762
Views
14
CrossRef citations to date
0
Altmetric
Review

Application of Metabonomics Approach in Food Safety Research-A Review

, &

References

  • NHC. Food Safety Law of the People's Republic of China. http://www.nhc.gov.cn/fzs/s3576/201808/cd0531ee51074b65a18e2ce341389a20.shtml (Accessed Apr. 25, 2015)
  • He, L. M.; Su, Y. J.; Fang, B. H.; Shen, X. G.; Zeng, Z. L.; Liu, Y. H. Determination of Sudan Dye Residues in Eggs by Liquid Chromatography and Gas –chromatography Mass Spectrometry. Anal. Chim. Acta. 2007, 594, 139–146. DOI: 10.1016/j.aca.2007.05.021.
  • Liu, S. J.; Cui, Y.; Shi, M.; Zhang, B.; Guo, J. Z. Simultaneous Determination of 24 β2-agonists in Animal Derived Food by Solid Phase Extraction Isotopes-dilution Technique and Ultra Performance Liquid Chromatography-tandem Mass Spectrometry. J. Food Saf. Qual. 2015, 6(5), 1726–1734.
  • South China Morning Post (SCMP) Editorial. ‘Gutter Oil’ Scandal Shows Why We Must Keep Track of the Food Chain. 2014. http://www.scmp.com/comment/insight-opinion/article/1593363/gutter-oil-scandal-shows-why-we-must-keep-track-food-chain (Accessed Oct 28, 2015).
  • Kim, T. H.; Ahn, M. Y.; Lim, H. J.; Lee, Y. J.; Shin, Y. J.; De, U.; Lee, J.; Lee, B. M.; Kim, S.; Kim, H. S. Evaluation of Metabolomic Profiling against Renal Toxicity in Sprague–Dawley Rats Treated with Melamine and Cyanuric Acid. Arch. Toxicol. 2012, 86, 1885–1897. DOI: 10.1007/s00204-012-0910-7.
  • Hung, B. P. China’s Tainted Infant Formula: What WHO Should Do. BMJ. 2008, 13, 337.
  • Guan, N.; Fan, Q.; Ding, J.; Zhao, Y.; Lu, J.; Ai, Y.; Xu, G.; Zhu, S.; Yao, C.; Jiang, L.; et al. Melamine-contaminated Powdered Formula and Urolithiasis in Young Children. New Engl. J. Med. 2009, 360, 1067–1074. DOI: 10.1056/NEJMoa0809550.
  • Wang, X.Y.; Ren, J.H.; Wang, Z.; Weng, X.J.; Wang, R. Epidemiological characteristics of food poisoning events in China. Disease Surveillance. 2017, 33(05), 359-364..
  • MOC. Compilation by Ministry of Commerce of the People’s Republic of China. 2019. http://wms.mofcom.gov.cn/article/zt_ncp/table/shipin_1712.pdf (Accessed Aug 07, 2019).
  • Erik, T.; Johan, R.; Karl-Erik, H.; Magnus, Å. K. A Concept Study on Non-targeted Screening for Chemical Contaminants in Food Using Liquid Chromatography–mass Spectrometry in Combination with A Metabolomics Approach. Anal. Bioanal. Chem. 2013, 405, 1237–1243. DOI: 10.1007/s00216-012-6506-5.
  • Li, Y. G.; Shan, Y.; Li, G. Y.; Zhang, J. H. Current Situation and Application Analysis of Detection Methods of Illegal Cooking Oil. Food Mach. 2012, 28(3), 262–265.
  • Nicholson, J. K.; Wilson, I. D. Understanding ‘global’ Systems Biology: Metabonomics and the Continuum of Metabolism. Nat. Rev. Drug Discovery. 2003, 2, 668–676. DOI: 10.1038/nrd1157.
  • Putri, S. P.; Nakayama, Y.; Matsuda, F.; Uchikata, T.; Kobayashi, S.; Matsubara, A.; Fukusaki, E. Current Metabolomics: Practical Applications. J. Biosci. Bioeng. 2013, 115(6), 579–589. DOI: 10.1016/j.jbiosc.2012.12.007.
  • Lao, Y. M.; Jiang, J. G.; Yan, L. Application of Metabonomic Analytical Techniques in the Modernization and Toxicology Research of Traditional Chinese Medicine. Br. J. Pharmacol. 2009, 157, 1128–1141. DOI: 10.1111/j.1476-5381.2009.00257.x.
