519
Views
13
CrossRef citations to date
0
Altmetric
Reviews

Insights into Improvement of Physiochemical and Biological Properties of Dietary Fibers from Different Sources via Micron Technology

, & ORCID Icon

References

  • Spiller, G. A. CRC Handbook of Dietary Fiber in Human Nutrition; CRC Press: New York, 2001; pp 9.
  • Roehrig, K. L. The Physiological Effects of Dietary Fiber—a Review. Food Hydrocoll. 1988, 2, 1–18.
  • Staffolo, M. D.; Sato, A. C. K.; Cunha, R. L. Utilization of Plant Dietary Fibers to Reinforce Low-calorie Dairy Dessert Structure. Food Bioprocess Technol. 2017, 10(5), 914–925. DOI: 10.1007/s11947-017-1872-9.
  • Trinidad, T. P.; Mallillin, A. C.; Valdez, D. H.; Loyola, A. S.; Askali-Mercado, F. C.; Castillo, J. C.; Encabo, R. R.; Masa, D. B.; Maglaya, A. S.; Chua, M. T. Dietary Fiber from Coconut Flour: A Functional Food. Innov. Food Sci. Emerg. Technol. 2006, 7(4), 309–317. DOI: 10.1016/j.ifset.2004.04.003.
  • Larrauri, J. New Approaches in the Preparation of High Dietary Fibre Powders from Fruit By-products. Trends Food Sci. Technol. 1999, 10, 3–8. DOI: 10.1016/S0924-2244(99)00016-3.
  • Sangnark, A.; Noomhorm, A. Effect of Particle Size on Functional Properties of Dietary Fiber Prepared from Sugarcane Bagasse. Food Chem. 2014, 80, 221–229. DOI: 10.1016/S0308-8146(02)00257-1.
  • Chen, H.; Weiss, J.; Shahidi, F. Nanotechnology in Nutraceuticals and Functional Foods. Food Technol. 2006, 3, 30–36.
  • Oberdörster, G.; Oberdörster, E.; Oberdörster, J. Nanotoxicology: an Emerging Discipline Evolving from Studies of Ultrafine Particles. Environ. Health Perspect. 2005, 113(7), 823–839. DOI: 10.1289/ehp.7339.
  • Zhao, X. Y.; Ao, Q.; Yang, L. W.; Yang, Y. F.; Sun, J. C.; Gai, G. S. Application of Superfine Pulverization Technology in Biomaterial Industry. J. Taiwan Inst. Chem. Eng. 2009, 40(3), 337–343. DOI: 10.1016/j.jtice.2008.10.001.
  • Zhu, F.; Du, B.; Xu, B. Superfine Grinding Improves Functional Properties and Antioxidant Capacities of Bran Dietary Fibre from Qingke (hull-less Barley) Grown in Qinghai-Tibet Plateau, China. J. Cereal Sci. 2015, 65, 43–47. DOI: 10.1016/j.jcs.2015.06.006.
  • Du, B.; Zhu, F.; Xu, B. Physicochemical and Antioxidant Properties of Dietary Fibers from Qingke (hull-less Barley) Flour as Affected by Ultrafine Grinding. Bioact. Carbohydrates Diet. Fibre. 2014, 4(2), 170–175. DOI: 10.1016/j.bcdf.2014.09.003.
  • Zhang, Z.; Song, H.; Peng, Z.; Luo, Q.; Ming, J.; Zhao, G. Characterization of Stipe and Cap Powders of Mushroom (lentinus Edodes) Prepared by Different Grinding Methods. J. Food Eng. 2012, 109(3), 406–413. DOI: 10.1016/j.jfoodeng.2011.11.007.
  • Chau, C. F.; Wang, Y. T.; Wen, Y. L. Different Micronization Methods Significantly Improve the Functionality of Carrot Insoluble Fibre. Food Chem. 2007, 100(4), 1402–1408. DOI: 10.1016/j.foodchem.2005.11.034.
  • Huang, Y.-L.; Sheu, F.; Lee, M.-H.; Chau, C.-F. Effects of Particle Size Reduction of Insoluble Fibres by Micron Technology on Various Caecal and Faecal Indices. J. Sci. Food Agric. 2008, 88(3), 435–441. DOI: 10.1002/(ISSN)1097-0010.
