010, 9, 620–634. DOI: 10.1111/j.1541-4337.2010.00130.x.
  • Soares, S.; Amaral, J. S.; Oliveira, A. B. ;. P. P.; Mafra, I. A Comprehensive Review on the Main Honey Authentication Issues: Production and Origin. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1072–1100. DOI: 10.1111/1541-4337.12278.
  • Vanhanen, L.; Emmertz, A.; Savage, G. Mineral Analysis of Mono-floral New Zealand Honey. Food Chem. 2011, 128, 236–240. DOI: 10.1016/j.foodchem.2011.02.064.
  • Stankovska, E.; Stafilov, T.; Šajn, R. Monitoring of Trace Elements in Honey from the Republic of Macedonia by Atomic Absorption Spectrometry. Environm. Monit. Assess. 2008, 142, 117–126. DOI: 10.1007/s10661-007-9913-x.
  • Singh, C.; Shubharani, R.; Sivaram, V. Assessment of Heavy Metals in Honey by Atomic Absorption Spectrometer. World J. Pharm. Pharmaceut. Sci. 2014, 3, 509–515.
  • Stecka, H.; Jedryczko, D.; Welna, M.; Pohl, P. Determination of Traces of Copper and Zinc in Honeys by the Solid Phase Extraction Pre-concentration Followed by the Flame Atomic Absorption Spectrometry Detection. Environ. Monit. Assess. 2014, 186, 6145–6155. DOI: 10.1007/s10661-014-3845-z.
  • Aliferis, K. A.; Tarantilis, P. A.; Harizanis, P. C.; Alissandrakis, E. Botanical Discrimination and Classification of Honey Samples Applying Gas Chromatography/mass Spectrometry Fingerprinting of Headspace Volatile Compounds. Food Chem. 2010, 121, 856–862. DOI: 10.1016/j.foodchem.2009.12.098.
  • Manyi-Loh, C. E.; Ndip, R. N.; Clarke, A. M. Volatile Compounds in Honey: A Review on Their Involvement in Aroma, Botanical Origin Determination and Potential Biomedical Activities. Int. J. Mol. Sci. 2011, 12, 9514–9532. DOI: 10.3390/ijms12129514.
  • Robotti, E.; Campo, F.; Riviello, M.; Bobba, M.; Manfredi, M.; Mazzucco, E.; Gosetti, F.; Calabrese, G.; Sangiorgi, E.; Marengo, E. Optimization of the Extraction of the Volatile Fraction from Honey Samples by SPME-GC-MS, Experimental Design and Multivariate Target Functions. J. Chem. 2017, 14. article ID 6437857, doi: 10.1155/2017/6437857.
  • Özkök, A.; Sorkun, K.; Salih, B. The Microscopic and GC-MS Analysis of Turkish Honeydew (pine) Honey. Hacettepe J. Biol. & Chem. 2016, 44, 375–383. DOI: 10.15671/HJBC.2016.117.
  • Arraez-Román, D.; Gómez-Caravaca, A. M.; Gómez-Romeró, M.; Segura-Carretero, A.; Fernandez-Gutiérrez, A. Identification of Phenolic Compounds in Rosemary Honey Using Solid-phase Extraction by Capillary Electrophoresis–Electrospray Ionization-mass Spectrometry. J. Pharm. Biomed. Anal. 1648–1656, 2006(41). DOI: 10.1016/j.jpba.2006.02.035.
  • Beretta, G.; Caneva, E.; Facino, R. M. Kynurenic Acid in Honey from Arboreal Plants: MS and NMR Evidence. Planta Med. 2007, 73, 1592–1595. DOI: 10.1055/s-2007-993740.
  • Terrab, A.; Hernanz, D.; Heredia, F. J. Inductively Coupled Plasma Optical Emission Spectrometric Determination of Minerals in Thyme Honeys and Their Contribution to Geographical Discrimination. J. Agric. Food Chem. 2004, 52, 3441–3445. DOI: 10.1021/jf035352e.
  • Aghamirlou, H. M.; Khadem, M.; Rahmani, A.; Sadeghian, M.; Mahvi, A. H.; Akbarzadeh, A.; Nazmara, S. Heavy Metals Determination in Honey Samples Using Inductively Coupled Plasma-optical Emission Spectrometry. J. Environm. Health Sci. Eng. 2015, 1, 13–39. doi: 10.1186/s40201-015-0189-8.
  • Oroian, M.; Amariei, S.; Leahu, A.; Gut, G. Multi-Element Composition of Honey as a Suitable Tool for Its Authenticity Analysis. Polish J. Food Nutr. Sci. 2015, (2015(65), 93–100. DOI: 10.1515/pjfns-2015-0018.
