519
Views
5
CrossRef citations to date
0
Altmetric
Reviews

Sugar Recovery from Food Waste via Sub-critical Water Treatment

, , , , ORCID Icon & ORCID Icon

References

  • Joshi, V.; Sharma, S. Food Processing Industrial Waste. In Food Processing Waste Management: Treatment & Utilization Technology; Joshi, V., Sharma, S., Eds.; New India Publishing Agency: New Delhi, 2011; pp 6–7.
  • FAO. Food Loss Prevention in Perishable Crops; FAO Agricultural services Bulletin: Rome, 1981; pp 43.
  • Lipinski, B.; Hanson, C.; Lomax, J.; Kitinoja, L.; Waite, R.; Searchinger, T. Reducing Food Loss and Waste. Installment 2 of Creating a Sustainable Food Future; World Resources Institute: Washington DC, 2013.
  • Parfit, J.; Barthel, M.; Macnaughton, S. Food Waste within Food Supply Chains: Quantification and Potential Change to 2050. Phil. Trans. R. Soc. 2010, 365, 3065–3081. DOI: 10.1098/rstb.2010.0126.
  • Melikoglu, M.; Lin, C.; Webb, C. Stepwise Optimisation of Enzyme Production in Solid State Fermentation of Waste Bread Pieces. Food Bioprod. Process. 2013, 91, 638–646. DOI: 10.1016/j.fbp.2013.04.008.
  • FAO. Global Food Losses and Food Waste-extent, Causes and Prevention; UN FAO: Rome, 2011.
  • Prado, J.; Forster-Caneiro, T.; Rostagno, M.; Follegatti-Romero, L.; Maugeri Filho, F.; Meireless, M. Obtaining Sugars from Coconut Husk, Defatted Grape Seed, and Pressed Palm Fiber by Hydrolysis with Sbcritical Water. J. Supercrit. Fluids. 2014, 89, 89–98. DOI: 10.1016/j.supflu.2014.02.017.
  • Fernanda, A. M.; Fernanda, T. M.; Leila, P. S. Oligosaccharides Production by Hydrolysis of Polysaccharides: A Review. Int. J. Food Sci. Technol. 2014. DOI: 10.1111/ijfs.12681.
  • Cummings, J., Roberfoid, M., Anderson, H., Barth, C., Ferro-Luzzi, A., Ghoos, Y., Gibney, M., Hermonsen, K., James, W.P.T., Korver, O; et al. A New Look at Dietary Carbohydrate: Chemistry, Physiology and Health. Eur. J. Clin. Nutr. 1997, 51, 417–423.
  • Sako, T.; Matsumoto, K.; Tanaka, R. Recent Progress on Research and Applications of Non-digestible Galacto-oligosaccharides. Int. Dairy J. 1999, 9, 69–80. DOI: 10.1016/S0958-6946(99)00046-1.
  • Otaka, K.;. Functional Oligosaccharides and Its New Aspect as Immune Modulation. J. Bio. Macromol. 2006, 6(1), 3–9.
  • Roberfoid, M.; Slavin, J. Nondigestible Oligosaccharides. Crit. Rev. Food Sci. Nutr. 2000, 40, 461–480. DOI: 10.1080/10408690091189239.
  • Rastall, R.;. Functional Oligosaccharides: Application and Manufacture. Food Sci. Technol. 2010, 1, 305–339.
  • Patel, S.; Goyal, A. Functional Oligosaccharides: Production, Properties and Applications. J. Microbiol. Technol. 2011, 25, 1119–1128.
  • Barreteau, H.; Delattre, C.; Michaud, P. Production of Oligosaccharides as Promising New Food Additive Generation. Food Technol. Biotechnol. 2006, 44, 323–333.
  • Musatto, S.; Manchilla, I. Non-digestible Oligosaccharides: A Review. Carbohydr. Polym. 2007, 68, 587–597. DOI: 10.1016/j.carbpol.2006.12.011.