  • Chen, T.; Zhang, M.; Bhandari, B.; Yang, Z. Micronization and Nanosizing of Particles for an Enhanced Quality of Food: A Review. Crit. Rev. Food Sci. Nutr. 2018, 58(6), 993–1001. DOI: 10.1080/10408398.2016.1236238.
  • Ramachandraiah, K.; Chin, K. B. Impact of Drying and Micronization on the Physicochemical Properties and Antioxidant Activities of Celery Stalk. J. Sci. Food Agric. 2017, 97(13), 4539–4547. DOI: 10.1002/jsfa.2017.97.issue-13.
  • Raghavendra, S. N.; Ramachandra Swamy, S. R.; Rastogi, N. K.; Raghavarao, K. S. M. S.; Kumar, S.; Tharanathan, R. N. Grinding Characteristics and Hydration Properties of Coconut Residue: A Source of Dietary Fiber. J. Food Eng. 2006, 72(3), 281–286. DOI: 10.1016/j.jfoodeng.2004.12.008.
  • Wu, S. C.; Chien, P. J.; Lee, M. H.; Chau, C. F. Particle Size Reduction Effectively Enhances the Intestinal Health-promotion Ability of an Orange Insoluble Fiber in Hamsters. J. Food Sci. 2007, 72(8), 618–621. DOI: 10.1111/j.1750-3841.2007.00489.x.
  • Zhu, F. M.; Du, B.; Li, J. Effect of Ultrafine Grinding on Physicochemical and Antioxidant Properties of Dietary Fiber from Wine Grape Pomace. Food Sci. Technol. Int. 2014, 20(1), 55–62. DOI: 10.1177/1082013212469619.
  • Tao, B.; Ye, F.; Li, H.; Hu, Q.; Xue, S.; Zhao, G. Phenolic Profile and in Vitro Antioxidant Capacity of Insoluble Dietary Fiber Powders from Citrus (citrus Junos Sieb. Ex Tanaka) Pomace as Affected by Ultrafine Grinding. J. Agric. Food Chem. 2014, 62(29), 7166–7173. DOI: 10.1021/jf501646b.
  • Liu, Y.; Wang, L.; Liu, F.; Pan, S. Effect of Grinding Methods on Structural, Physicochemical, and Functional Properties of Insoluble Dietary Fiber from Orange Peel. Int. J. Polym. Sci. 2016, 2016, 1–7.
  • Niu, M.; Zhang, B.; Jia, C.; Zhao, S. Multi-scale Structures and Pasting Characteristics of Starch in Whole-wheat Flour Treated by Superfine Grinding. Int. J. Biol. Macromol. 2017, 104, 837–845. DOI: 10.1016/j.ijbiomac.2017.06.125.
  • Jin, S.; Chen, H. Superfine Grinding of Steam-exploded Rice Straw and Its Enzymatic Hydrolysis. Biochem. Eng. J. 2006, 30(3), 225–230. DOI: 10.1016/j.bej.2006.05.002.
  • Chau, C. F.; Wu, S. C.; Lee, M. H. Physicochemical Changes upon Micronization Process Positively Improve the Intestinal Health-enhancement Ability of Carrot Insoluble Fibre. Food Chem. 2007, 104(4), 1569–1574. DOI: 10.1016/j.foodchem.2007.02.035.
  • Zhu, F.; He, B.; Zhao, X.; Du, B.; Liu, S. Influence of Ultrafine Grinding Treatment on the Physicochemical and Antioxidant Properties of Chinese Ginger (zingiber Officinale Roscoe) Dietary Fiber. Agro Food Ind. Hi Tech. 2015, 26, 42–45.
  • Zhu, F.; Du, B.; Li, R.; Li, J. Effect of Micronization Technology on Physicochemical and Antioxidant Properties of Dietary Fiber from Buckwheat Hulls. Biocatal. Agric. Biotechnol. 2014, 3(3), 30–34. DOI: 10.1016/j.bcab.2013.12.009.
  • Huang, K.; Du, B.; Xu, B. Alterations in Physicochemical Properties and Bile Acid Binding Capacities of Dietary Fibers upon Ultrafine Grinding. Powder Technol. 2018, 326, 146–150. DOI: 10.1016/j.powtec.2017.12.024.