  • Kuang, H.; Li, Z.; Peng, X. F.; Liu, L. Q.; Xu, L. G.; Zhu, Y. Y.; Wang, L. B.; Xu, C. L. Metabonomics Approaches and the Potential Application in Food Safety Evaluation. Crit. Rev. Food Sci. 2012, 52, 761–774. DOI: 10.1080/10408398.2010.508345.
  • Cevallos-Cevallos, J. M.; Reyes-De-Corcuera, J. I.; Etxeberria, E.; Danyluk, M. D.; Rodrick, G. E. Metabolomic Analysis in Food Science: a Review. Trends Food Sci. Technol. 2009, 20, 557–566. DOI: 10.1016/j.tifs.2009.07.002.
  • Lindon, J. C.; Holmes, E.; Bollard, M. E.; Stanley, E. S.; Nicolson, J. K. Metabonomics Technologies and Their Applications in Physiological Monitoring, Drug Safety Assessment and Disease Diagnosis. Biomarkers. 2004, 9, 1–31. DOI: 10.1080/13547500410001668379.
  • Hall, R. D.; Brouwer, I. D.; Fitzgerald, M. A. Plant Metabolomics and Its Potential Application for Human Nutrition. Physiol. Plant. 2008, 132(2), 162–175. DOI: 10.1111/j.1399-3054.2007.00989.x.
  • Wishart, D. S.;. Applications of Metabolomics in Drug Discovery and Development. Drugs R&D. 2008, 9(5), 307–322. DOI: 10.2165/00126839-200809050-00002.
  • Kaddurah-Daouk, R.; Krishnan, K. R. R. Metabolomics: a Global Biochemical Approach to the Study of Central Nervous System Diseases. Neuropsychopharmacol. 2009, 34(1), 173–186. DOI: 10.1038/npp.2008.174.
  • Yu, Y.; Cao, Y.; Chen, Y. M.; Wen, C.; Xu, Z. L. Plasma Metabonomics Study of Systemiclupus Erythematosus Based on Liquid Chromatography-mass Spectrometry. Chin. J. Chromatogr. 2010, 28, 644–648.
  • Rochfort, S.;. Metabolomics Reviewed: a New “omics” Platform Technology for Systems Biology and Implications for Natural Products Research. J. Nat. Prod. 2005, 68, 1813–1820. DOI: 10.1021/np050255w.
  • Cifuentes, A.;. Food Analysis and Foodomics. J. Chromatogr. A. 2009, 1216(43), 7109. DOI: 10.1016/j.chroma.2008.12.003.
  • Hu, C. X.; Xu, G. W. Mass-spectrometry-based Metabolomics Analysis for Foodomics. Trac-Trends Anal. Chem. 2013, 52, 36–46. DOI: 10.1016/j.trac.2013.09.005.
  • D’Alessandro, A.; Zolla, L. Foodomics to Investigate Meat Tenderness. Trac-Trends Anal. Chem. 2013, 52, 47–53. DOI: 10.1016/j.trac.2013.05.017.
  • Giacometti, J.; Josic, D. Foodomics in Microbial Safety. Trac-Trends Anal. Chem. 2013, 52, 16–22. DOI: 10.1016/j.trac.2013.09.003.
  • Jandrić, Z.; Roberts, D.; Rathor, M.N.; Abrahim, A.; Islam, M.; Cannavan, A. Assessment of fruit juice authenticity using UPLC-QTOF MS: A metabolomics approach. Food Chemistry. 2014, 148, 7-17. DOI: 10.1016/j.foodchem.2013.10.014.
  • Puyana, M. C.; Pérez-Míguez, R.; Montero, L.; Herrero, M. Application of Mass Spectrometry Based Metabolomics Approaches for Foodsafety, Quality and Traceability. Trends Anal. Chem. 2017, 93, 102–118. DOI: 10.1016/j.trac.2017.05.004.
  • Cubero-Leon, E.; De Rudder, O.; Maquet, A. Metabolomics for Organic Food Authentic: Resultsfrom a Long-term Field Study in Carrots. Food Chem. 2018, 239, 760–770. DOI: 10.1016/j.foodchem.2017.06.161.
  • CAC. International food standards. Maximum Residue Limits (MRLs) and Risk Management Recommendations (RMRs) for Residues of Veterinary Drugs in Foods. CX/MRL 2-2018.Compilation by Codex Alimentarius Commission,2018.
  • Antignac, J.P.; Pinel, G.; Bichon, E.; Monteau, F.; Courant, F.; Kieken, F.; Destrez, B. and Le Bizec, B. Proceedings of the Euro Residue VI Conference. Egmond aan Zee, The Netherlands. 2008, 19-21.
