1,122
Views
51
CrossRef citations to date
0
Altmetric
Review

Cultured Microalgae and Compounds Derived Thereof for Food Applications: Strain Selection and Cultivation, Drying, and Processing Strategies

ORCID Icon

References

  • Vigani, M.; Parisi, C.; Rodríguez-Cerezo, E.; Barbosa, M. J.; Sijtsma, L.; Ploeg, M.; Enzing, C. Food and Feed Products from Micro-algae: Market Opportunities and Challenges for the EU. Trends Food Sci. Technol. 2015, 42, 81–92. DOI: 10.1016/j.tifs.2014.12.004.
  • Lafarga, T.; Hayes, M. Bioactive Protein Hydrolysates in the Functional Food Ingredient Industry: Overcoming Current Challenges. Food Rev. Int. 2017, 33, 217–246. DOI: 10.1080/87559129.2016.1175013.
  • Garrido-Cardenas, J. A.; Manzano-Agugliaro, F.; Acien-Fernandez, F. G.; Molina-Grima, E. Microalgae Research Worldwide. Algal Res. 2018, 35, 50–60. DOI: 10.1016/j.algal.2018.08.005.
  • Lafarga, T.;. Effect of Microalgal Biomass Incorporation into Foods: Nutritional and Sensorial Attributes of the End Products. Algal Res. 2019, 41, 101566. DOI: 10.1016/j.algal.2019.101566.
  • Finkel, Z. V.; Follows, M. J.; Liefer, J. D.; Brown, C. M.; Benner, I.; Irwin, A. J.; Humbert, J.-F. Phylogenetic Diversity in the Macromolecular Composition of Microalgae. PloS One. 2016, 11, e0155977. DOI: 10.1371/journal.pone.0155977.
  • Shah, M.; Mahfuzur, R.; Liang, Y.; Cheng, J. J.; Daroch, M. Astaxanthin-producing Green Microalga Haematococcus Pluvialis: from Single Cell to High Value Commercial Products. Front. Plant Sci. 2016, 7, 531. DOI: 10.3389/fpls.2016.00531.
  • Chacón-Lee, T.; González-Mariño, G. Microalgae for “healthy” Foods—possibilities and Challenges. Compr. Rev. Food Sci. Food Saf. 2010, 9, 655–675. DOI: 10.1111/crfs.2010.9.issue-6.
  • Barba, F. J.; Grimi, N.; Vorobiev, E. New Approaches for the Use of Non-conventional Cell Disruption Technologies to Extract Potential Food Additives and Nutraceuticals from Microalgae. Food Eng. Rev. 2015, 7, 45–62. DOI: 10.1007/s12393-014-9095-6.
  • Goettel, M.; Eing, C.; Gusbeth, C.; Straessner, R.; Frey, W. Pulsed Electric Field Assisted Extraction of Intracellular Valuables from Microalgae. Algal Res. 2013, 2, 401–408. DOI: 10.1016/j.algal.2013.07.004.
  • Martínez, J. M.; Luengo, E.; Saldaña, G.; Álvarez, I.; Raso, J. C-phycocyanin Extraction Assisted by Pulsed Electric Field from Artrosphira Platensis. Food Res. Int. 2017, 99, 1042–1047. DOI: 10.1016/j.foodres.2016.09.029.
  • Günerken, E.; D’Hondt, E.; Eppink, M. H. M.; Garcia-Gonzalez, L.; Elst, K.; Wijffels, R. H. Cell Disruption for Microalgae Biorefineries. Biotechnol. Adv. 2015, 33, 243–260. DOI: 10.1016/j.biotechadv.2015.01.008.
  • Wells, M. L.; Potin, P.; Craigie, J. S.; Raven, J. A.; Merchant, S. S.; Helliwell, K. E.; Smith, A. G.; Camire, M. E.; Brawley, S. H. Algae as Nutritional and Functional Food Sources: Revisiting Our Understanding. J. Appl. Phycol. 2017, 29, 949–982. DOI: 10.1007/s10811-016-0974-5.