  • Solayman, M.; Islam, A.; Paul, S.; Ali, Y.; Khalil, I.; Alam, N.; Gan, S. H. Physicochemkical Properties, Minerals, Trace Elements and Heavy Metals in Honey of Different Origins: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2016, 15, 219–233. DOI: 10.1111/1541-4337.12182.
  • Nozal Nalda, M. J.; Bernal Yague, J. L.; Diego Calva, J. C.; Martin Gomez, M. T. Classifying Honeys from the Soria Province of Spain via Multivariate Analysis. Anal. Bioanal. Chem. 2005, 382, 311–319. DOI: 10.1007/s00216-005-3161-0.
  • Corradini, C.; Cavazza, A.; Bignardi, C. High-Performance Anion-Exchange Chromatography Couypled with Pulsed Electrochemical Detection as a Powerful Tool to Evaluate Carbohidrates of Food Interest: Principles and Applications. Int. J. Carb. Chem. 2012, 13. ID 487564, doi: 10.1155/2012/487564.
  • Tuberoso, C. I. G.; Bifulco, E.; Caboni, P.; Cottiglia, F.; Cabras, P.; Floris, I. Floral Markers of Strawberry Tree (arbutus Unedo L.) Honey. J. Agric. Food Chem. 2010, 58, 384–389. DOI: 10.1021/jf9024147.
  • Oliveira, R.; Teixeira, E.; Carneiro, C.; Monteiro, M. L.; Conte, C.; Oliveira, E. F. Detection of Honey Adulteration of High Fructose Corn Syrup by Low Field Nuclear Margnetic Resonance (LF1H NMR). J. Food Eng. 2014, 135, 39–43. DOI: 10.10.16/j.foodeng.2014.03.009.
  • Popescu, R.; Geana, E. I.; Dinca, O. R.; Sandru, C.; Costinel, D.; Ionete, R. E. Characterization of the Quality and Floral Origin of Romanian Honey. Anal. Lett. 2015, 49, 411–422. DOI: 10.1080/00032719.2015.1057830.
  • Fernández Pierna, J. A.; Abbas, O.; Dardenne, P.; Baeten, V. Discrimination of Corsican Honey by FT-Raman Spectroscopy and Chemometrics. Biotechnol. Agron. Soc. Environ. 2011, (15), 75–84.
  • Tahir, H. E.; Xiaobo, Z.; Zhihua, L.; Jiyong, S.; Zhai, X.; Wang, S.; Mariod, A. A. Rapid Prediction of Phenolic Compounds and Antioxidant Activity of Sudanese Honey Using Raman and Fourier Transform Infrared (FT-IR) Spectroscopy. Food Chem. 2017, 226, 202–211. DOI: 10.1016/j.foodchem.2017.01.024.
  • Etzold, E.; Lichtgenberg-Kraag, B. Determination of the Botanical Origin of Honey by Fourier-transformed Infrared Spectroscopy: An Approach for Routine Analysis. Eur. Food Res. Technol. 2008, 227, 579–586. DOI: 10.1007/s00217-007-0759-9.
  • Woodcock, T.; Downey, G.; Kelly, J. D.; O’Donnell, C. Geographical Classification of Honey Samples by Near-infrared Spectroscopy: A Feasability Study. J. Agric. Food Chem. 2007, 55, 9128–9134. DOI: 10.1021/jf072010q.
  • Li, Y.; Yang, H. Honey Discrimination Using Visible and Near-Infrared Spectroscopy, ISRN Spectrosc, 2012, Article ID 487040, DOI.10.5402/2012/487040
  • Karoui, R.; Dufour, E.; Bosset, J. O.; De Baerdemaeker, J. The Use of Front Face Fluorescence Spectroscopy to Classify the Botanical Origin of Honey Samples Produced in Switzerland. Food Chem. 2007, 101, 314–323. DOI: 10.1016/j.foodchem.2006.01.039.
  • Lenhardt, L.; Zeković, I.; Dramićanin, T.; Dramićanin, M. D.; Bro, R. Determination of the Botanical Origin of Honey by Front-face Synchronous Fluorescence Spectroscopy. Appl. Spectrosc. 2014, 68, 557–563. DOI: 10.1366/13-07325.
  • Anklam, E.;. A Review of the Analytical Methods to Determine the Geographical and Botanical Origin of Honey. Food Chem. 1998, 63, 549–562. DOI: 10.1016/S0308-8146(98)00057-0.
  • Milojković Opsenica, D.; Lušić, D.; Tešić, Ž. Modern Analytical Techniques in the Assessment of the Authenticity of Serbian Honey. Arh. Hig. Rada Toksikol. 2015, 66, 233–241. DOI: 10.1515/aiht-2015-66-2721.