  • Zhang, M.; Wang, F.; Liu, R.; Tang, X.; Zhang, Q.; Zhang, Z. Effects of Superfine Grinding on Physicochemical and Antioxidant Properties of Lycium Barbarum Polysaccharides. LWT - Food Sci. Technol. 2014, 58(2), 594–601. DOI: 10.1016/j.lwt.2014.04.020.
  • Zhu, K. X.; Huang, S.; Peng, W.; Qian, H. F.; Zhou, H. M. Effect of Ultrafine Grinding on Hydration and Antioxidant Properties of Wheat Bran Dietary Fiber. Food Res. Int. 2010, 43(4), 943–948. DOI: 10.1016/j.foodres.2010.01.005.
  • Rosa, N. N.; Dufour, C.; Micard, V.; Gaiani, C.; Barron, C. Ultra-fine Grinding Increases the Antioxidant Capacity of Wheat Bran. J. Cereal Sci. 2013, 57(1), 84–90. DOI: 10.1016/j.jcs.2012.10.002.
  • Xiao, W.; Zhang, Y.; Fan, C.; Han, L. A Method for Producing Superfine Black Tea Powder with Enhanced Infusion and Dispersion Property. Food Chem. 2017, 214, 242–247. DOI: 10.1016/j.foodchem.2016.07.096.
  • Hsu, P. K.; Chien, P. J.; Chau, C. F. An Exploitation of the Antimicrobial Potential of a Fruit Insoluble Fibre by Micronization. Eur. Food Res. Technol. 2007, 225(2), 199–204. DOI: 10.1007/s00217-006-0404-z.
  • Zhao, X.; Zhu, H.; Zhang, G.; Tang, W. Effect of Superfine Grinding on the Physicochemical Properties and Antioxidant Activity of Red Grape Pomace Powders. Powder Technol. 2015, 286, 838–844. DOI: 10.1016/j.powtec.2015.09.025.
  • Chen, Q. M.; Fu, M. R.; Yue, F. L.; Cheng, Y. Y. Effect of Superfine Grinding on Physicochemical Properties, Antioxidant Activity and Phenolic Content of Red Rice (oryza Sativa L.). Food Nutr. Sci. 2015, 6(14), 1277–1284.
  • Zhang, M.; Zhang, C. J.; Shrestha, S. Study on the Preparation Technology of Superfine Ground Powder of Agrocybe Chaxingu Huang. J. Food Eng. 2005, 67(3), 333–337. DOI: 10.1016/j.jfoodeng.2004.04.036.
  • Ming, J.; Chen, L.; Hong, H.; Li, J. Effect of Superfine Grinding on the Physico-chemical, Morphological and Thermogravimetric Properties of Lentinus Edodes Mushroom Powders. J. Sci. Food Agric. 2015, 95(12), 2431–2437. DOI: 10.1002/jsfa.2015.95.issue-12.
  • Meng, Q.; Fan, H.; Xu, D.; Aboshora, W.; Tang, Y.; Xiao, T.; Zhang, L. Superfine Grinding Improves the Bioaccessibility and Antioxidant Properties of Dendrobium Officinale Powders. Int. J. Food Sci. Technol. 2017, 52(6), 1440–1451. DOI: 10.1111/ijfs.2017.52.issue-6.
  • Zhao, X.; Du, F.; Zhu, Q.; Qiu, D.; Yin, W.; Ao, Q. Effect of Superfine Pulverization on Properties of Astragalus Membranaceus Powder. Powder Technol. 2010, 203(3), 620–625. DOI: 10.1016/j.powtec.2010.06.029.
  • Laudadio, V.; Bastoni, E.; Introna, M.; Tufarelli, V. Production of Low-fiber Sunflower (helianthus Annuus L.) Meal by Micronization and Air Classification Processes. CYTA - J. Food. 2013, 11(4), 398–403. DOI: 10.1080/19476337.2013.781681.
  • Raghavendra, S. N.; Rastogi, N. K.; Raghavarao, K. S. M. S.; Tharanathan, R. N. Dietary Fiber from Coconut Residue: Effects of Different Treatments and Particle Size on the Hydration Properties. Eur. Food Res. Technol. 2004, 218(6), 563–567. DOI: 10.1007/s00217-004-0889-2.
