321
Views
3
CrossRef citations to date
0
Altmetric
Review

Could High-Amylose Wheat Have Greater Benefits on Diabesity and Gut Health than Standard Whole-wheat?

, , & ORCID Icon

References

  • Ng, M.; Fleming, T.; Robinson, M.; Thomson, B.; Graetz, N.; Margono, C.; Mullany, E. C.; Biryukov, S.; Abbafati, C.; Abera, S. F.; et al. Global, Regional, and National Prevalence of Overweight and Obesity in Children and Adults during 1980–2013: A Systematic Analysis for the Global Burden of Disease Study 2013. Lancet. 2014, 384(9945), 766–781. DOI: 10.1016/S0140-6736(14)60460-8.
  • Australian Bureau of Statistics. National Health Survey: First Results, 2014–15; Australian Bureau of Statistics: Canberra, Australia, 2015. http://www.abs.gov.au/ausstats/[email protected]/mf/4364.0.55.001 (accessed Oct 21, 2017).
  • Kaila, B.; Raman, M. Obesity: A Review of Pathogenesis and Management Strategies. Can. J. Gastroenterol. 2008, 22(1), 61–68. DOI: 10.1155/2008/609039.
  • Astrup, A.; Finer, N. Redefining Type 2 Diabetes: ‘diabesity’ or ‘obesity Dependent Diabetes Mellitus’? Obes. Rev. 2000, 1(2), 57–59. DOI: 10.1046/j.1467-789x.2000.00013.x.
  • American Diabetes Association. Diagnosis and Classification of Diabetes Mellitus. Diabetes Care. 2014, 37(Supplement 1), S81–S90. DOI:10.2337/dc14-S081.
  • Cawley, J.; Meyerhoefer, C. The Medical Care Costs of Obesity: An Instrumental Variables Approach. J. Health Econ. 2012, 31(1), 219–230. DOI: 10.1016/j.jhealeco.2011.10.003.
  • Zhang, P.; Zhang, X.; Brown, J.; Vistisen, D.; Sicree, R.; Shaw, J.; Nichols, G. Global Healthcare Expenditure on Diabetes for 2010 and 2030. Diabetes Res. Clin. Pract. 2010, 87(3), 293–301. DOI: 10.1016/j.diabres.2010.01.026.
  • Colagiuri, S.; Lee, C.; Colagiuri, R.; Magliano, D.; Shaw, J. E.; Zimmet, P. Z.; Caterson, I. D. The Cost of Overweight and Obesity in Australia. Med. J. Aust. 2010, 192(5), 260–264. DOI: 10.5694/mja2.2010.192.issue-5.
  • Lee, C. M. Y.; Colagiuri, R.; Magliano, D. J.; Cameron, A. J.; Shaw, J.; Zimmet, P.; Colagiuri, S. The Cost of Diabetes in Adults in Australia. Diabetes Res. Clin. Pract. 2013, 99(3), 385–390. DOI: 10.1016/j.diabres.2012.12.002.
  • Glandt, M.; Raz, I. Present and Future: Pharmacologic Treatment of Obesity. J. Obes. 2011, 2011, 636181. DOI: 10.1155/2011/636181.
  • Vinayagam, R.; Jayachandran, M.; Xu, B. Antidiabetic Effects of Simple Phenolic Acids: A Comprehensive Review. Phytother. Res. 2016, 30(2), 184–199. DOI: 10.1002/ptr.5528.
  • Tharakan, G.; Tan, T.; Bloom, S. Emerging Therapies in the Treatment of ‘diabesity’: Beyond GLP-1. Trends Pharmacol. Sci. 2011, 32(1), 8–15. DOI: 10.1016/j.tips.2010.10.003.
  • Howells, L.; Musaddaq, B.; McKay, A. J.; Majeed, A. Clinical Impact of Lifestyle Interventions for the Prevention of Diabetes: An Overview of Systematic Reviews. BMJ Open. 2016, 6(12), e013806. DOI: 10.1136/bmjopen-2016-013806.
  • Wing, R. R.; Phelan, S. Long-term Weight Loss Maintenance. Am. J. Clin. Nutr. 2005, 82(1), 222S–225S. DOI: 10.1093/ajcn/82.1.222S.