  • Pita-Calvo, C.; Guerra-Rodríguez, M. E.; Vázquez, M. A Review of the Analytical Methods Used in the Quality Control of Honey. J. Agric. Food Chem. 2017, 65, 690–703. DOI: 10.1021/acs.jafc.6b04776.
  • Trifković, J.; Andrić, F.; Ristivojević, P.; Guzelmeric, E.; Yesilada, E. Analytical Methods in Tracing Honey Authenticity. J. AOAC Int. 2017, 100, 827–839. DOI: 10.5740/jaoacint.17.0142.
  • Cazes-Valette, G.;. Le Comportement Du Consommateur Décodé Par L’anthropologie, Le Cas Des Crises De La Vache Folle. Rev. Franç. Market. 2001, 183/184, 99–113.
  • Sylander, B.;. Rapport Sur La Notion De Qualité – Conseil National De l’Alimentation; National Food Council: Paris, 2001.
  • Codex Alimentarius. Revised Codex Standard for Honey, Codex STAN 12–1981, Rev. 1 (1987), Rev. 2. 2001.
  • EU Council Directive 2001/110/CE concerning honey Offic. J. Eur. Comm 2002, L10 (47–52), 47–52.
  • Giorgi, A.; Madeo, M.; Braumgartner, J.; Lozzia, G. C. The Relationship between Phenolic Content, Pollen Diversity, Physicochemical Information and Radical Scavenging Activity in Honey. Molecules. 2011, 16, 336–347. DOI: 10.3390/molecules16010336.
  • Bogdanov, S.; Martin, P. Honey Authenticity. Mitt. Lebensmittelunters Hyg. 2002, 93, 232–254.
  • Kelly, S.; Heaton, K.; Hoogewerff, J. Tracing the Geographical Origin of Food: The Application of Multi-element and Multi-isotope Analysis. Trends Food Sci. Technol. 2005, 16, 555–567. DOI: 10.1016/j.tifs.2005.08.008.
  • EC Agriculture and food: Quality policy. European Commissions, Brussels, 2006a.
  • Door Database. Data Base of Protected Product Name. In: http://ec.europa.eu/agriculture/quality/door/list.html.
  • Bogdanov, S.; Martin, P.; Lullmann, C.; Borneck, R.; Flamini, C.; Morlot, M.; Lheritier, J.; Vorwohl, G.; Russmann, H.; Persano, L.;; et al. Harmonised Methods of the European Honey Commission. Apidologie. 1997, 28(SPEC.ISS), 1–59.
  • Kerkvliet, J. D.; Shrestha, M.; Tuladhar, K.; Manandhar, H. Microscopic Detection of Adulteration of Honey with Cane Sugar and Cane Sugar Products. Apidologie. 1995, 26, 131–139. hal-00891253 DOI: 10.1051/apido:19950206.
  • Gonzalez Martin, I.; Marques Macias, E.; Sanchez Sanchez, J.; Gonzalez Rivera, B. Detection of Honey Adulteration with Beet Sugar Using Stable Isotope Methodology. Food Chem. 1998, 61, 281–286. DOI: 10.1016/S0308-8146(97)00101-5.
  • Irudayaraj, J.; Sivakesava, S. Detection of Adulteration in Honey by Discriminant Analysis Using FTIR Spectroscopy. Trans. ASAE. 2001, 44, 643–650. DOI: 10.13031/2013.6092.
  • Popa, M.; Axinte, R.; Varvara, S. Considerations regarding the Quality of Honey on Heating and Storage - Changes in Hydroxymethylfurfuraldehyde Content of the Honey from Transylvania (romania). J. Environm. Prot. Ecol. 2010, 11, 555–561.
  • Du, X.; Wu, L.; Xue, X.; Chen, L.; Li, Y.; Zhao, J.; Cao, W. Rapid Screening of Multiclass Syrup Adulterants in Honey by Ultra-high Performance Liquid Chromatography/quadrupole Time-of-flight Mass Spectrometry. J. Agric. Food Chem. 2015, 63, 6614–6623. DOI: 10.1021/acs.jafc.5b01410.
  • Di Bella, G.; Lo Turco, V.; Potorti, A. G.; Bua, G. D.; Fede, M. R.; Dugo, G. Geographical Discrimination of Italian Honey by Multi-element Analysis with a Chemometric Approach. J. Food Comp. Anal. 2015, 44, 25–35. DOI: 10.1016/j.jfca.2015.05.003.
  • Manning, L.; Soon, J. M. Developing Systems to Control Food Adulteration. Food Policy. 2014, 49, 23–32. DOI: 10.1016/j.foodpol.2014.06.005.