  • Cornish, M. L.; Critchley, A. T.; Mouritsen, O. G. A Role for Dietary Macroalgae in the Amelioration of Certain Risk Factors Associated with Cardiovascular Disease. Phycologia. 2015, 54, 649–666. DOI: 10.2216/15-77.1.
  • Fleurence, J.; Levine, I. Seaweed in Health and Disease Prevention; London, UK: Academic Press, 2016.
  • Tiwari, B. K.; Troy, D. J. Seaweed Sustainability–Food and Nonfood Applications; MA, USA: Elsevier, 2015; pp 1–6.
  • Ejike, C. E. C. C.; Collins, S. A.; Balasuriya, N.; Swanson, A. K.; Mason, B.; Udenigwe, C. C. Prospects of Microalgae Proteins in Producing Peptide-based Functional Foods for Promoting Cardiovascular Health. Trends Food Sci. Technol. 2017, 59, 30–36. DOI: 10.1016/j.tifs.2016.10.026.
  • Gerardo, M. L.; Van Den Hende, S.; Vervaeren, H.; Coward, T.; Skill, S. C. Harvesting of Microalgae within A Biorefinery Approach: A Review of the Developments and Case Studies from Pilot-plants. Algal Res. 2015, 11, 248–262. DOI: 10.1016/j.algal.2015.06.019.
  • AESAN. Report of the Scientific Committee of the Spanish Agency for Food Safety and Nutrition on a Request for Initial Assessment for Marketing of the Marine Microalgae Tetraselmis Chuii under Regulation (EC) No 258/97 on Novel Foods and Novel Food Ingredients. Revista del Comite Cientifico de la AESAN 2014, 18, 11–28.
  • EC. Commission Implementing Decision (EU) 2015/546 of 31 March 3015 Authorising an Extension Od Use of DHA and EPA-rich Oil from the Microalgae Schizochytrium Sp. As a Novel Food Ingredient under Regulation (EC) No 258/97 of the European Parliamient and of the Council. Off. J. Eur. Union. 2015, L90, 11–13.
  • Markou, G.; Nerantzis, E. Microalgae for High-value Compounds and Biofuels Production: a Review with Focus on Cultivation under Stress Conditions. Biotechnol. Adv. 2013, 31, 1532–1542. DOI: 10.1016/j.biotechadv.2013.07.011.
  • Chen, C.-Y.; Yeh, K.-L.; Aisyah, R.; Lee, D.-J.; Chang, J.-S. Cultivation, Photobioreactor Design and Harvesting of Microalgae for Biodiesel Production: A Critical Review. Bioresour. Technol. 2011, 102, 71–81. DOI: 10.1016/j.biortech.2010.06.159.
  • Hu, J.; Nagarajan, D.; Zhang, Q.; Chang, J.-S.; Lee, D.-J. Heterotrophic Cultivation of Microalgae for Pigment Production: A Review. Biotechnol. Adv. 2018, 36, 54–67. DOI: 10.1016/j.biotechadv.2017.09.009.
  • Cheirsilp, B.; Torpee, S. Enhanced Growth and Lipid Production of Microalgae under Mixotrophic Culture Condition: Effect of Light Intensity, Glucose Concentration and Fed-batch Cultivation. Bioresour. Technol. 2012, 110, 510–516. DOI: 10.1016/j.biortech.2012.01.125.
  • Acién, F. G.; Molina, E.; Reis, A.; Torzillo, G.; Zittelli, G. C.; Sepúlveda, C.; Masojídek, J. 1 - Photobioreactors for the Production of Microalgae. In Microalgae-Based Biofuels and Bioproducts; Gonzalez-Fernandez, C., Muñoz, R., Eds.; Duxford, UK: Woodhead Publishing, 2017; pp 1–44.