  • Crittenden, R.; Playne, M. Production, Properties and Applications of Food-grade Oligosaccharides. Trends Food Sci. Technol. 1996, 7, 353–361. DOI: 10.1016/S0924-2244(96)10038-8.
  • Rivero-Urgell, M.; Santamaria-Orleans, A. Oligosaccharides: Application in Infant Food. Early Human Dev. 2001, 65, S43–S52.
  • Nabarlatz, D.; Ebringerova, A.; Montane, D. Autohydrolysis of Agricultural By-products for the Production of Xylo-oligosaccharides. Carbohydr. Polym. 2007, 69(1), 20–28. DOI: 10.1016/j.carbpol.2006.08.020.
  • Kang, O. L.; Ghani, M.; Hassan, O.; Rahmati, S.; Ramli, N. Novel Agaro-oligosaccharides Production through Enzymatic Hydrolysis: Physicochemical Properties and Antioxidant Activities. Food Hydrocolloids. 2014. DOI: 10.1016/j.foodhyd.2014.04.031.
  • Nakakuki, T.;. Oligosaccharides. Production, Properties and Applications. Jpn. Technol. Rev. 1993, 3(2), 90–106.
  • Moura, F.; Macagnan, F.; Silva, L. Oligosaccharide Production by Hydrolysis of Polysaccharides: A Review. Int. J. Food Sci. Technol. 2014, 50, 1–7.
  • Avila-Fernandez, A.; Galicia-Lagunas, N.; Rodriguez-Alegria, M. Oligosaccharides through Limited Acid Hydrolysis of Agave Fructans. Food Chem. 2011, 129, 286–380. DOI: 10.1016/j.foodchem.2011.04.088.
  • Warrand, J.; Janssen, H.-G. Controlled Production of Oligosaccharides from Amylose by Acid-hydrolysis under Microwave Treatment: Comparison with Conventional Heating. Carbohydr. Polym. 2007, 69, 353–362. DOI: 10.1016/j.carbpol.2006.10.021.
  • Reis, A.; Domingues, M. R. M.; Ferrer-Correcia, A. J.; Coimbra, M. A. Structural Characterization by MALDI-MS of Olive Xylo-oligosaccharides Obtained by Partial Acid Hydrolysis. Carbohydr. Polym. 2003, 53, 101–107. DOI: 10.1016/S0144-8617(03)00007-9.
  • Holck, J.; Hjerno, K.; Lorentzon, A. Tailored Enzymatic Production of Oligosaccharides from Sugar Beet Pectin and Evidence of Differential Effects of a Single DP Chain Length Difference on Human Faecal Microbiota Composition after in Vitro Fermentation. Process Biochem. 2011, 46, 1039–1049. DOI: 10.1016/j.procbio.2011.01.013.
  • Menezes, C. R.; Silva, I. S.; Pavarina, E. C. Production of Xylooligosaccharides from Enzymatic Hydrolysis of Xylan by the White-rot Fungi Pleurotus. Int. Biodeterior. Biodegrad. 2009, 63, 637–678. DOI: 10.1016/j.ibiod.2009.02.008.
  • Ramirez-Coutino, L.; Maria-Cervantes, M. C.; Huerta, S.; Revah, S.; Shirai, K. Enzymatic Hydrolysis of Chitin in the Production of Oligosaccharides Using Lecanicillium Fungicola Chitanases. Process Biochem. 2006, 41, 1106–1110. DOI: 10.1016/j.procbio.2005.11.021.
  • Charalampopoulos, D.; Wang, R.; Pandiella, S.; Webb, C. Applications of Cereals and Cereal Components in Functional Foods: A Review. Int. J. Food Microbiol. 2002, 79, 131–141.
  • Onishi, N.; Tanaka, T. Purifications and Properties of a Galacto- and Gluco-oligosaccharides-producing Beta-glycosidase from Rhodotorula Minuta IF0879. J. Ferment. Bioeng. 1996, 82, 439–443. DOI: 10.1016/S0922-338X(97)86979-6.