  • Luo, D.; Luo, H.; Dong, H.; Xian, Y.; Guo, X.; Wu, Y. Hydrogen (2H/1H) Combined with Carbon (13C/12C) Isotope Ratios Analysis to Determine the Adulteration of Commercial Honey. Food Anal. Meth. 2016, 9(9), 255–262. DOI: 10.1007/s12161-015-0202-y.
  • Persano Oddo, L.; Piro, R.; Bruneau, E.; Guyot-Declerck, C.; Ivanov, T.; Piskulová, J.; Ruoff, K. Main European Unifloral Honeys: Descriptive Sheets. Apidologie. 2004, 35(Suppl. 1), 38–81. DOI: 10.1051/apido:2004049.
  • Oroian, M.; Amariei, S.; Escheriche, I.; Leahu, S.; Damian, C.; Gut, G. Chemical Composition and Temperature Influence on the Rheological Behaviour of Honeys. Int. J. Food Prop. 2014, 17, 2228–2240. DOI: 10.1080/10942912.2013.791835.
  • von der Ohe, W.; Beckh, G.; Camps, G.; von der Ohe, K. Contribution to Harmonization of Labeling the Botanical Origin “wild Flowers Honey. Dt. Lebensm. Rundsch. 2006, 102, 365–368.
  • Yang, Y.; Battesti, M. J.; Djabou, N.; Muselli, A.; Paolini, J.; Tomi, P.; Costa, J. Melissopalynological Origin Determination and Volatile Composition Analysis of Corsican “chestnut Grove” Honeys. Food Chem. 2012, 132, 2144–2154. DOI: 10.1016/j.foodchem.2011.07.075.
  • Karabournioti, S.; Thrasyvoulou, A.; Eleftheriou, E. P. A Model for Predicting Geographic Origin of Honey from the Same Floral Source. J. Apic. Res. 2006, 45, 117–124. DOI: 10.1080/00218839.2006.11101329.
  • Herrero, B.; Valencia-Barrera, R. M.; San Martin, R.; Pando, V. Characterization of Honeys by Melissopalynology and Statistical Analysis. Can. J. Plant Sci. 2002, 82, 75–82. DOI: 10.4141/P00-187.
  • Pires, J.; Estevinho, M. L.; Feas, X.; Cantalapiedra, J.; Iglesias, A. Pollen Spectrum and Physico-chemical Attributes of Heather (erica Sp.) Honeys of North Portugal. J. Sci. Food Agric. 1862-1870, 2009(89). DOI: 10.1002/jsfa.3663.
  • Sanchez, V.; Baeza, R.; Ciappini, C.; Zamora, M. C.; Chirife, J. Comparison between Karl Fischer and Refractometric Method for Determination of Water Content in Honey. Food Control. 2010, 21, 339–341. DOI: 10.1016/j.foodcont.2008.08.022.
  • Cereser Camara, V.; Laux, D. Moisture Content in Honey Determination with a Shear Ultrasonic Reflectometer. J. Food Eng. 2010, 96, 93–96. DOI: 10.1016/j.jfoodeng.2009.06.049.
  • Chirife, J.; Zamora, M. C.; Motto, A. The Correlation between Water Activity and % Moisture in Honey: Fundamental Aspects and Application to Argentine Honeys. J. Food Eng. 2006, 72, 287–292. DOI: 10.1016/j.jfoodeng.2004.12.009.
  • Abramovič, H.; Jamnik, M.; Burkan, L.; Kač, M. Water Activity and Water Content in Slovenian Honeys. Food Control. 2008, 19, 1086–1090. DOI: 10.1016/j.foodcont.2007.11.008.
  • Gleiter, R. A.; Horn, H.; Isengard, H. D. Influence of Type and State of Crystallisation on the Water Activity of Honey. Food Chem. 2006, 96, 441–445. DOI: 10.1016/j.foodchem.2005.03.051.
  • Serin, S.; Turhan, K. N.; Turhan, M. Correlation between Water Activity and Moisture Content of Turkish Flower and Pine Honeys. Food Sci. Technol. Campinas. 2018, 38, 238–243. DOI: 10.1590/1678-457X.31716.
  • Bertoncelj, J.; Doberšek, U.; Jamnik, M.; Golob, T. Evaluation of the Phenolic Content, Antioxidant Activity and Colour of Slovenian Honey. Food Chem. 2007, 105, 822–828. DOI: 10.1016/j.foodchem.2007.01.060.
  • Acquarone, C.; Buera, P.; Elizalde, B. Pattern of pH and Electrical Conductivity upon Honey Dilution as a Complementary Tool for Discriminating Geographical Origin of Honeys. Food Chem. 2007, 101, 95–703. DOI: 10.1016/j.foodchem.2006.01.058.