  • Juanola-Falgarona, M.; Salas-Salvado, J.; Ibarrola-Jurado, N.; Rabassa-Soler, A.; Diaz-Lopez, A.; Guasch-Ferre, M.; Hernandez-Alonso, P.; Balanza, R.; Bullo, M. Effect of the Glycemic Index of the Diet on Weight Loss, Modulation of Satiety, Inflammation, and Other Metabolic Risk Factors: A Randomized Controlled Trial. Am. J. Clin. Nutr. 2014, 100(1), 27–35. DOI: 10.3945/ajcn.113.081216.
  • Scribner, K. B.; Pawlak, D. B.; Aubin, C. M.; Majzoub, J. A.; Ludwig, D. S. Long-Term Effects of Dietary Glycemic Index on Adiposity, Energy Metabolism, and Physical Activity in Mice. Am. J. Physiol. Endocrinol. Metab. 2008, 295(5), E1126–1131. DOI: 10.1152/ajpendo.90487.2008.
  • Rebello, C. J.; Greenway, F. L.; Finley, J. W.; Grains, W. Pulses: A Comparison of the Nutritional and Health Benefits. J. Agric. Food Chem. 2014, 62(29), 7029–7049. DOI: 10.1021/jf500932z.
  • Lillioja, S.; Neal, A. L.; Tapsell, L.; Jacobs, D. R. Whole Grains, Type 2 Diabetes, Coronary Heart Disease, and Hypertension: Links to the Aleurone Preferred over Indigestible Fiber. Biofactors. 2013, 39(3), 242–258. DOI: 10.1002/biof.1077.
  • National Health and Medical Research Council. Australian Dietary Guidelines Summary; National Health and Medical Research Council: Canberra, 2013.
  • US Department of Health and Human Services and US Department of Agriculture. Dietary Guidelines for Americans 2015–2020, 8th ed.; US Department of Health and Human Services: Washington, DC, 2015.
  • Atkinson, F. S.; Foster-Powell, K.; Brand-Miller, J. C. International Tables of Glycemic Index and Glycemic Load Values: 2008. Diabetes Care. 2008, 31(12), 2281–2283. DOI: 10.2337/dc08-1239.
  • Shewry, P. R.; Hey, S. J. The Contribution of Wheat to Human Diet and Health. Food Energy Secur. 2015, 4(3), 178–202. DOI: 10.1002/fes3.64.
  • Schulze, M. B.; Schulz, M.; Heidemann, C.; Schienkiewitz, A.; Hoffmann, K.; Boeing, H. Fiber and Magnesium Intake and Incidence of Type 2 Diabetes: A Prospective Study and Meta-Analysis. Arch. Intern. Med. 2007, 167(9), 956–965. DOI: 10.1001/archinte.167.9.956.
  • Jacobs, D. R.; Pereira, M. A.; Meyer, K. A.; Kushi, L. H. Fiber from Whole Grains, but Not Refined Grains, Is Inversely Associated with All-Cause Mortality in Older Women: The Iowa Women’s Health Study. J. Am. Coll. Nutr. 2000, 19(3), 326S–330S. DOI: 10.1080/07315724.2000.10718968.
  • Ross, A. B.; Kochhar, S. Rapid and Sensitive Analysis of Alkylresorcinols from Cereal Grains and Products Using HPLC-Coularray-Based Electrochemical Detection. J. Agric. Food Chem. 2009, 57(12), 5187–5193. DOI: 10.1021/jf900239t.
  • Oishi, K.; Yamamoto, S.; Itoh, N.; Nakao, R.; Yasumoto, Y.; Tanaka, K.; Kikuchi, Y.; Fukudome, S. I.; Okita, K.; Takano-Ishikawa, Y. Wheat Alkylresorcinols Suppress High-Fat, High-Sucrose Diet-Induced Obesity and Glucose Intolerance by Increasing Insulin Sensitivity and Cholesterol Excretion in Male Mice. J. Nutr. 2015, 145(2), 199–206. DOI: 10.3945/jn.114.202754.
  • Adhikari, K. B.; Tanwir, F.; Gregersen, P. L.; Steffensen, S. K.; Jensen, B. M.; Poulsen, L. K.; Nielsen, C. H.; Høyer, S.; Borre, M.; Fomsgaard, I. S. Benzoxazinoids: Cereal Phytochemicals with Putative Therapeutic and Health-Protecting Properties. Mol. Nutr. Food Res. 2015, 59(7), 1324–1338. DOI: 10.1002/mnfr.201400717.