  • Mata, T. M.; Martins, A. A.; Caetano, N. S. Microalgae for Biodiesel Production and Other Applications: A Review. Renewable Sustainable Energy Rev. 2010, 14, 217–232. DOI: 10.1016/j.rser.2009.07.020.
  • Del Campo, J. A.; García-González, M.; Guerrero, M. G. Outdoor Cultivation of Microalgae for Carotenoid Production: Current State and Perspectives. Appl. Microbiol. Biotechnol. 2007, 74, 1163–1174. DOI: 10.1007/s00253-007-0844-9.
  • Wang, B.; Lan, C. Q.; Horsman, M. Closed Photobioreactors for Production of Microalgal Biomasses. Biotechnol. Adv. 2012, 30, 904–912. DOI: 10.1016/j.biotechadv.2012.01.019.
  • Vandamme, D.; Foubert, I.; Muylaert, K. Flocculation as a Low-cost Method for Harvesting Microalgae for Bulk Biomass Production. Trends Biotechnol. 2013, 31, 233–239. DOI: 10.1016/j.tibtech.2012.12.005.
  • Fasaei, F.; Bitter, J. H.; Slegers, P. M.; van Boxtel, A. J. B. Techno-economic Evaluation of Microalgae Harvesting and Dewatering Systems. Algal Res. 2018, 31, 347–362. DOI: 10.1016/j.algal.2017.11.038.
  • Molina Grima, E.; Belarbi, E. H.; Acién Fernández, F. G.; Robles Medina, A.; Chisti, Y. Recovery of Microalgal Biomass and Metabolites: Process Options and Economics. Biotechnol. Adv. 2003, 20, 491–515.
  • Show, K.-Y.; Lee, D.-J.; Tay, J.-H.; Lee, T.-M.; Chang, J.-S. Microalgal Drying and Cell Disruption – Recent Advances. Bioresour. Technol. 2015, 184, 258–266. DOI: 10.1016/j.biortech.2014.10.139.
  • Postma, P. R.; Miron, T. L.; Olivieri, G.; Barbosa, M. J.; Wijffels, R. H.; Eppink, M. H. M. Mild Disintegration of the Green Microalgae Chlorella Vulgaris Using Bead Milling. Bioresour. Technol. 2015, 184, 297–304. DOI: 10.1016/j.biortech.2014.09.033.
  • Suarez Garcia, E.; van Leeuwen, J.; Safi, C.; Sijtsma, L.; Eppink, M. H. M.; Wijffels, R. H.; van Den Berg, C. Selective and Energy Efficient Extraction of Functional Proteins from Microalgae for Food Applications. Bioresour. Technol. 2018, 268, 197–203. DOI: 10.1016/j.biortech.2018.07.131.
  • Zinkoné, T. R.; Gifuni, I.; Lavenant, L.; Pruvost, J.; Marchal, L. Bead Milling Disruption Kinetics of Microalgae: Process Modeling, Optimization and Application to Biomolecules Recovery from Chlorella Sorokiniana. Bioresour. Technol. 2018, 267, 458–465. DOI: 10.1016/j.biortech.2018.07.080.
  • Postma, P. R.; Suarez-Garcia, E.; Safi, C.; Yonathan, K.; Olivieri, G.; Barbosa, M. J.; Wijffels, R. H.; Eppink, M. H. M. Energy Efficient Bead Milling of Microalgae: Effect of Bead Size on Disintegration and Release of Proteins and Carbohydrates. Bioresour. Technol. 2017, 224, 670–679. DOI: 10.1016/j.biortech.2016.11.071.
  • Safi, C.; Cabas Rodriguez, L.; Mulder, W. J.; Engelen-Smit, N.; Spekking, W.; van Den Broek, L. A. M.; Olivieri, G.; Sijtsma, L. Energy Consumption and Water-soluble Protein Release by Cell Wall Disruption of Nannochloropsis Gaditana. Bioresour. Technol. 2017, 239, 204–210. DOI: 10.1016/j.biortech.2017.05.012.