  • Kontula, P.; Von Wright, A.; Mattila-Sandholm, T. Oat Bran Beta-gluco and Xylo-oligosaccharides as Fermentative Substrates for Lactic Acid Bacteria. Int. J. Food Microbiol. 1998, 45, 163–169.
  • Vasquez, M.; Garrote, G.; Alonso, J.; Dominguez, H.; Parajo, J. Refining of Autohydrolysis Liquors for Manufacturing Xylooligosaccharides: Evaluation of Operational Strategies. Bioresour. Technol. 2005, 96, 889–896. DOI: 10.1016/j.biortech.2004.08.013.
  • Vasquez, M.; Alonso, J.; Dominguez, H.; Parajo, J. Enhancing the Potential of Oligosaccharides from Corncob Autohydrolysis as Prebiotic Food Ingredients. Ind. Crops Prod. 2006, 24, 152–159. DOI: 10.1016/j.indcrop.2006.03.012.
  • Burana-Osot, J.; Soonthornchareonnon, N.; Hosoyama, S.; Linhardt, R.; Toida, T. Partial Depolymerization of Pectin by a Photochemical Reaction. Carbohydr. Res. 2010, 345, 1205–1210. DOI: 10.1016/j.carres.2010.04.007.
  • Martinez, M.; Gullon, B.; Yanez, R.; Alonso, J. L.; Parajo, J. C. Kinetic Assessment on the Autohydrolysi of Pectin-rich By-products. Chem. Eng. J. 2010, 162, 480–486. DOI: 10.1016/j.cej.2010.05.048.
  • Rose, D. J.; Inglett, G. E. Production of Feruloylated Arabinoxylo-oligosaccharides from Maize (zea Mays) Bran by Microwave-assisted Autohydrolysis. Food Chem. 2010, 119, 1613–1618. DOI: 10.1016/j.foodchem.2009.09.053.
  • Chen, J.; Liang, R.; Liu, W. Pectic-oligosaccharides Prepared by Dymanic High-pressure Microfluidization and Their In-vitro Fermentation Properties. Carbohydr. Polym. 2013, 91, 175–182. DOI: 10.1016/j.carbpol.2012.08.021.
  • Abdelmoez, W.; Abdelfatah, R.; Tayeb, A. Extraction of Cottonseed Oil Using Subcritical Water Technology. AIChE J. 2011, 57(9), 2353–2359. DOI: 10.1002/aic.12454.
  • Tunchaiyaphum, S.; Eshtiaghi, M.; Yoswathana, N. Extraction of Bioactive Compounds from Mango Peels Using Green Technology. Int. J. Chem. Eng. Appl. 2013, 4(4), 194–198. DOI: 10.7763/IJCEA.2013.V4.293.
  • Ravber, M.; Knez, Z.; Skerget, M. Simultaneous Extraction of Oil- and Water-soluble Phase from Sunflower Seeds with Subcritical Water. Food Chem. 2015, 166, 316–323. DOI: 10.1016/j.foodchem.2014.06.025.
  • Zakaria, S.; Mustapa Kamal, S. Subcritical Water Extraction of Bioactive Compounds from Plants and Algae: Applications in Pharmaceutical and Food Ingredients. Food Eng. Rev. 2016, 8, 23–34. DOI: 10.1007/s12393-015-9119-x.
  • King, J.; Grabiel, R. (2007). Patent No. 7208181. USA.
  • Lu, J.; Feng, X.; Han, Y.; Xue, C. Optimization of Subcritical Fluid Extraction of Carotenoids and Chlorophyll a from (laminaria Japonica Aresch) by Response Surface Methodology. J. Sci. Food Agric. 2014, 94(1), 139–145. DOI: 10.1002/jsfa.6224.