  • Courant, F.; Pinel, G.; Bichon, E.; Monteau, F.; Antignac, J. P.; Bizec, B. L. Development of a Metabolomic Approach Based on Liquid Chromatography Higher Solution Mass Spectrometry to Screen for Clenbuterol Abuse in Calves. Analyst. 2009, 134, 1637–1646. DOI: 10.1039/b901813a.
  • Regal, P.; Anizan, S.; Antignac, J. P.; Bizec, B. L.; Cepeda, A.; Fente, C. Metabolomic Approach Based on Liquid Chromatography Coupled to High Resolution Mass Spectrometry to Screen for the Illegal Use of Estradiol and Progesterone in Cattle. Anal. Chim. Acta. 2011, 700, 16–25. DOI: 10.1016/j.aca.2011.01.005.
  • NHC. Food may be illegal to add non-food substances and the abuse of food additives varieties, Compilation by Ministry of Health of the People’s Republic of China. 2011. http://www.nhc.gov.cn/sps/s7892/201406/38e5c8a53615486888d93ed05ac9731a.shtml (Accessed April 22, 2011).
  • Xie, G. X.; Zheng, X. J.; Qi, X.; Cao, Y.; Chi, Y.; Su, M. M.; Ni, Y.; Qiu, Y. P.; Liu, Y. M.; Li, H. K.; et al. Metabonomic Evaluation of Melamine-induced Acute Renal Toxicity in Rats. J. Proteome Res. 2010, 9, 125–133. DOI: 10.1021/pr900333h.
  • Schnackenberg, L. K.; Sun, J. C.; Pence, L. M.; Bhattacharyya, S.; Da Costa, G. G.; Beger, R. D. Metabolomics Evaluation of Droxyproline as a Potential Marker of Melamine and Cyanuric Acid Nephrotoxicity in Male and Female Fischer F344 Rats. Food Chem. Toxicol. 2012, 50, 3978–3983. DOI: 10.1016/j.fct.2012.08.010.
  • Wang, Y.; Jiang, Z. T.; Liang, Q. L.; Wang, Y. M.; Wang, M.; Luo, G. A. Metabonomics Research of the Influence of Melamine to the Urine Metabolism of the Children Based on UPLC -TOF-MS. Chem. J. Chin. Univ. 2010, 31, 57–60.
  • ISAAA. Global Status of Commercialized Biotech/GM Crops: 2016. ISAAA Brief No. 52. ISAAA: Ithaca, NY.
  • Ho, P. Food Safety Concerns and Biotechnology: Consumers’ Attitudes to Genetically Modified Products in Urban China. AgBioForum. 2004, 7(4), 158–175.
  • Zdunczyk, Z. New Bioanalytical Technologies (“omics”) in the Evaluation of Biological Properties of Foods and Feeds. Pol. J. Nat. Sci. Supply. 2006, 3, 33–38.
  • Chao, E.; Krewski, D. A Risk-based Classification Scheme for Genetically Modified Foods II: Graded Testing. Regul. Toxicol. Pharm. 2008, 52(3), 223–234. DOI: 10.1016/j.yrtph.2008.08.002.
  • Zhou, J.; Ma, C. F.; Xu, H. L.; Yuan, K.; Lu, X.; Zhu, Z.; Wu, Y. G.; Xu, G. W. Metabolic Profiling of Transgenic Rice with cryIAc and Sck Genes: an Evaluation of Unintended Effects at Metabolic Level by Using GC-FID and GC–MS. J. Chromatogr. B. 2009, 877, 725–732. DOI: 10.1016/j.jchromb.2009.01.040.
  • Catchpole, G. S.; Beckmann, M.; Enot, D. P.; Mondhe, M.; Zywicki, B.; Taylor, J.; Hardy, N.; Smith, A.; King, R. D.; Kell, D. B.; et al. Hierarchical Metabolomics Demonstrates Substantial Compositional Similarity between Genetically Modified and Conventional Potato Crops. Proc. Natl. Acad. Sci. U. S. A. 2005, 102(40), 14458–14462. DOI: 10.1073/pnas.0503955102.
  • Kim, H. S.; Kim, S. W.; Park, Y. S. Metabolic Profiles of Genetically Modified Potatoes Using a Combination of Metabolite Fingerprinting and Multivariate Analysis. Biotechnol. Bioprocess Eng. 2009, 14(6), 738–747. DOI: 10.1007/s12257-009-0168-y.