  • Finola, M. S.; Lasagno, M. C.; Marioli, J. M. Microbiological and Chemical Characterization of Honeys from Central Argentina. Food Chem. 1649-1653, 2007(100). DOI: 10.1016/j.foodchem.2005.12.046.
  • Chakir, A.; Romane, A.; Marcazzan, G. L.; Ferrazzi, P. Physicochemical Properties of Some Honeys Produced from Different Plants in Morocco. Arabian J. Chem. 2016, 9, S946–S954. DOI: 10.1016/j.arabjc.2011.10.013.
  • Devillers, J.; Morlot, M.; Pham-Delègue, M. H.; Doré, J. C. Classification of Monofloral Honeys Based on Their Quality Control Data. Food Chem. 2004, 86, 305–312. DOI: 10.1016/j.foodchem.2003.09.029.
  • Pérez-Arquillué, C.; Conchello, P.; Ariño, A.; Juan, T.; Herrera, A. Physicochemical Attributes and Pollen Spectrum of Some Unifloral Spanish Honeys. Food Chem. 1995, 54, 167–172. DOI: 10.1016/0308-8146(95)00022-B.
  • Jain, S. A.; de Jesus, F. T.; Marchioro, G. M.; de Araujo, E. D. Extraction of DNA from Honey and Its Amplification by PCR for Botanical Identification. Food Sci. Technol. 2013, 33, 753–756. DOI: 10.1590/S0101-20612013000400022.
  • Hawkins, J.; de Vere, N.; Griffith, A.; Ford, C. R.; Allainguillaume, J.; Hegarty, M. J.; Baillie, L.; Adams-Groom, B. Using DNA to Identify the Floral Composition of Honey: A New Tool for Investigating Honey Bee Foraging Preferences. PLos One. 2015, 10. DOI: e0134735.
  • Escuredo, O.; Dobre, I.; Fernández-González, M.; Seijo, M. C. Contribution of Botanical Origin and Sugar Composition of Honeys on the Crystallization Phenomenon. Food Chem. 2014, 149, 84–90. DOI: 10.1016/j.foodchem.2013.10.097.
  • de Sousa, J. M. B.; de Souza, E. L.; Marques, G.; de Toledo Benassi, M.; Gullon, B.; Pintado, M. M.; Magnani, M. Sugar Profile, Physicochemical and Sensory Aspects of Monofloral Honeys Produced by Different Stingless Bee Species in Brazilian Semi-arid Region. LWT - Food Sci. Technol. 2016, 65, 645–651. DOI: 10.1016/j.lwt.2015.08.058.
  • Dramićanin, A. M.; Andrić, F. L.; Poštić, D. Ž.; Momirović, N. M.; Milojković-Opsenica, D. M. Sugar Profiles as a Promising Tool in Tracing Differences between Potato Cultivation Systems, Botanical Origin and Climate Conditions. J. Food Comp. Anal. 2018, 72, 57–65. DOI: 10.1016/j.jfca.2018.06.005.
  • Sanz, M. L.; Gonzalez, M.; de Lorenzo, C.; Sanz, J.; Martı́nez-Castro, I. A Contribution to the Differentiation between Nectar Honey and Honeydew Honey. Food Chem. 2005, 91, 313–317. DOI: 10.1016/j.foodchem.2004.06.013.
  • Pereira Da Costa, M.; Conte, A. C. Chromatographic Methods for Ther Determination of Carbohydrates and Organic Acids in Foods of Animal Origin. Compr. Rev. Food Sci. Food Saf. 2014, 14, 586–600. DOI: 10.1111/1541-4337.12148.
  • Ouchemoukh, S.; Schweitzer, P.; Bachir Bey, M.; Djoudad-Kadji, H.; Louaileche, H. HPLC Sugar Profiles of Algerian Honeys. Food Chem. 2010, 121, 561–568. DOI: 10.1016/j.foodchem.2009.12.047.
  • Da Costa Leite, J. M.; Trugo, L. C.; Costa, L. S. M.; Quinteiro, L. M. C.; Barth, O. M.; Dutra, V. M. L.; De Maria, C. A. B. Determination of Oligosaccharides in Brazilian Honeys of Different Botanical Origin. Food Chem. 2000, 70, 93–98. DOI: 10.1016/S0956-7135(99)00115-2.
  • Morales, V.; Corzo, N.; Sanz, M. L. HPAEC-PAD Oligosaccharide Analysis to Detect Adulterations of Honey with Sugar Syrups. Food Chem. 2008, 107, 922–928. DOI: 10.1016/j.foodchem.2007.08.050.