  • Cheigh, C.; Yoo, S.; Koo, M.; Chang, P.; Chung, M. Extraction Characteristics of Subcritical Water Depending on the Number of Hydroxyl Group in Flavonols. Food Chem. 2015, 168, 21–26. DOI: 10.1016/j.foodchem.2014.07.047.
  • Amashukeli, X.; Pelletier, C.; Kirby, J.; Grunthaner, F. Subcritical Water Extraction of Amino Acids from Atacama Desert Soils. J. Geophys. Resour. 2007, 112, 1–10.
  • Singh, P.; Saldana, M. Subcritical Water Extraction of Phenolic Compounds from Potato Peel. Food Resour. Int. 2011, 44(8), 2452–2458. DOI: 10.1016/j.foodres.2011.02.006.
  • Pourali, O.; Salak, F.; Yoshida, H. Simultaneous Rice Bran Oil Stabilization and Extraction Using Sub-critical Water Medium. J. Food Eng. 2009, 95(3), 510–516. DOI: 10.1016/j.jfoodeng.2009.06.014.
  • Marcet, I.; Alvarez, C.; Paredes, B.; Diaz, M. The Use of Sub-crtitical Water Hydrolysis for the Recovery of Peptides and Free Amino Acids from Food Processing Wastes. Review of Sources and Main Parameters. Waste Manag. 2016, 49, 364–371. DOI: 10.1016/j.wasman.2016.01.009.
  • Teo, C.; Tan, S.; Yong, J.; Hew, C.; Ong, E. Pressurized Hot Water Extraction (PHWE). J. Chromatogr. A. 2010, 1217(16), 2484–2494. DOI: 10.1016/j.chroma.2009.12.050.
  • Kronholm, J.; Hartonen, K.; Riekkola, M.-L. Analytical Extractions with Water at Elevated Temperatures and Pressures. TrAC Trends Anal. Chem. 2007, 26(5), 396–412. DOI: 10.1016/j.trac.2007.03.004.
  • Yu, Y.; Wu, H. Understanding the Primary Liquid Products of Cellulose Hydrolysis in Hot-compressed Water at Various Reaction Temperatures. Energy Fuels. 2010, 24, 1963–1971. DOI: 10.1021/ef9013746.
  • Cantero, D.; Bermejo, M.; Cocero, M. Gorvening Chemistry of Cellulose Hydrolysis in Supercritical Water. ChemSusChem. 2015, 8, 1026–1033. DOI: 10.1002/cssc.201403385.
  • Lachos-Perez, D., Brown, A., Mudhoo, A., Martinez, J., Timko, M., & Rostagno, M. Applications of subcritical and supercritical water conditions for extraction, hydrolysis, gasification, and carbonization of biomass: a critical review. Biofuel Research Journal. 2017, 611–626.
  • Khajenoori, M.; Asl, A.; Hormozi, F. Proposed Models for Subcritical Water Extraction of Essential Oils. Chin. J. Chem. Eng. 2009, 17(3), 359–365. DOI: 10.1016/S1004-9541(08)60217-7.
  • Ndlela, S.; Moura, J.; Olson, N.; Johnson, L. Aqueous Extraction of Oil and Protein from Soybeans with Subcritical Water. J. Am. Oil Chem Soc. 2012, 89, 1145–1153. DOI: 10.1007/s11746-011-1993-7.
  • Asl, A., & Khajenoori, M. Subcritical Water Extraction, Mass Transfer - Advances in Sustainable Energy and Environment Oriented Numerical Modeling, Hironori Nakajima, IntechOpen, doi:10.5772/54993. Available from: https://www.intechopen.com/books/mass-transfer-advances-in-sustainable-energy-and-environment-oriented-numerical-modeling/subcritical-water-extraction.
  • Watchararuji, K.; Goto, M.; Sasaki, M.; Shotipruk, A. Value-added Subcritical Water Hydrolysate from Rice Bran and Soybean Meal. Bioresour. Technol. 2008, 99, 6207–6213. DOI: 10.1016/j.biortech.2007.12.021.