  • Liang, X.; Sun, J.; Ma, H. Effect of Superfine Grinding on Physicochemical Properties of Apple Pomace. J. Chem. Soc. Pakistan. 2016, 38, 192–197.
  • Lucas-González, R.; Viuda-Martos, M.; Pérez-Álvarez, J. Á.; Fernández-López, J. Evaluation of Particle Size Influence on Proximate Composition, Physicochemical, Techno-functional and Physio-functional Properties of Flours Obtained from Persimmon (diospyros Kaki Trumb.) Coproducts. Plant Foods Hum. Nutr. 2017, 72(1), 67–73. DOI: 10.1007/s11130-016-0592-z.
  • Zhong, C.; Zu, Y.; Zhao, X.; Li, Y.; Ge, Y.; Wu, W.; Zhang, Y.; Li, Y.; Guo, D. Effect of Superfine Grinding on Physicochemical and Antioxidant Properties of Pomegranate Peel. Int. J. Food Sci. Technol. 2016, 51(1), 212–221. DOI: 10.1111/ijfs.12982.
  • Zhao, X.; Yang, Z.; Gai, G.; Yang, Y. Effect of Superfine Grinding on Properties of Ginger Powder. J. Food Eng. 2009, 91(2), 217–222. DOI: 10.1016/j.jfoodeng.2008.08.024.
  • Zhu, Y.; Dong, Y.; Qian, X.; Cui, F.; Guo, Q.; Zhou, X.; Wang, Y.; Zhang, Y.; Xiong, Z. Effect of Superfine Grinding on Antidiabetic Activity of Bitter Melon Powder. Int. J. Mol. Sci. 2012, 13(11), 14203–14218. DOI: 10.3390/ijms131114203.
  • Zhang, M.; Liang, Y.; Pei, Y.; Gao, W.; Zhang, Z. Effect of Process on Physicochemical Properties of Oat Bran Soluble Dietary Fiber. J. Food Sci. 2009, 74(8), C628–C636. DOI: 10.1111/j.1750-3841.2009.01324.x.
  • Niu, M.; Hou, G. G.; Wang, L.; Chen, Z. Effects of Superfine Grinding on the Quality Characteristics of Whole-wheat Flour and Its Raw Noodle Product. J. Cereal Sci. 2014, 60(2), 382–388. DOI: 10.1016/j.jcs.2014.05.007.
  • Liu, R.; Li, J.; Wu, T.; Li, Q.; Meng, Y.; Zhang, M. Effects of Ultrafine Grinding and Cellulase Hydrolysis Treatment on Physicochemical and Rheological Properties of Oat (avena Nuda L.) β-glucans. J. Cereal Sci. 2015, 65, 125–131. DOI: 10.1016/j.jcs.2015.07.002.
  • Hu, J.; Chen, Y.; Ni, D. Effect of Superfine Grinding on Quality and Antioxidant Property of Fine Green Tea Powders. LWT - Food Sci. Technol. 2012, 45(1), 8–12. DOI: 10.1016/j.lwt.2011.08.002.
  • Li, M.; Zhang, J. H.; Zhu, K. X.; Peng, W.; Zhang, S. K.; Wang, B.; Zhu, Y. J.; Zhou, H. M. Effect of Superfine Green Tea Powder on the Thermodynamic, Rheological and Fresh Noodle Making Properties of Wheat Flour. LWT - Food Sci. Technol. 2012, 46(1), 23–28. DOI: 10.1016/j.lwt.2011.11.005.
  • Chau, C.-F.; Wen, Y.-L.; Wang, Y.-T. Effects of Micronisation on the Characteristics and Physicochemical Properties of Insoluble Fibres. J. Sci. Food Agric. 2006, 86(14), 2380–2386. DOI: 10.1002/(ISSN)1097-0010.
  • Wu, S. C.; Wu, S. H.; Chau, C. F. Improvement of the Hypocholesterolemic Activities of Two Common Fruit Fibers by Micronization Processing. J. Agric. Food Chem. 2009, 57(12), 5610–5614. DOI: 10.1021/jf9010388.
