902
Views
24
CrossRef citations to date
0
Altmetric
Review

Novel, Nonthermal, Energy Efficient, Industrially Scalable Hydrodynamic Cavitation – Applications in Food Processing

, , , , , & show all

References

  • Ragaert, P.; Verbeke, W.; Devlieghere, F.; Debevere, J. Consumer Perception and Choice of Minimally Processed Vegetables and Packaged Fruits. Food. Qual. Prefer. 2004, 15, 259–270. DOI: 10.1016/S0950-3293(03)00066-1.
  • Gogate, P. R.;. Hydrodynamic Cavitation for Food and Water Processing. Food Bioprocess. Tech. 2011, 4, 996–1011. DOI: 10.1007/s11947-010-0418-1.
  • Lévêque, J. M.; Cravotto, G.; Delattre, F.; Cintas, P. Scaling-Up Enabling the Full Potential of Industrial Applications of Ultrasound and Hydrodynamic Cavitation. In Organic Sonochemistry. SpringerBriefs in Molecular Science; Springer: Cham, 2018; pp. 113–123. DOI: 10.1007/978-3-319-98554-1_8.
  • Masson, T. J.; Chemat, F.; Ashokkumar, M. Power Ultrasonics for Food Processing. Power Ultrasonics, Elsevier Ltd, 2015; pp 815–843. DOI: 10.1016/B978-1-78242-028-6.00027-2.
  • Mevada, J.; Devi, S.; Pandit, A. B. Large Scale Microbial Cell Disruption Using Hydrodynamic Cavitation: Energy Saving Options. Biochem. Eng. J. 2019, 143, 151–160. DOI: 10.1016/j.bej.2018.12.010.
  • Waghamre, A.; Nagula, K.; Pandit, A. B.; Arya, S. S. Hydrodynamic Cavitation for Energy Efficient and Scalable Process of Microalgae Cell Disruption. Algal Res. 2019, 40, 101496. DOI: 10.1016/j.algal.2019.101496.
  • Martynenko, A.; Chen, Y. Degradation Kinetics of Total Anthocyanins and Formation of Polymeric Color in Blueberry Hydrothermodynamic (HTD) Processing. J. Food Eng. 2016, 171, 44–51. DOI: 10.1016/j.jfoodeng.2015.10.008.
  • Fan, L.; Martynenko, A.; Doucette, C.; Hughes, T.; Fillmore, S. Microbial Quality and Shelf Life of Blueberry Purée Developed Using Cavitation Technology. J. Food Sci. 2018, 83, 732–739. DOI: 10.1111/1750-3841.14073.
  • Hilares, R. T.; Santos, J. G. D.; Shiguematsu, N. B.; Ahmad, M. A.; Da Silva, S. S.; Santos, J. C. Low-pressure Homogenization of Tomato Juice Using Hydrodynamic Cavitation Technology: Effects on Physical Properties and Stability of Bioactive Compounds. Ultrason. Sonochem. 2019, 54, 192–197. DOI: 10.1016/j.ultsonch.2019.01.039.
  • Gogate, P. R.; Pandit, A. B. A Review and Assessment of Hydrodynamic Cavitation as A Technology for the Future. Ultrason. Sonochem. 2005, 12, 21–27. DOI: 10.1016/j.ultsonch.2004.03.007.
  • Sawant, S. S.; Anil, A. C.; Krishnamurthya, V.; Gaonkar, C.; Kolwalkar, J.; Khandeparker, L.; Desai, D.; Mahulkar, A. V.; Ranadec, V. V.; Pandit, A. B. Effect of Hydrodynamic Cavitation on Zooplankton: A Tool for Disinfection. Biochem. Eng. J. 2008, 42, 320–328. DOI: 10.1016/j.bej.2008.08.001.
  • Yusaf, T.; Al-Juboori, R. A. Alternative Methods of Microorganism Disruption for Agricultural Applications. Appl. Energy. 2014, 114, 909–923. DOI: 10.1016/j.apenergy.2013.08.085.
  • Arrojo, S.; Benito, Y. A Theoretical Study of Hydrodynamic Cavitation. Ultrason. Sonochem. 2008, 15, 203–211. DOI: 10.1016/j.ultsonch.2007.03.007.