  • Khuwijitjaru, P.; Watsanit, K.; Adachi, S. Carbohydrate Content and Composition of Product from Subcritical Water Treatment of Coconut Meal. J. Ind. Eng. Chem. 2012, 18, 225–229. DOI: 10.1016/j.jiec.2011.11.010.
  • Cantero, D.; Bermejo, M.; Cocero, M. Reaction Engineering for Process Intensification of Supercritical Water Biomass Refining. J. Supercrit. Fluids. 2015, 96, 21–35. DOI: 10.1016/j.supflu.2014.07.003.
  • Gong, Y.; Zhang, X.; He, L.; Yan, Q.; Yuan, F.; Gao, Y. Optimization of Subcritical Water Extraction Parameters of Antioxidant Polyphenols from Sea Buckthorn (hippophae Rhammoides L.) Seed Residue. J. Food Sci. Technol. 2013, 2(1), 1–9.
  • Chao, Z.; Ri-fu, Y.; Tai-qiu, Q. Ultrasound-enhanced Subcritical Water Extraction of Polysaccharides from Lycium Barbarum L. Sep. Purif. Technol. 2013, 120, 141–147. DOI: 10.1016/j.seppur.2013.09.044.
  • Fernandez, M., Rissanen, J., Nebreda, A., Xu, C., Willfor, S., & Serna, J. Hemicellulose from stone pine, holm oak, and Norway spruce with subcritical water extraction-comparative study with chracterization and kinetics. The Journal of Supercritical Fluids. 2018, 133, 647–657.
  • Ballesteros, L.; Teixeira, J.; Musatto, S. Extraction of Polysaccharides by Autohydrolysis of Spent Coffee Grounds and Evaluation of Their Antioxidant Activity. Carbohydr. Polym. 2017, 157, 258–266. DOI: 10.1016/j.carbpol.2016.09.054.
  • Hanim, S.; Norsyabilah, R.; Nor Suhaila, M.; Noraishah, A.; Siti Kartina, A. (2012). Effects of Temperature, Time and Pressure on the Hemicellulose Yield Extracted Using Subcritical Water Extraction. 20th International Congress of Chemical and Process Engineering CHSA 2012 (pp.562–565). Prague, Czech Republic: Procedia Engineering. 10.1177/1753193412454801.
  • Awaluddin, S.; Thiruvenkadam, S.; Izhar, S.; Hiroyuki, Y.; Danquah, M.; Harun, R. Subcritical Water Technology for Enhanced Extraction of Biochemical Compounds from Chlorella Vulgaris. Biomed Res. Int. 2016, 1–10. doi:10.1155/2016/5816974.
  • Sato, N., Takano, Y., Mizuno, M., Nozaki, K., Umemura, S., & Matsuzawa, T. Production of feruloylated arabino-oligosaccharides (FA-AOs) from beet fiber by hydrothermal treatment. Journal of Supercritical Fluids. 2013, 79, 84–91.
  • Vegas, R.; Kabel, M.; Schols, H.; Alonso, J.; Parajo, J. Hydrothermal Processing of Rice Husks: Effectsof Severity on Product Distribution. J. Chem. Technol. Biotechnol. 2008, 83(7), 965–972. DOI: 10.1002/jctb.1896.
  • Garrote, G.; Dominguez, H.; Parajo, J. Production of Substituted Oligosaccharides by Hydrolytic Processing of Barley Husks. Ind. Eng. Chem. Res. 2004, 43(7), 1608–1614. DOI: 10.1021/ie0342762.
  • Miyazawa, T.; Funazukuri, T. Polysaccharides Hydrolysis Accelerated by Adding Carbon Dioxide under Hydrothermal Conditions. Biotechnol. Prog. 2005, 21(6), 1782–1785. DOI: 10.1021/bp050214q.
  • Allen, S.; Schulman, D.; Lichwa, J.; Antal, M.; Laser, M.; Lynd, L. A Comparison between Hot Liquid Water and Steam Fractionation of Corn Fiber. Ind. Eng. Chem. Res. 2001, 40, 2934–2941. DOI: 10.1021/ie990831h.