  • Landete, J. M. Plant and Mammalian Lignans: A Review of Source, Intake, Metabolism, Intestinal Bacteria and Health. Food Res. Int. 2012, 46(1), 410–424. DOI: 10.1016/j.foodres.2011.12.023.
  • Luthria, D. L.; Lu, Y.; John, K. M. M. Bioactive Phytochemicals in Wheat: Extraction, Analysis, Processing, and Functional Properties. J. Funct. Foods. 2015, 18, 910–925. DOI: 10.1016/j.jff.2015.01.001.
  • Zhu, Y.; Sang, S. Phytochemicals in Whole Grain Wheat and Their Health-Promoting Effects. Mol. Nutr. Food Res. 2017, 61(7), 1600852-n/a. DOI: 10.1002/mnfr.201600852.
  • Marciani, L.; Pritchard, S. E.; Hellier-Woods, C.; Costigan, C.; Hoad, C. L.; Gowland, P. A.; Spiller, R. C. Delayed Gastric Emptying and Reduced Postprandial Small Bowel Water Content of Equicaloric Whole Meal Bread versus Rice Meals in Healthy Subjects: Novel MRI Insights. Eur. J. Clin. Nutr. 2013, 67(7), 754–758. DOI: 10.1038/ejcn.2013.78.
  • Clark, M. J.; Slavin, J. L. The Effect of Fiber on Satiety and Food Intake: A Systematic Review. J. Am. Coll. Nutr. 2013, 32(3), 200–211. DOI: 10.1080/07315724.2013.791194.
  • Kumar, V.; Sinha, A. K.; Makkar, H. P. S.; Boeck, G. D.; Becker, K. Dietary Roles of Non-Starch Polysaccharides in Human Nutrition: A Review. Crit. Rev. Food Sci. Nutr. 2012, 52(10), 899–935. DOI: 10.1080/10408398.2010.512671.
  • Shewry, P.; Lovegrove, A. Exploiting Natural Variation to Improve the Content and Composition of Dietary Fibre in Wheat Grain: A Review. Acta Aliment. 2014, 43(3), 357–372. DOI: 10.1556/AAlim.43.2014.3.1.
  • Maphosa, Y.; Jideani, V. A. Dietary Fiber Extraction for Human Nutrition-A Review. Food Rev. Int. 2016, 32(1), 98–115. DOI: 10.1080/87559129.2015.1057840.
  • Page, A. J.; Symonds, E.; Peiris, M.; Blackshaw, L. A.; Young, R. L. Peripheral Neural Targets in Obesity. Br. J. Pharmacol. 2012, 166(5), 1537–1558. DOI: 10.1111/j.1476-5381.2012.01951.x.
  • De Silva, A.; Bloom, S. R. Gut Hormones and Appetite Control: A Focus on PYY and GLP-1 as Therapeutic Targets in Obesity. Gut Liver. 2012, 6(1), 10–20. DOI: 10.5009/gnl.2012.6.1.10.
  • Schroeder, N.; Marquart, L. F.; Gallaher, D. D. The Role of Viscosity and Fermentability of Dietary Fibers on Satiety- and Adiposity-Related Hormones in Rats. Nutrients. 2013, 5(6), 2093–2113. DOI: 10.3390/nu5062093.
  • Parker, H. E.; Gribble, F. M.; Reimann, F. The Role of Gut Endocrine Cells in Control of Metabolism and Appetite. Exp. Physiol. 2014, 99(9), 1116–1120. DOI: 10.1113/expphysiol.2014.079764.
  • Edwards, C. H.; Grundy, M. M.; Grassby, T.; Vasilopoulou, D.; Frost, G. S.; Butterworth, P. J.; Berry, S. E.; Sanderson, J.; Ellis, P. R. Manipulation of Starch Bioaccessibility in Wheat Endosperm to Regulate Starch Digestion, Postprandial Glycemia, Insulinemia, and Gut Hormone Responses: A Randomized Controlled Trial in Healthy Ileostomy Participants. Am. J. Clin. Nutr. 2015, 102(4), 791–800. DOI: 10.3945/ajcn.114.106203.
  • Qin, J.; Li, R.; Raes, J.; Arumugam, M.; Burgdorf, K. S.; Manichanh, C.; Nielsen, T.; Pons, N.; Levenez, F.; Yamada, T.; et al. A Human Gut Microbial Gene Catalogue Established by Metagenomic Sequencing. Nature. 2010, 464(7285), 59–65. DOI: 10.1038/nature08821.