  • Yu, G.; Bei, J.; Zhao, J.; Li, Q.; Cheng, C. Modification of Carrot (daucus Carota Linn. Var. Sativa Hoffm.) Pomace Insoluble Dietary Fiber with Complex Enzyme Method, Ultrafine Comminution, and High Hydrostatic Pressure. Food Chem. 2018, 257(17), 333–340. DOI: 10.1016/j.foodchem.2018.03.037.
  • Zheng, Y.; Li, Y. Physicochemical and Functional Properties of Coconut (cocos Nucifera L) Cake Dietary Fibres. Data Br. 2018, 20, 521–524. DOI: 10.1016/j.dib.2018.08.018.
  • Ye, F.; Tao, B.; Liu, J.; Zou, Y.; Zhao, G. Effect of Micronization on the Physicochemical Properties of Insoluble Dietary Fiber from Citrus (citrus Junos Sieb. Ex Tanaka) Pomace. Food Sci. Technol. Int. 2016, 22(3), 246–255. DOI: 10.1177/1082013215593394.
  • Burin, V. M.; Ferreira-Lima, N. E.; Panceri, C. P.; Bordignon-Luiz, M. T. Bioactive Compounds and Antioxidant Activity of Vitis Vinifera and Vitis Labrusca Grapes: Evaluation of Different Extraction Methods. Microchem. J. 2014, 114, 155–163. DOI: 10.1016/j.microc.2013.12.014.
  • Erik, K.;Knudsen, B.; Nørskov, N. P.; Bolvig, A. K.; Hedemann, M. S. Dietary Fibers and Associated Phytochemicals in Cereals. Mol. Nutr. Food Res. 2017, 61(7), 10–24.
  • Dymińska, L.; Szatkowski, M.; Wróbel-Kwiatkowska, M.; Zuk, M.; Kurzawa, A.; Syska, W.; Gagor, A.; Zawadzki, M.; Ptak, M.; Maczka, M.;; et al. Improved Properties of Micronized Genetically Modified Flax Fibers. J. Biotechnol. 2012, 164(2), 292–299.
  • Foschia, M.; Peressini, D.; Sensidoni, A.; Brennan, C. S. The Effects of Dietary Fibre Addition on the Quality of Common Cereal Products. J. Cereal Sci. 2013, 58(2), 216–227. DOI: 10.1016/j.jcs.2013.05.010.
  • Guo, C.; Yang, J.; Wei, J.; Li, Y.; Xu, J.; Jiang, Y. Antioxidant Activities of Peel, Pulp and Seed Fractions of Common Fruits as Determined by FRAP Assay. Nutr. Res. 2003, 23(12), 1719–1726. DOI: 10.1016/j.nutres.2003.08.005.
  • Prior, R. L.; Wu, X.; Schaich, K. Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. J. Agric. Food Chem. 2005, 53(10), 4290–4302. DOI: 10.1021/jf0502698.
  • Yu, L.; Haley, S.; Perret, J.; Harris, M.; Wilson, J.; Qian, M. Free Radical Scavenging Properties of Wheat Extracts. J. Agric. Food Chem. 2002, 50(6), 1619–1624. DOI: 10.1021/jf010964p.
  • Yu, L.; Haley, S.; Perret, J.; Harris, M. Antioxidant Properties of Hard Winter Wheat Extracts. Food Chem. 2002, 78(4), 457–461. DOI: 10.1016/S0308-8146(02)00156-5.
  • Wen, Y.; Niu, M.; Zhang, B.; Zhao, S.; Xiong, S. Structural Characteristics and Functional Properties of Rice Bran Dietary Fiber Modified by Enzymatic and Enzyme-micronization Treatments. LWT - Food Sci. Technol. 2017, 75, 344–351. DOI: 10.1016/j.lwt.2016.09.012.
  • Nagarajan, J.; Ramanan, R. N.; Raghunandan, M. E.; Galanakis, C. M.; Krishnamurthy, N. P. Chapter 8. Carotenoids. In Nutraceutical and Functional Food Components: Effects of Innovative Processing Techniques; Galanakis, C.M., Ed.; Academic press, Elsevier: United Kingdom, 2017; pp 259–296.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.