  • Zhu, G.; Zhu, X.; Fan, Q.; Wan, X. Production of Reducing Sugars from Bean Dregs Waste by Hydrolysis in Subcritical Water. J. Anal. Appl. Pyrolysis. 2011, 90(2), 182–186. DOI: 10.1016/j.jaap.2010.12.006.
  • Zhao, Y.; Lu, W.; Wang, H.; Yang, J. Fermentable Hexose Production from Corn Stalks and Wheat Straw with Combined Supercritical and Subcritical Hydrothermal Technology. Bioresour. Technol. 2009, 100(23), 5884–5889. DOI: 10.1016/j.biortech.2009.06.079.
  • Zhao, Y.; Lu, W.-J.; Wang, H.-T. Supercritical Hydrolysis of Cellulose for Oligosaccharide Production in Combined Technology. Chem. Eng. J. 2009, 150, 411–417. DOI: 10.1016/j.cej.2009.01.026.
  • Zhao, Y.; Lu, W.-J.; Wang, H.-T.; Li, D. Combined Supercritical and Subcritical Process for Cellulose Hydrolysis of Fermentable Hexoses. Environ. Sci. Technol. 2009, 43(5), 1565–1570. DOI: 10.1021/es803122f.
  • Sasaki, M., Kabyemela, B., Malaluan, R., Hirose, S., Takeda, N., & Adschiri, T. Cellulose hydrolysis in subcritical and supercritical water. Journal of Supercritical Fluids. 1998, 13, 261–268.
  • Maravic, N., Seres, Z., Vidovic, S., Misan, A., Milavanovic, I., & Radosavljevic, R. Subcritical water hydrolysis of sugar beet pulp towards production of monosaccharide fraction. Industrial Crops & Products. 2018, 115, 32–39.
  • King, J.; Srinivas, K.; Guevara, O.; Lu, Y.-W.; Zhang, D.; Wang, Y.-J. Reactive High Pressure Carbonated Water Pretreatment Prior to Enzymatic Saccharification of Biomass Substrates. J. Supercrit. Fluids. 2012, 66, 221–231. DOI: 10.1016/j.supflu.2012.02.010.
  • Rubio, M.; Tortosa, J.; Quesada, J.; Gomez, D. Fractionation of Lignocellulosics, Solubilization of Corn Stalk Hemicelluloses by Autohydrolysis in Aqueous Medium. Biomass Bioenergy. 1998, 15, 483–491. DOI: 10.1016/S0961-9534(98)00054-3.
  • Lachos-Perez, D., Tompsett, G., Guerra, P., Timko, M., Rostagno, M., & Martinez, J. Sugars and char formation on subcritical water hydrolysis of sugarcane straw. Bioresource Technology. 2017, 243, 1069–1077.
  • Liu, C.; Wyman, C. The Effect of Flow Rate of Compressed Hot Water on Xylan, Lignin, and Total Mass Removal from Corn Stover. Ind. Eng. Chem. Res. 2003, 42, 5409–5416. DOI: 10.1021/ie030458k.
  • Liu, C.; Wyman, C. (2004). Impact of Fluid Velocity on Hot Water Only Pretreatment of Corn Stover in a Flow through Reactor. Twenty-fifth symposium on biotechnology for fuels and chemical (pp. 977–987). Breckenridge: springer.
  • Liu, C.; Wyman, C. Partial Flow of Compressed-hot Water through Corn Stover to Enhance Hemicellulose Sugar Recovery and Enzymatic Digestibility of Cellulose. Bioresour. Technol. 2005, 96, 1978–1985.
  • Sasaki, M.; Fang, Z.; Fukushima, Y.; Adschiri, T.; Arai, K. Dissolution and Hydrolysis of Cellulose in Subcritical and Supercritical Water. Ind. Eng. Chem. Res. 2000, 39(8), 2883–2890. DOI: 10.1021/ie990690j.