  • Zbinden, M. D. A.; Sturm, B. S.; Nord, R. D.; Carey, W. J.; Moore, D.; Shinogle, H.; Stagg‐Williams, S. M. Pulsed Electric Field (PEF) as an Intensification Pretreatment for Greener Solvent Lipid Extraction from Microalgae. Biotechnol. Bioeng. 2013, 110, 1605–1615. DOI: 10.1002/bit.24829.
  • Lam, G. P. T.; Postma, P. R.; Fernandes, D. A.; Timmermans, R. A. H.; Vermuë, M. H.; Barbosa, M. J.; Eppink, M. H. M.; Wijffels, R. H.; Olivieri, G. Pulsed Electric Field for Protein Release of the Microalgae Chlorella Vulgaris and Neochloris Oleoabundans. Algal Res. 2017, 24, 181–187.
  • Postma, P. R.; Pataro, G.; Capitoli, M.; Barbosa, M. J.; Wijffels, R. H.; Eppink, M. H. M.; Olivieri, G.; Ferrari, G. Selective Extraction of Intracellular Components from the Microalga Chlorella Vulgaris by Combined Pulsed Electric Field–temperature Treatment. Bioresour. Technol. 2016, 203, 80–88. DOI: 10.1016/j.biortech.2015.12.012.
  • Carullo, D.; Abera, B. D.; Casazza, A. A.; Donsì, F.; Perego, P.; Ferrari, G.; Pataro, G. Effect of Pulsed Electric Fields and High Pressure Homogenization on the Aqueous Extraction of Intracellular Compounds from the Microalgae Chlorella Vulgaris. Algal Res. 2018, 31, 60–69. DOI: 10.1016/j.algal.2018.01.017.
  • Zhang, R.; Grimi, N.; Marchal, L.; Vorobiev, E. Application of High-voltage Electrical Discharges and High-pressure Homogenization for Recovery of Intracellular Compounds from Microalgae Parachlorella Kessleri. Bioprocess Biosyst. Eng. 2018, 42, 1–8.
  • Shene, C.; Monsalve, M. T.; Vergara, D.; Lienqueo, M. E.; Rubilar, M. High Pressure Homogenization of Nannochloropsis Oculata for the Extraction of Intracellular Components: Effect of Process Conditions and Culture Age. Eur. J. Lipid Sci. Technol. 2016, 118, 631–639. DOI: 10.1002/ejlt.v118.4.
  • Parniakov, O.; Barba, F. J.; Grimi, N.; Marchal, L.; Jubeau, S.; Lebovka, N.; Vorobiev, E. Pulsed Electric Field and pH Assisted Selective Extraction of Intracellular Components from Microalgae Nannochloropsis. Algal Res. 2015, 8, 128–134. DOI: 10.1016/j.algal.2015.01.014.
  • Parniakov, O.; Apicella, E.; Koubaa, M.; Barba, F. J.; Grimi, N.; Lebovka, N.; Pataro, G.; Ferrari, G.; Vorobiev, E. Ultrasound-assisted Green Solvent Extraction of High-added Value Compounds from Microalgae Nannochloropsis Spp. Bioresour. Technol. 2015, 198, 262–267. DOI: 10.1016/j.biortech.2015.09.020.
  • Pasquet, V.; Chérouvrier, J.-R.; Farhat, F.; Thiéry, V.; Piot, J.-M.; Bérard, J.-B.; Kaas, R.; Serive, B.; Patrice, T.; Cadoret, J.-P.; et al. Study on the Microalgal Pigments Extraction Process: Performance of Microwave Assisted Extraction. Process Biochem. 2011, 46, 59–67. DOI: 10.1016/j.procbio.2010.07.009.