  • Lohani, U. C.; Muthukumarappan, K.; Meletharayil, G. H. Application of Hydrodynamic Cavitation to Improve Antioxidant Activity in Sorghum Flour and Apple Pomace. Food Bioprod. Process. 2016, 91, 335–343. DOI: 10.1016/j.fbp.2016.08.005.
  • Gogate, P. R.; Tayal, R. K.; Pandit, A. B. Cavitation: A Technology on the Horizon. Curr. Sci. 2006, 91(1), 35–46.
  • Padilla-Martinez, J. P.; Berrospe-Rodriguez, C.; Aguilar, G.; Ramirez-San-Juan, J. C.; Ramos-Garcia, R. Optic Cavitation with CW Lasers: A Review. Phys. Fluids. 2014, 26, 122007. DOI: 10.1063/1.4904718.
  • Serpooshan, V.; Zokaei, S.; Bagheri, R. Effect of Rubber Particle Cavitation on the Mechanical Properties and Deformation Behavior of High-Impact Polystyrene. J. Appl. Polym. Sci. 2006, 104, 1110–1117. DOI: 10.1002/app.25633.
  • Leong, T.; Ashokkumar, M.; Kentish, S. The Growth of Bubbles in an Acoustic Field by Rectified Diffusion. In Handbook of Ultrasonics and Sonochemistry; Ashokkumar, M., Ed. DOI: 10.1007/978-981-287-470-2_74-1.
  • Capocelli, M.; Prisciandaro, M.; Lancia, A.; Musmarra, D. Comparison between Hydrodynamic and Acoustic Cavitation in Microbial Cell Disruption. Chem. Eng. Transactions. 2014, 38, 13–18. DOI: 10.3303/CET1438003.
  • Ekezie, F. G. C.; Sun, D. W.; Cheng, J. H. Acceleration of Microwave-assisted Extraction Processes of Food Components by Integrating Technologies and Applying Emerging Solvents: A Review of Latest Developments. Trends Food Sci. Technol. 2017, 67, 160–172. DOI: 10.1016/j.tifs.2017.06.006.
  • D’Agostino, L.; Salvetti, M. V. Fluid Dynamics of Cavitation and Cavitating Turbopumps; Springer, 2008. DOi: 10.1007/978-3-211-76669-9.
  • Soyama, H.; Hoshino, J. Enhancing the Aggressive Intensity of Hydrodynamic Cavitation through a Venturi Tube by Increasing the Pressure in the Region Where the Bubbles Collapse. AIP Adv. 2016, 6, 045113. DOI: 10.1063/1.4947572.
  • Čehovin, M.; Medic, A.; Scheideler, J.; Mielcke, J.; Ried, A.; Kompare, B.; Gotvajn, A. Ž. Hydrodynamic Cavitation in Combination with the Ozone, Hydrogen Peroxide and the UV-based Advanced Oxidation Processes for the Removal of Natural Organic Matter from Drinking Water. Ultrason. Sonochem. 2017, 37, 394–404. DOI: 10.1016/j.ultsonch.2017.01.036.
  • Albanese, L.; Ciriminna, R.; Meneguzzo, F.; Pagliaro, M. Gluten Reduction in Beer by Hydrodynamic Cavitation Assisted Brewing of Barley Malts. LWT - Food Sci. Technol. 2017, 82, 342–353. 10.1016/j.lwt.2017.04.060.
  • Roohinejad, S.; Koubaa, M.; Barba, F. J.; Greiner, R.; Orlien, V.; Lebovka, N. I. Negative Pressure Cavitation Extraction: A Novel Method for Extraction of Food Bioactive Compounds from Plant Materials. Trends Food Sci. Technol. 2016, 52, 98–108. DOI: 10.1016/j.tifs.2016.04.005.
  • Carpenter, J.; Badve, M.; Rajoriya, S.; George, S.; Saharan, V. L.; Pandit, A. B. Hydrodynamic Cavitation: An Emerging Technology for the Intensification of Various Chemical and Physical Processes in a Chemical Process Industry. Rev. Chem. Eng. 2016, 33, 1–35. DOI: 10.1515/revce-2016-0032.
  • Loraine, G.; Chahine, G.; Hsiao, C.; Choi, J.; Aley, P. Disinfection of Gram-negative and Gram-positive Bacteria Using DynaJets® Hydrodynamic Cavitating Jets. Ultrason. Sonochem. 2012, 19(3), 710–717. DOI: 10.1016/j.ultsonch.2011.10.011.