  • Tremaroli, V.; Bäckhed, F. Functional Interactions between the Gut Microbiota and Host Metabolism. Nature. 2012, 489(7415), 242–249. DOI: 10.1038/nature11552.
  • Hartstra, A. V.; Bouter, K. E. C.; Bäckhed, F.; Nieuwdorp, M. Insights into the Role of the Microbiome in Obesity and Type 2 Diabetes. Diabetes Care. 2015, 38(1), 159–165. DOI: 10.2337/dc14-0769.
  • Million, M.; Lagier, J. C.; Yahav, D.; Paul, M. Gut Bacterial Microbiota and Obesity. Clin. Microbiol. Infect. 2013, 19(4), 305–313. DOI: 10.1111/1469-0691.12172.
  • Bell, D. S. Changes Seen in Gut Bacteria Content and Distribution with Obesity: Causation or Association? Postgrad. Med. 2015, 127(8), 863–868. DOI: 10.1080/00325481.2015.1098519.
  • Schwiertz, A.; Taras, D.; Schäfer, K.; Beijer, S.; Bos, N. A.; Donus, C.; Hardt, P. D. Microbiota and SCFA in Lean and Overweight Healthy Subjects. Obesity. 2010, 18(1), 190–195. DOI: 10.1038/oby.2009.167.
  • Cani, P. D.; Neyrinck, A. M.; Fava, F.; Knauf, C.; Burcelin, R. G.; Tuohy, K. M.; Gibson, G. R.; Delzenne, N. M. Selective Increases of Bifidobacteria in Gut Microflora Improve High-Fat-Diet-Induced Diabetes in Mice through A Mechanism Associated with Endotoxaemia. Diabetologia. 2007, 50(11), 2374–2383. DOI: 10.1007/s00125-007-0791-0.
  • Zhang, C.; Zhang, M.; Wang, S.; Han, R.; Cao, Y.; Hua, W.; Mao, Y.; Zhang, X.; Pang, X.; Wei, C.; et al. Interactions between Gut Microbiota, Host Genetics and Diet Relevant to Development of Metabolic Syndromes in Mice. Isme J. 2010, 4(2), 232–241. DOI: 10.1038/ismej.2009.112.
  • Jonnalagadda, S. S.; Harnack, L.; Hai Liu, R.; McKeown, N.; Seal, C.; Liu, S.; Fahey, G. C. Putting the Whole Grain Puzzle Together: Health Benefits Associated with Whole Grains-Summary of American Society for Nutrition 2010 Satellite Symposium. J. Nutr. 2011, 141(5), 1011S–1022S. DOI: 10.3945/jn.110.132944.
  • Macfarlane, G. T.; Macfarlane, S. Bacteria, Colonic Fermentation, and Gastrointestinal Health. J. AOAC Int. 2012, 95(1), 50–60. DOI: 10.5740/jaoacint.SGE_Macfarlane.
  • Den Besten, G.; van Eunen, K.; Groen, A. K.; Venema, K.; Reijngoud, D. J.; Bakker, B. M. The Role of Short-Chain Fatty Acids in the Interplay between Diet, Gut Microbiota, and Host Energy Metabolism. J. Lipid Res. 2013, 54(9), 2325–2340. DOI: 10.1194/jlr.R036012.
  • Rios-Covian, D.; Salazar, N.; Gueimonde, M.; de Los Reyes-Gavilan, C. G. Shaping the Metabolism of Intestinal Bacteroides Population through Diet to Improve Human Health. Front. Microbiol. 2017, 8, 376. DOI: 10.3389/fmicb.2017.00376.
  • Den Besten, G.; Lange, K.; Havinga, R.; van Dijk, T. H.; Gerding, A.; van Eunen, K.; Muller, M.; Groen, A. K.; Hooiveld, G. J.; Bakker, B. M.; et al. Gut-derived Short-Chain Fatty Acids are Vividly Assimilated into Host Carbohydrates and Lipids. Am. J. Physiol. Gastrointest. Liver Physiol. 2013, 305(12), G900–G910. DOI: 10.1152/ajpgi.00265.2013.
  • Chen, H.; Wang, W.; Degroote, J.; Possemiers, S.; Chen, D.; De Smet, S.; Michiels, J. Arabinoxylan in Wheat Is More Responsible than Cellulose for Promoting Intestinal Barrier Function in Weaned Male Piglets. J. Nutr. 2015, 145(1), 51–58. DOI: 10.3945/jn.114.201772.