  • Juin, C.; Chérouvrier, J.-R.; Thiéry, V.; Gagez, A.-L.; Bérard, J.-B.; Joguet, N.; Kaas, R.; Cadoret, J.-P.; Picot, L. Microwave-assisted Extraction of Phycobiliproteins from Porphyridium Purpureum. Appl. Biochem. Biotechnol. 2015, 175, 1–15. DOI: 10.1007/s12010-014-1250-2.
  • Yap, B. H. J.; Dumsday, G. J.; Scales, P. J.; Martin, G. J. O. Energy Evaluation of Algal Cell Disruption by High Pressure Homogenisation. Bioresour. Technol. 2015, 184, 280–285. DOI: 10.1016/j.biortech.2014.11.049.
  • Wang, M.; Yuan, W. Microalgal Cell Disruption in a High-power Ultrasonic Flow System. Bioresour. Technol. 2015, 193, 171–177. DOI: 10.1016/j.biortech.2015.06.040.
  • Yamamoto, K.; King, P. M.; Wu, X.; Mason, T. J.; Joyce, E. M. Effect of Ultrasonic Frequency and Power on the Disruption of Algal Cells. Ultrason. Sonochem. 2015, 24, 165–171. DOI: 10.1016/j.ultsonch.2014.11.002.
  • Barba, F. J.; Parniakov, O.; Pereira, S. A.; Wiktor, A.; Grimi, N.; Boussetta, N.; Saraiva, J. A.; Raso, J.; Martin-Belloso, O.; Witrowa-Rajchert, D.; et al. Current Applications and New Opportunities for the Use of Pulsed Electric Fields in Food Science and Industry. Food Res. Int. 2015, 77, 773–798. DOI: 10.1016/j.foodres.2015.09.015.
  • Gabrić, D.; Barba, F.; Roohinejad, S.; Gharibzahedi, S. M. T.; Radojčin, M.; Putnik, P.; Bursać Kovačević, D. Pulsed Electric Fields as an Alternative to Thermal Processing for Preservation of Nutritive and Physicochemical Properties of Beverages: A Review. J. Food Process Eng. 2018, 41, e12638. DOI: 10.1111/jfpe.12638.
  • Sheng, J.; Vannela, R.; Rittmann, B. E. Evaluation of Cell-disruption Effects of Pulsed-electric-field Treatment of Synechocystis PCC 6803. Environ. Sci. Technol. 2011, 45, 3795–3802. DOI: 10.1021/es103339x.
  • Roselló-Soto, E.; Barba, F. J.; Parniakov, O.; Galanakis, C. M.; Lebovka, N.; Grimi, N.; Vorobiev, E. High Voltage Electrical Discharges, Pulsed Electric Field, and Ultrasound Assisted Extraction of Protein and Phenolic Compounds from Olive Kernel. Food Bioprocess. Technol. 2015, 8, 885–894. DOI: 10.1007/s11947-014-1456-x.
  • Parniakov, O.; Barba, F. J.; Grimi, N.; Lebovka, N.; Vorobiev, E. Impact of Pulsed Electric Fields and High Voltage Electrical Discharges on Extraction of High-added Value Compounds from Papaya Peels. Food Res. Int. 2014, 65, 337–343. DOI: 10.1016/j.foodres.2014.09.015.
  • Barba, F. J.; Brianceau, S.; Turk, M.; Boussetta, N.; Vorobiev, E. Effect of Alternative Physical Treatments (ultrasounds, Pulsed Electric Fields, and High-voltage Electrical Discharges) on Selective Recovery of Bio-compounds from Fermented Grape Pomace. Food Bioprocess. Technol. 2015, 8, 1139–1148. DOI: 10.1007/s11947-015-1482-3.
  • Barba, F. J.; Galanakis, C. M.; Esteve, M. J.; Frigola, A.; Vorobiev, E. Potential Use of Pulsed Electric Technologies and Ultrasounds to Improve the Recovery of High-added Value Compounds from Blackberries. J. Food Eng. 2015, 167, 38–44. DOI: 10.1016/j.jfoodeng.2015.02.001.