  • Moreschi, S.; Leal, J.; Braga, M.; Meireles, M. Ginger and Tumeric Starches Hydrolysis Using Subcritical Water +CO2: The Effect of the SFE Pre-treatment. Braz. J. Chem. Eng. 2006, 23, 235–242. DOI: 10.1590/S0104-66322006000200011.
  • Shimanouchi, T.; Ueno, S.; Yang, W.; Kimura, Y. Extraction of Reducing Sugar with Anti-oxidative Scavengers from Peels of Carya Cathayensis Sarg: Use of Subcritical Water. Environ. Eng. Resour. 2014, 19, 41–45. DOI: 10.4491/eer.2014.19.1.041.
  • Mayanga-Torres, P., Lachos-Perez, D., Rezende, C., Prado, J., Ma, Z., & Tompsett, G. Valorization of coffee industry residues by subcritical water hydrolysis: recovery of sugars and phenolic compounds. The Journal of Supercritical Fluids. 2017, 120, 75–85.
  • Liang, J., Chen, X., Wang, L., Wei, X., Wang, H., & Lu, S. Subcritical carbon dioxide-water hydrolysis of sugarcane bagasse pith for reducing sugars production. Bioresource Technology. 2017, 228, 147–155.
  • Park, J.-N.; Shin, T.-S.; Lee, J.-H.; Chun, B.-S. (2012). Production of Reducing Sugars from Laminaria Japonica by Subcritical Water Hydrolysis. ICBFS (pp. 17–21). Bangkok, Thailand: APCBEE Proceedia.
  • Lin, R., Cheng, J., Ding, L., Song, W., Qi, F., & Zhou, J. (2015). Subcritical water hydrolysis of rice straw for reducing sugar production with focus on degradation by-products and kinetic analysis. Bioresource Technology, 186, 8–14.
  • Cardenas-toro, F.; Alcazar-alay, S.; Forster-carneiro, T.; Meireles, M. Obtaining Oligo- and Monosaccharides from Agroindustrial and Agricultural Residues Using Hydrothermal Treatments. Food Public Health. 2014, 4(3), 123–139. DOI: 10.5923/j.fph.20140403.08.
  • Coelho, E.; Rocha, M.; Saraiva, J.; Combra, M. Microwave Superheatead Water and Dilute Alkali Extraction of Brewer’s Spent Grain Arabinoxylans and Arabinoxylo-oligosaccharides. Carbohydr. Polym. 2014, 99, 415–422. DOI: 10.1016/j.carbpol.2013.09.003.
  • Oda, Y.; park, B.-S.; Moon, K.-H.; Tonomura, K. Recycling of Bakery Wastes Using an Amylolytic Lactic Acid Bacterium. Bioresour. Technol. 1997, 60, 101–106. DOI: 10.1016/S0960-8524(97)00008-4.
  • Taylor, A.-L.; (2012). BBC Food. Retrieved 2017 from BBC News: http://www.bbc.com/news/magazine-17353707.
  • MINZ, W.; (2015). New Zealand Food Waste Audits: Waste Not Consulting. http://www.wasteminz.org.nz/wp-content/uploads/Final-1-0-New-Zealand-Food-Waste-Audit-Report-2015.pdf
  • Ventour, L. WRAP Food Waste Report V2: The Food We Waste; Britain, 2008.
  • Haroon, S.; Vinthan, A.; Negron, L.; Das, S.; Berenjian, A. Biotechnological Approaches for Production of High Value Compounds from Bread Waste. Am. J. Biochem. Biotechnol. 2016, 12, 102–109. DOI: 10.3844/ajbbsp.2016.102.109.
  • Alibardi, L.; Cossu, R. Effects of Carbohydrate, Protein and Lipid Content of Organic Waste on Hydrogen Production and Fermentation Products. Waste Manag. 2016, 69–77. doi:10.1016/j.wasman.2015.07.049.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.