  • Albanese, L.; Ciriminna, R.; Meneguzzo, F.; Pagliaro, M. Beer-brewing Powered by Controlled Hydrodynamic Cavitation: Theory and Real-scale Experiments. J. Clean. Prod. 2017, 142, 1457–1470. DOI: 10.1016/j.jclepro.2016.11.162.
  • Preece, K. E.; Hooshyar, N.; Krijgsman, A. J.; Fryer, P. J.; Zuidam, N. J. Intensification of Protein Extraction from Soybean Processing Materials Using Hydrodynamic Cavitation. Innov. Food Sci. Emerg. Technol. 2017, 41, 47–55. DOI: 10.1016/j.ifset.2017.01.002.
  • Chen, Y.; Martynenko, A. Effect of Hydrothermodynamic (HTD) Processing on Physical and Chemical Qualities of American Cranberry Puree Using Response Surface Methodology (RSM). LWT Food Sci. Technol. 2016, 70, 322–332. DOI: 10.1016/j.lwt.2016.02.054.
  • Milly, P. J.; Toledo, R. T.; Chen, J.; Kazem, B. Hydrodynamic Cavitation to Improve Bulk Fluid to Surface Mass Transfer in a Nonimmersed Ultraviolet System for Minimal Processing. J. Food Microbiol. Safety. 2007, 72(9), 407–413. 10.1111/j.1750-3841.2007.00518.x.
  • Milly, P. J.; Toledo, R. T.; Harrison, M. A.; Armstead, D. Inactivation of Food Spoilage Microorganisms by Hydrodynamic Cavitation to Achieve Pasteurization and Sterilization of Fluid Foods. J. Food Microbiol. Safety. 2007, 72(9), 414–422. DOI: 10.1111/j.1750-3841.2007.00543.x.
  • Milly, P. J.; Toledo, R. T.; Kerr, W. L.; Armstead, D. Hydrodynamic Cavitation: Characterization of a Novel Design with Energy Considerations for the Inactivation of Saccharomyces Cerevisiae in Apple Juice. J. Food Microbiol. Safety. 2008, 73(6), 298–303. DOI: 10.1111/j.1750-3841.2008.00827.x.
  • Albanese, L.; Ciriminna, R.; Meneguzzo, F.; Pagliaro, M. Energy Efficient Inactivation of Saccharomyces Cerevisiae via Controlled Hydrodynamic Cavitation. Energy Sci. Eng. 2015, 3, 221–238. DOI: 10.1002/ese3.62.
  • Šarc, A.; Kosel, J.; Stopar, D.; Oder, M.; Dular, M. Removal of Bacteria Legionella Pneumophila, Escherichia Coli, and Bacillus Subtilis by (super)cavitation. Ultrason. Sonochem. 2018, 42, 228–236. DOI: 10.1016/j.ultsonch.2017.11.004.
  • Crudo, D.; Bosco, V.; Cavaglià, G.; Mantegna, S.; Battaglia, L.; Cravotto, G. Process Intensification in the Food Industry: Hydrodynamic and Acoustic Cavitation in Fresh Milk Treatment. Agro FOOD Ind. Hi Tech.. 2014, 25, 55–59.
  • Parthasarathy, S.; Ying, T. S.; Manickam, S. Generation and Optimization of Palm Oil-Based Oil-in-Water (O/W) Submicron-Emulsions and Encapsulation of Curcumin Using a Liquid Whistle Hydrodynamic Cavitation Reactor (LWHCR). Ind. Eng. Chem. Res. 2013, 52, 11829–11837. DOI: 10.1021/ie4008858.
  • Beuve, R. S.; Morison, K. R. Enzymatic Hydrolysis of Canola Oil with Hydrodynamic Cavitation. Chem. Eng. Process. 2010, 49(10), 1101–1106. DOI: 10.1016/j.cep.2010.08.012.
  • Schlender, M.; Minke, K.; Spiegel, B.; Schuchmann, H. P. High-pressure Double Stage Homogenization Processes: In Fl Uences of Plant Setup on Oil Droplet Size. Chem. Eng. Sci. 2015, 131, 162–171. DOI: 10.1016/j.ces.2015.03.055.