  • Ruiz-Matute, A. I.; Brokl, M.; Soria, A. C.; Sanz, M. L.; Martínez-Castro, I. Gas Chromatographic–Mass Spectrometric Characterisation of Tri- and Tetrasaccharides in Honey. Food Chem. 2010, 120, 637–642. DOI: 10.1016/j.foodchem.2009.10.050.
  • de la Fuente, E.; Sanz, M. L.; Martinez-Castro, I.; Sanz, J.; Ruiz-Matute, A. I. Volatile and Carbohydrate Composition of Rare Unifloral Honeys from Spain. Food Chem. 2007, 105, 84–93. DOI: 10.1016/j.foodchem.2007.03.039.
  • de la Fuente, E.; Ruiz-Matute, A. I.; Valencia-Barrera, R. M.; Sanz, J.; Martínez Castro, I. Carbohydrate Composition of Spanish Unifloral Honeys. Food Chem. 2011, 129, 1483–1489. DOI: 10.1016/j.foodchem.2011.05.121.
  • Kaškonienė, V.; Venskutonis, P. R.; Čeksterytė, V. Carbohydrate Composition and Electrical Conductivity of Different Origin Honeys from Lithuania. LWT - Food Sci. Technol. 2010, 43, 801–807. DOI: 10.1016/j.lwt.2010.01.007.
  • Escriche, I.; Kadar, M.; Juan-Borras, M.; Domenech, E. Suitability of Antioxidant Capacity, Flavonoids and Phenolic Acids for Floral Authentication of Honey. Impact of Industrial Thermal Treatment. Food Chem. 2014, 142. 135–143. DOI: 10.1016/j.foodchem.2013.07.033.
  • Pascual-Maté, A.; Osés, S. M.; Fernández-Muiño, M. A.; Sancho, M. T. Analysis of Polyphenols in Honey: Extraction, Separation and Quantification Procedures. Sep. Purific. Rev. 2017, 1–17. DOI: 10.1080/15422119.2017.1354025.
  • Escriche, I.; Kadar, M.; Juan-Borrás, M.; Domenech, E. Using Flavonoids, Phenolic Compounds and Headspace Volatile Profile for Botanical Authentication of Lemon and Orange Honeys. Food Res. Int. 2011, 44, 1504–1513. DOI: 10.1016/j.foodres.2011.03.049.
  • Campone, L.; Piccinelli, A. L.; Pagano, I.; Carabetta, S.; Di Sanzo, R.; Russo, M.; Rastrelli, L. Determination of Phenolic Compounds in Honey Using Dispersive Liquid-liquid Microextraction. J. Chromatogr. A. 2014, 21, 9–15. DOI: 10.1016/j.chroma.2014.01.081.
  • Yao, L.; Jiang, Y.; Singanusong, R.; D’Arcy, B.; Datta, N.; Caffin, N.; Raymont, K. Flavonoids in Australian Melaleuca, Guioa, Lophostemon, Banksia and Helianthus Honeys and Their Potential for Floral Authentication. Food Res. Int. 2004, 37, 166–174. DOI: 10.1016/j.foodres.2003.11.004.
  • Tomas-Barberan, F. A.; Martos, I.; Ferreres, F.; Radovic, B. S.; Anklam, E. HPLC Flavonoid Profiles as Markers for the Botanical Origin of European Unifloral Honeys. J. Sci. Food Agric. 2001, 81, 485–496. DOI: 10.1002/jsfa.836.
  • Kenjerić, D.; Mandić, M. L.; Primorac, L.; Čačić, F. Flavonoid Pattern of Sage (salvia Officinalis L.) Unifloral Honey. Food Chem. 2008, 110, 187–192. DOI: 10.1016/j.foodchem.2008.01.031.
  • Kenjerić, D.; Mandić, M. L.; Primorac, L.; Bubalo, D.; Perl, A. Flavonoid Profile of Robinia Honeys Produced in Croatia. Food Chem. 2007, 102, 683–690. DOI: 10.1016/j.foodchem.2006.05.055.
  • Mărghitaş, L. A.; Dezmirean, D. S.; Pocol, C. B.; Ilea, M.; Bobiş, O.; Gergen, I. The Development of a Biochemical Profile of Acacia Honey by Identifying Biochemical Determinants of Its Quality. Not. Bot. Horti Agrobot. 2010, 38, 84–90. DOI: 10.15835/nbha3824780.
  • Michalkiewicz, A.; Biesaga, M.; Pyrzynska, K. Solid-phase Extraction Procedure for Determination of Phenolic Acids and Some Flavonols in Honey. J. Chromatogr. A. 2008, 1187, 18–24. DOI: 10.1016/j.chroma.2008.02.001.