  • Kaufmann, B.; Christen, P. Recent Extraction Techniques for Natural Products: Microwave‐assisted Extraction and Pressurised Solvent Extraction. Phytochem. Anal. 2002, 13, 105–113. DOI: 10.1002/(ISSN)1099-1565.
  • Routray, W.; Orsat, V. Microwave-assisted Extraction of Flavonoids: a Review. Food Bioprocess. Technol. 2012, 5, 409–424. DOI: 10.1007/s11947-011-0573-z.
  • Lee, J.-Y.; Yoo, C.; Jun, S.-Y.; Ahn, C.-Y.; Oh, H.-M. Comparison of Several Methods for Effective Lipid Extraction from Microalgae. Bioresour. Technol. 2010, 101, S75–S77. DOI: 10.1016/j.biortech.2009.03.058.
  • Cuellar-Bermudez, S. P.; Aguilar-Hernandez, I.; Cardenas-Chavez, D. L.; Ornelas-Soto, N.; Romero-Ogawa, M. A.; Parra-Saldivar, R. Extraction and Purification of High-value Metabolites from Microalgae: Essential Lipids, Astaxanthin and Phycobiliproteins. Microb. Biotechnol. 2015, 8, 190–209. DOI: 10.1111/1751-7915.12167.
  • Waghmare, A. G.; Salve, M. K.; LeBlanc, J. G.; Arya, S. S. Concentration and Characterization of Microalgae Proteins from Chlorella Pyrenoidosa. Bioresources Bioprocess. 2016, 3, 16. DOI: 10.1186/s40643-016-0094-8.
  • Schwenzfeier, A.; Wierenga, P. A.; Gruppen, H. Isolation and Characterization of Soluble Protein from the Green Microalgae Tetraselmis Sp. Bioresour. Technol. 2011, 102, 9121–9127. DOI: 10.1016/j.biortech.2011.07.046.
  • Barbarino, E.; Lourenço, S. O. An Evaluation of Methods for Extraction and Quantification of Protein from Marine Macro-and Microalgae. J. Appl. Phycol. 2005, 17, 447–460. DOI: 10.1007/s10811-005-1641-4.
  • Ursu, A.-V.; Marcati, A.; Sayd, T.; Sante-Lhoutellier, V.; Djelveh, G.; Michaud, P. Extraction, Fractionation and Functional Properties of Proteins from the Microalgae Chlorella Vulgaris. Bioresour. Technol. 2014, 157, 134–139. DOI: 10.1016/j.biortech.2014.01.071.
  • Morris, H. J.; Almarales, A.; Carrillo, O.; Bermúdez, R. C. Utilisation of Chlorellavulgaris Cell Biomass for the Production of Enzymatic Protein Hydrolysates. Bioresour. Technol. 2008, 99, 7723–7729. DOI: 10.1016/j.biortech.2008.01.080.
  • García, J. R.; Fernández, F. A.; Sevilla, J. F. Development of a Process for the Production of L-amino-acids Concentrates from Microalgae by Enzymatic Hydrolysis. Bioresour. Technol. 2012, 112, 164–170. DOI: 10.1016/j.biortech.2012.02.094.
  • Kumar, K. S.; Ganesan, K.; Selvaraj, K.; Rao, P. S. Studies on the Functional Properties of Protein Concentrate of Kappaphycus Alvarezii (doty) Doty–An Edible Seaweed. Food Chem. 2014, 153, 353–360. DOI: 10.1016/j.foodchem.2013.12.058.
  • Lafarga, T.; Álvarez, C.; Bobo, G.; Aguiló-Aguayo, I. Characterization of Functional Properties of Proteins from Ganxet Beans (phaseolus Vulgaris L. Var. Ganxet) Isolated Using an Ultrasound-assisted Methodology. LWT. 2018, 98, 106–112.