  • Chang, Y. W.; Zhao, C. X.; Zhu, Z.; Wu, Z.; Zhou, J.; Zhao, Y.; Lu, X.; Xu, G. Metabolic Profiling Based on LC/MS to Evaluate Unintended Effects of Transgenic Rice with cry1Ac and Sck Genes. Plant Mol. Biol. 2012, 78(4–5), 477–487. DOI: 10.1007/s11103-012-9876-3.
  • Levandi, T.; Leon, C.; Kaijurand, M. Capillary Electrophoresis Time-Of-flight Mass Spectrometry for Comparative Metabolomics of Transgenic versus Conventional Maize. Anal. Chem. 2008, 80, 6329–6335. DOI: 10.1021/ac8006329.
  • Gall, G. L.; Dupont, M. S.; Mellon, F. A.; Davis, L. A.; Collins, G. J.; Verhoeven, M. V. Characterization and Content of Flavonoid Glycosides in Genetically Modified Tomato (lycopersicon Esculentum) Fruits. J. Agric. Food Chem. 2003, 51, 2438–2446. DOI: 10.1021/jf025995e.
  • Surowiec, I.; Fraser, P. D.; Patel, R.; Halket, J.; Bramley, P. M. Metabolomic Approach for the Detection of Mechanically Recovered Meat in Food Products. Food Chem. 2011, 125, 1468–1475. DOI: 10.1016/j.foodchem.2010.10.064.
  • BMMA. British Meat Manufacturers Association Standard for the Preparation of Mechanically Separated Meat (MSM) Otherwise Commonly Known as Mechanically Recovered Meat. 1991, London: British Standards Institution.
  • Hajimahmoodi, M.; Heyden, Y. V.; Sadeghi, N.; Jannat, B.; Oveisi, M. R.; Shahbazian, S. Gas-chromatographic Fatty-acid Fingerprints and Partial Least Squares Modeling as a Basis for the Simultaneous Determination of Edible Oil Mixtures. Talanta. 2005, 66, 1108–1116. DOI: 10.1016/j.talanta.2005.01.011.
  • Lin, L. Y.; Xu, D. M.; Shen, X. H.; Zhang, Z. G.; Chen, L. P.; Wang, C. X. Traceability of the Wine in Bordeaux Region from France Based on Liquid Chromatography-quadrupole-time of Flight Tandem Mass Spectrometry. J. Food Saf. Qual. 2014, 5(9), 2649–2656.
  • Fleury, M.; Charron, D.F.; Hot, J.D.; Allen, O.B.; Maarouf, A.R. A time series analysis of the relatuionship of ambient temperature and common bacterial enteric infections in two Canadian. Int. J. Biometeorol. 2006, 50, 385-391. DOI10.1007/s00484-006-0028-9. WHO. Building Capacity for Laboratory-based Surveillance, and Outbreak Detection and Response for Foodborne and Other Infectious Enteric Diseases, Compilation by WHO: Global Salm-Sury Progress Report (2000–2005). http://www.who.int/salmsurv/GSSProgressReport2005.pdf.
  • Cevallos-Cevallos, J. M.; Danyluk, M. D.; Reyes-De-Corcuera, J. I. GC-MS Based Metabolomics for Rapid Simultaneous Detection of Escherichia coliO157: H7, Salmonella Typhimurium, Salmonellamuenchen, and Salmonellahartford in Ground Beef and Chicken. J. Food Sci. 2011, 76(4), 238–246. DOI: 10.1111/j.1750-3841.2011.02132.x.
  • Nakai, S.; Wang, Z. H.; Dou, J.; Nakamura, S.; Ogawa, M.; Nakai, E.; Vanderstoep, J. Gas Chromatography/principal Component Similarity System for Detection of E. Coli and S. Aureus Contaminating Salmon and Hamburger. J. Agric. Food Chem. 1999, 47(2), 576–583. DOI: 10.1021/jf980750g.
  • Siripatrawan, U.; Harte, B. R. Solid Phase Microextraction/gaschromatograph/mass Spectrometer Integrated with Chemometrics for Detection of Salmonella Typhimurium Contamination in a Packaged Fresh Vegetable. Anal. Chim. Acta. 2007, 581(1), 63–70. DOI: 10.1016/j.aca.2006.08.007.
  • Xu, Y.; Cheng, W.; Winder, C. L.; Dunn, W. B.; Goodacre, R. Metabolic Profiling of Meat: Assessment of Pork Hygiene and Contamination with Salmonella Typhimurium. Analyst. 2011, 136(3), 508–514. DOI: 10.1039/c0an00394h.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.