  • Zhou, X. J.; Chen, J.; Shi, Y. P. Rapid and Sensitive Determination of Polyphenols Composition of Unifloral Honey Samples with Their Antioxidant Capacities. Coagent Chem. 2015, 1. DOI: 10.1080/23312009.2015.1100527.
  • Shen, S.; Wang, J. J.; Zhuo, Q.; Chen, X.; Liu, T.; Zhang, S. Q. Quantitative and Discriminative Evaluation of Contents of Phenolic and Flavonoid and Antioxidant Competence for Chinese Hones from Different Botanical Origins. Molecules. 2018, 23, 1110. DOI: 10.3390/molecules23051110.
  • Bonvehi, J. S.; Coll, F. V. Flavour Index and Aroma Profiles of Fresh and Processed Honeys. J. Sci. Food Agric. 2003, 83, 275–282. DOI: 10.1002/jsfa.v83:4.
  • Jerkovic, I.; Marijanovic, Z.; Kezic, J.; Gugic, M. Headspace, Volatile and Semi-Volatile Organic Compounds Diversity and Radical Scavenging Activity of Ultrasonic Solvent Extracts from Amorpha Fruticosa Honey Samples. Molecules. 2009, 14, 2717–2728. DOI: 10.3390/molecules14082717.
  • Alissandrakis, E.; Tarantilis, P. A.; Pappas, C.; Harizanis, P. C.; Polissiou, M. Ultrasound-assisted Extraction Gas Chromatography–Mass Spectrometry Analysis of Volatile Compounds in Unifloral Thyme Honey from Greece. Eur. Food Res. Technol. 2009, 229, 365–373. DOI: 10.1007/s00217-009-1046-8.
  • Alissandrakis, E.; Tarantilis, P. A.; Pappas, C.; Harizanis, P. C.; Polissiou, M. Investigation of Organic Extractives from Unifloral Chestnut (castanea Sativa L.) And Eucalyptus (eucalyptus Globulus LabilL.) Honeys and Flowers to Identification of Botanical Marker Compounds. LWT-Food Sci. Technol. 2010, 44, 1042–1051. DOI: 10.1016/j.lwt.2010.10.002.
  • Radovic, B. S.; Careri, M.; Mangia, A.; Musci, M.; Gerboles, M.; Anklam, E. Contribution of Dynamic Headspace GC–MS Analysis of Aroma Compounds to Authenticity Testing of Honey. Food Chem. 2001, 72, 511–520. DOI: 10.1016/S0308-8146(00)00263-6.
  • Bianchi, F.; Careri, M.; Musci, M. Volatile Norisoprenoids as Markers of Botanical Origin of Sardinian Strawberry-tree (arbutus Unedo L.) Honey: Characterisation of Aroma Compounds by Dynamic Headspace Extraction and Gas Chromatography–Mass Spectrometry. Food Chem. 2005, 89, 527–532. doi: 10.1016/j.foodchem.2004.03.009.
  • Soria, A. C.; Martínez-Castro, I.; Sanz, J. Some Aspects of Dynamic Headspace Analysis of Volatile Components in Honey. Food Res. Int. 2008, 41, 838–848. DOI: 10.1016/j.foodres.2008.07.010.
  • Bianchi, F.; Mangia, A.; Mattarozzi, M.; Musci, M. Characterization of the Volatile Profile of Thistle Honey Using Headspace Solid-phase Microextraction and Gas Chromatography–Mass Spectrometry. Food Chem. 2011, 129, 1030–1036. DOI: 10.1016/j.foodchem.2011.05.070.
  • Cajka, T.; Hajslova, J.; Pudil, F.; Riddellova, K. Traceability of Honey Origin Based on Volatiles Pattern Processing by Artificial Neural Networks. J. Chromatogr. A. 2009, 1216, 1458–1462. DOI: 10.1016/j.chroma.2008.12.066.
  • Plutowska, B.; Chmiel, T.; Dymerski, T.; Wardencki, W. A Headspace Solid-phase Microextraction Method Development and Its Application in the Determination of Volatiles in Honeys by Gas Chromatography. Food Chem. 2011, 126, 1288–1298. DOI: 10.1016/j.foodchem.2010.11.079.
  • Alissandrakis, E.; Tarantilis, P. A.; Harizanis, P. C.; Polissiou, M. Aroma Investigation of Unifloral Greek Citrus Honey Using Solid-phase Microextraction Coupled to Gas Chromatographic–Mass Spectrometric Analysis. Food Chem. 2007, 100, 396–404. DOI: 10.1016/j.foodchem.2005.09.015.
  • Čajka, T.; Hajšlová, J.; Cochran, J.; Holadová, K.; Klimánková, E. Solid Phase Microextraction-comprehensive Two-dimensional Gas Chromatography-time-Of-flight Mass Spectrometry for the Analysis of Honey Volatiles. J. Sep. Sci. 2007, 30, 534–546. DOI: 10.1002/jssc.200600413.