  • Zhang, Z.; Wang, G.; Nie, Y.; Ji, J. Hydrodynamic Cavitation as an Efficient Method for the Formation of Sub-100 Nm O/W Emulsions with High Stability. Chin. J. Chem. Eng. 2016, 24(10), 1477–1480. DOI: 10.1016/j.cjche.2016.04.011.
  • More, N. S.; Gogate, P. R. Intensified Degumming of Crude Soybean Oil Using Cavitational Reactors. J. Food Eng. 2018, 218, 33–43. DOI: 10.1016/j.jfoodeng.2017.08.029.
  • Patil, L.; Gogate, P. R. Large Scale Emulsification of Turmeric Oil in Skimmed Milk Using Different Cavitational Reactors: A Comparative Analysis. Chem. Eng. Process. 2018, 126, 90–99. DOI: 10.1016/j.cep.2018.02.019.
  • Meletharayil, G. H.; Metzger, L. E.; Patel, H. A. Influence of Hydrodynamic Cavitation on the Rheological Properties and Microstructure of Formulated Greek-style Yogurts. J. Dairy Sci. 2016, 99, 1–12. DOI: 10.3168/jds.2015-10774.
  • Prajapat, A. L.; Gogate, P. R. Intensification of Depolymerization of Aqueous Guar Gum Using Hydrodynamic Cavitation. Chem. Eng. Process. 2015, 93, 1–9. DOI: 10.1016/j.cep.2015.04.002.
  • Sanguansri, P.; Augustin, M. A. Nanoscale Materials Development - a Food Industry Perspective. Trends Food Sci. Technol. 2006, 17(10), 547–556. DOI: 10.1016/j.tifs.2006.04.010.
  • Montusiewicz, A.; Lebiocka, M.; Szaja, A.; Szyman, M. Hydrodynamic Cavitation of Brewery Spent Grain Diluted by Wastewater. Chem. Eng. J. 2017, 313, 946–956. DOI: 10.1016/j.cej.2016.10.132.
  • Fernandes, C. G.; Sonawane, S. K.; Arya, S. S. Cereal Based Functional Beverages: A Review. J Microbiol Biotech Food Sci. 2019, 8(3), 914–919.
  • Badgujar, J.; Gaikwad, S.; Sonawane, S. K.; Arya, S. S. Low Glycaemic Index Bhakri: Indian Sorghum Unleavened Flat Bread. Food Meas. 2017, 11, 768–775. DOI: 10.1007/s11694-016-9447-4.
  • Acosta-Estrada, B. A.; Gutiérrez-Uribe, J. A.; Serna-Saldívar, S. O. Bound Phenolics in Foods, a Review. Food Chem. 2014, 152, 46–55. DOI: 10.1016/j.foodchem.2013.11.093.
  • Balasundaram, B.; Harrison, S. T. L. Disruption of Brewers’ Yeast by Hydrodynamic Cavitation: Process Variables and Their Influence on Selective Release. Biotechnol. Bioeng. 2006, 94(2), 303–311. DOI: 10.1002/(ISSN)1097-0290.
  • Ramirez-cadavid, D. A.; Kozyuk, O.; Lyle, P.; Michel, F. C. Effects of Hydrodynamic Cavitation on Dry Mill Corn Ethanol Production. Process Biochem. 2016, 51(4), 500–508. DOI: 10.1016/j.procbio.2016.01.001.
  • Martynenko, A.; Astatkie, T.; Satanina, V. Novel Hydrothermodynamic Food Processing Technology. J. Food Eng. 2015, 152, 8–16. DOI: 10.1016/j.jfoodeng.2014.11.016.
  • Albanese, L.; Bonetti, A.; D’Acqui, P. L.; Meneguzzo, F.; Zabini, F. Affordable Production of Antioxidant Aqueous Solutions by Hydrodynamic Cavitation Processing of Silver Fir (abies Alba Mill.) Needles. Foods. 2019, 8(2), 65. DOI: 10.3390/foods8020065.
  • Seo, Y. H.; Lee, I.; Jeon, S. H.; Han, J. Efficient Conversion from Cheese Whey to Lipid Using Cryptococcus Curvatus. Biochem. Eng. J. 2014, 90, 149–153. DOI: 10.1016/j.bej.2014.05.018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.