  • Guil-Guerrero, J.; Navarro-Juárez, R.; López-Martınez, J.; Campra-Madrid, P.; Rebolloso-Fuentes, M. Functional Properties of the Biomass of Three Microalgal Species. J. Food Eng. 2004, 65, 511–517. DOI: 10.1016/j.jfoodeng.2004.02.014.
  • Lafarga, T.; Álvarez, C.; Hayes, M. Bioactive Peptides Derived from Bovine and Porcine Co‐products: A Review. J. Food Biochem. 2017, 41, e12418. DOI: 10.1111/jfbc.2017.41.issue-6.
  • Dei Piu, L.; Tassoni, A.; Serrazanetti, D. I.; Ferri, M.; Babini, E.; Tagliazucchi, D.; Gianotti, A. Exploitation of Starch Industry Liquid By-product to Produce Bioactive Peptides from Rice Hydrolyzed Proteins. Food Chem. 2014, 155, 199–206. DOI: 10.1016/j.foodchem.2014.01.055.
  • Ochoa-Méndez, C. E.; Lara-Hernández, I.; González, L. M.; Aguirre-Bañuelos, P.; Ibarra-Barajas, M.; Castro-Moreno, P.; González-Ortega, O.; Soria-Guerra, R. E. Bioactivity of an Antihypertensive Peptide Expressed in Chlamydomonas Reinhardtii. J. Biotechnol. 2016, 240, 76–84. DOI: 10.1016/j.jbiotec.2016.11.001.
  • Wu, H.; Xu, N.; Sun, X.; Yu, H.; Zhou, C. Hydrolysis and Purification of ACE Inhibitory Peptides from the Marine Microalga Isochrysis Galbana. J. Appl. Phycol. 2015, 27, 351–361. DOI: 10.1007/s10811-014-0347-x.
  • Ko, S.-C.; Heo, S.-Y.; Choi, S.-W.; Qian, Z.-J.; Heo, S.-J.; Kang, D.-H.; Kim, N.; Jung, W.-K. A Heptameric Peptide Isolated from the Marine Microalga Pavlova Lutheri Suppresses PMA-induced Secretion of Matrix Metalloproteinase-9 through the Inactivation of the JNK, P38, and NF-κB Pathways in Human Fibrosarcoma Cells. J. Appl. Phycol. 2018, 30, 2367–2378. DOI: 10.1007/s10811-018-1443-0.
  • Oh, G.-W.; Ko, S.-C.; Heo, S.-Y.; Nguyen, V.-T.; Kim, G.; Jang, C. H.; Park, W. S.; Choi, I.-W.; Qian, Z.-J.; Jung, W.-K. A Novel Peptide Purified from the Fermented Microalga Pavlova Lutheri Attenuates Oxidative Stress and Melanogenesis in B16F10 Melanoma Cells. Process Biochem. 2015, 50, 1318–1326. DOI: 10.1016/j.procbio.2015.05.007.
  • Rodriguez-Amaya, D. B.;. Natural Food Pigments and Colorants. Curr. Opin. Food Sci. 2016, 7, 20–26. DOI: 10.1016/j.cofs.2015.08.004.
  • Lafarga, T.; Ruiz-Aguirre, I.; Abadias, M.; Viñas, I.; Bobo, G.; Aguiló-Aguayo, I. Effect of Thermosonication on the Bioaccessibility of Antioxidant Compounds and the Microbiological, Physicochemical, and Nutritional Quality of an Anthocyanin-Enriched Tomato Juice. Food Bioprocess. Technol. 2018, 12, 147–157.
  • Sathasivam, R.; Ki, J.-S. A Review of the Biological Activities of Microalgal Carotenoids and Their Potential Use in Healthcare and Cosmetic Industries. Mar. Drugs. 2018, 16, 26. DOI: 10.3390/md16010026.