  • Stanimirova, I.; Üstün, B.; Cajka, T.; Riddelova, K.; Hajslova, J.; Buydens, L. M. C.; Walczak, B. Tracing the Geographical Origin of Honeys Based on Volatile Compounds Profiles Assessment Using Pattern Recognition Techniques. Food Chem. 2010, 118, 171–176. DOI: 10.1016/j.foodchem.2009.04.079.
  • Ampuero, S.; Bodganov, S.; Bosset, J. O. Classification of Unifloral Honeys with an MS-based Electronic Nose Using Different Sampling Modes SHS SPME and INDEX. Eur. Food Res. Tech. 2004, 218, 194–207.
  • Hennessy, S.; Downey, G.; O’Donnell, C. P. Attempted Confirmation of the Provenance of Corsican PDO Honey Using FT-IR Spectroscopy and Multivariate Data Analysis. J. Agric. Food Chem. 2010, 58, 9401–9406. DOI: 10.1021/jf101500n.
  • Woodcock, T.; Downey, G.; O’Donnell, C. P. Near Infrared Spectral Fingerprinting for Confirmation of Claimed PDO Provenance of Honey. Food Chem. 2009, 114, 742–746. DOI: 10.1016/j.foodchem.2008.10.034.
  • Olawode, E. O.; Tandlich, R.; Cambray, G. 1H-NMR Profiling and Chemometric Analysis of Selected Honeys from South Africa, Zambia and Slovakia. Molecules. 2018, 23, 578. DOI: 10.3390/molecules23030578.
  • Jamróz, M. K.; Paradowska, K.; Zawada, K.; Makarova, K.; Kaźmierski, S.; Wawer, I. 1H and 13C NMR-based Sugar Profiling with Chemometric Analysis and Antioxidant Activity of Herbhoneys and Honeys. J Sci Food Agric. 2014, 94, 246–255. DOI: 10.1002/jsfa.6241.
  • Spiteri, M.; Jamin, E.; Thomas, F.; Rebours, A.; Lees, M.; Rogers, K. M.; Rutledge, D. N. Fast and Global Authenticity Screening of Honey Using 1H-NMR Profiling. Food Chem. 2015, 189, 60–66. DOI: 10.1016/j.foodchem.2014.11.099.
  • Ruoff, K.; Luginbuhl, W.; Bogdanov, S.; Bosset, J. O.; Estermann, B.; Ziolko, T.; Amado, R. Authentication of the Botanical Origin of Honey by Near-infrared Spectroscopy. J. Agric. Food Chem. 2006, 54, 6867–6872. DOI: 10.1021/jf060770f.
  • Abbas, O.; Dardenne, P.; Baeten, V. (near-infrared, Mid-Infrared, and Raman Spectroscopy. In Chemical Analysis of Food: Techniques and Applications; Pico, Y., Ed.; Academic Press: Boston, 2012; pp 59–89.
  • Ruoff, K.; Luginbuhl, W.; Kunzli, R.; Iglesias, M. T.; Bogdanov, S.; Bosset, J. O.; Ohe, K. V. D.; Ohe, W. V. D.; Amado, R. Authentication of the Botanical and Geographical Origin of Honey by Mid-infrared Spectroscopy. J. Agric. Food Chem. 2006, 54, 6873–6880. DOI: 10.1021/jf060838r.
  • Svečnjak, L.; Biliškov, N.; Bubalo, D.; Barišić, D. Application of Infrared Spectroscopy in Honey Analysis. Agric. Consp. Scientif. 2011, 76, 191–195.
  • Bertelli, D.; Plessi, M.; Sabatini, A. G.; Lolli, M.; Grillenzoni, F. Classification of Italian Honeys by Mid-infrared Diffuse Reflectance Spectroscopy (DRIFTS). Food Chem. 2007, 101, 1565–1570. DOI: 10.1016/j.foodchem.2006.04.010.
  • Oliveri, P.; Di Egidio, V.; Woodcock, T.; Downey, G. Application of Class-modelling Techniques to near Infrared Data for Food Authentication Purposes. Food Chem. 2011, 125, 1450–1456. DOI: 10.1016/j.foodchem.2010.10.047.
  • Chen, L.; Wang, J.; Ye, Z.; Zhao, J.; Xue, X.; Heyden, Y. V.; Sun, Q. Classification of Chinese Honeys according to Their Floral Origin by near Infrared Spectroscopy. Food Chem. 2012, 135, 338–342. DOI: 10.1016/j.foodchem.2012.02.156.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.