  • Sathasivam, R.; Radhakrishnan, R.; Hashem, A.; Abd_Allah, E. F. Microalgae Metabolites: A Rich Source for Food and Medicine. Saudi J. Biol. Sci. 2017, 26, 709–722.
  • Borowitzka, M. A.;. High-value Products from Microalgae—their Development and Commercialisation. J. Appl. Phycol. 2013, 25, 743–756. DOI: 10.1007/s10811-013-9983-9.
  • Kim, D.-Y.; Vijayan, D.; Praveenkumar, R.; Han, J.-I.; Lee, K.; Park, J.-Y.; Chang, W.-S.; Lee, J.-S.; Oh, Y.-K. Cell-wall Disruption and Lipid/astaxanthin Extraction from Microalgae: Chlorella and Haematococcus. Bioresour. Technol. 2016, 199, 300–310. DOI: 10.1016/j.biortech.2015.08.107.
  • Fu, W.; Guðmundsson, Ó.; Paglia, G.; Herjólfsson, G.; Andrésson, Ó. S.; Palsson, B. Ø.; Brynjólfsson, S. Enhancement of Carotenoid Biosynthesis in the Green Microalga Dunaliella Salina with Light-emitting Diodes and Adaptive Laboratory Evolution. Appl. Microbiol. Biotechnol. 2013, 97, 2395–2403. DOI: 10.1007/s00253-012-4502-5.
  • Lemoine, Y.; Schoefs, B. Secondary Ketocarotenoid Astaxanthin Biosynthesis in Algae: a Multifunctional Response to Stress. Photosynth. Res. 2010, 106, 155–177. DOI: 10.1007/s11120-010-9583-3.
  • Mayer, A. M.; Glaser, K. B.; Cuevas, C.; Jacobs, R. S.; Kem, W.; Little, R. D.; McIntosh, J. M.; Newman, D. J.; Potts, B. C.; Shuster, D. E. The Odyssey of Marine Pharmaceuticals: a Current Pipeline Perspective. Trends Pharmacol. Sci. 2010, 31, 255–265. DOI: 10.1016/j.tips.2010.02.005.
  • Murray, M.; Dordevic, A. L.; Ryan, L.; Bonham, M. P. An Emerging Trend in Functional Foods for the Prevention of Cardiovascular Disease and Diabetes: Marine Algal Polyphenols. Crit. Rev. Food Sci. Nutr. 2018, 58, 1342–1358. DOI: 10.1080/10408398.2016.1259209.
  • Lafarga, T.; Acién-Fernández, F. G.; Castellari, M.; Villaró, S.; Bobo, G.; Aguiló-Aguayo, I. Effect of Microalgae Incorporation on the Physicochemical, Nutritional, and Sensorial Properties of an Innovative Broccoli Soup. LWT. 2019, 111, 167–174. DOI: 10.1016/j.lwt.2019.05.037.
  • Rodríguez De Marco, E.; Steffolani, M. E.; Martínez, C. S.; León, A. E. Effects of Spirulina Biomass on the Technological and Nutritional Quality of Bread Wheat Pasta. LWT - Food Sci. Technol. 2014, 58, 102–108.
  • D’Alessandro, E. B.; Antoniosi Filho, N. R. Concepts and Studies on Lipid and Pigments of Microalgae: a Review. Renewable Sustainable Energy Rev. 2016, 58, 832–841. DOI: 10.1016/j.rser.2015.12.162.
  • Minhas, A. K.; Hodgson, P.; Barrow, C. J.; Adholeya, A. A Review on the Assessment of Stress Conditions for Simultaneous Production of Microalgal Lipids and Carotenoids. Front. Microbiol. 2016, 7, 546. DOI: 10.3389/fmicb.2016.00546.
  • Ranjith Kumar, R.; Hanumantha Rao, P.; Arumugam, M. Lipid Extraction Methods from Microalgae: a Comprehensive Review. Front. Energy Res. 2015, 2, 61. DOI: 10.3389/fenrg.2014.00061.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.