  • Chen, H.; Mao, X.; He, J.; Yu, B.; Huang, Z.; Yu, J.; Zheng, P.; Chen, D. Dietary Fibre Affects Intestinal Mucosal Barrier Function and Regulates Intestinal Bacteria in Weaning Piglets. Br. J. Nutr. 2013, 110(10), 1837–1848. DOI: 10.1017/S0007114513001293.
  • Štěrbová, L.; Bradová, J.; Sedláček, T.; Holasová, M.; Fiedlerová, V.; Dvořáček, V.; Smrčková, P. Influence of Technological Processing of Wheat Grain on Starch Digestibility and Resistant Starch Content. Starch - Stärke. 2016, 68(7–8), 593–602. DOI: 10.1002/star.201500162.
  • Van Hung, P.; Maeda, T.; Morita, N. Waxy and High-Amylose Wheat Starches and Flours-Characteristics, Functionality and Application. Trends Food Sci. Technol. 2006, 17(8), 448–456. DOI: 10.1016/j.tifs.2005.12.006.
  • Bird, A.; Regina, A. High Amylose Wheat: A Platform for Delivering Human Health Benefits. J. Cereal Sci. 2018, 82, 99–105. DOI: 10.1016/j.jcs.2018.05.011.
  • Hallström, E.; Sestili, F.; Lafiandra, D.; Björck, I.; Östman, E. A Novel Wheat Variety with Elevated Content of Amylose Increases Resistant Starch Formation and May Beneficially Influence Glycaemia in Healthy Subjects. Food Nutr. Res. 2011, 55, 7074. DOI: 10.3402/fnr.v55i0.7074.
  • Regina, A.; Bird, A.; Topping, D.; Bowden, S.; Freeman, J.; Barsby, T.; Kosar-Hashemi, B.; Li, Z.; Rahman, S.; Morell, M. High-amylose Wheat Generated by RNA Interference Improves Indices of Large-Bowel Health in Rats. Proc. Natl. Acad. Sci. U. S. A. 2006, 103(10), 3546–3551. DOI: 10.1073/pnas.0510737103.
  • Birt, D. F.; Boylston, T.; Hendrich, S.; Jane, J. L.; Hollis, J.; Li, L.; McClelland, J.; Moore, S.; Phillips, G. J.; Rowling, M.; et al. Resistant Starch: Promise for Improving Human Health. Adv. Nutr. 2013, 4(6), 587–601. DOI: 10.3945/an.113.004325.
  • Yamamori, M.; Kato, M.; Yui, M.; Kawasaki, M. Resistant Starch and Starch Pasting Properties of a Starch Synthase IIa-Deficient Wheat with Apparent High Amylose. Aust. J. Agric. Res. 2006, 57(5), 531–535. DOI: 10.1071/AR05176.
  • Chen, M. H.; Bergman, C. J.; McClung, A. M.; Everette, J. D.; Tabien, R. E. Resistant Starch: Variation among High Amylose Rice Varieties and Its Relationship with Apparent Amylose Content, Pasting Properties and Cooking Methods. Food Chem. 2017, 234, 180–189. DOI: 10.1016/j.foodchem.2017.04.170.
  • Gong, L.; Cao, W.; Chi, H.; Wang, J.; Zhang, H.; Liu, J.; Sun, B. Whole Cereal Grains and Potential Health Effects: Involvement of the Gut Microbiota. Food Res. Int. 2018, 103, 84–102. DOI: 10.1016/j.foodres.2017.10.025.
  • Keenan, M. J.; Zhou, J.; McCutcheon, K. L.; Raggio, A. M.; Bateman, H. G.; Todd, E.; Jones, C. K.; Tulley, R. T.; Melton, S.; Martin, R. J.; et al. Effects of Resistant Starch, A Non-Digestible Fermentable Fiber, on Reducing Body Fat. Obesity. 2006, 14(9), 1523–1534. DOI: 10.1038/oby.2006.176.
  • Keenan, M. J.; Janes, M.; Robert, J.; Martin, R. J.; Raggio, A. M.; McCutcheon, K. L.; Pelkman, C.; Tulley, R.; Goita, M. F.; Durham, H. A.; et al. Resistant Starch from High Amylose Maize (HAM-RS2) Reduces Body Fat and Increases Gut Bacteria in Ovariectomized (OVX) Rats. Obesity. 2013, 21(5), 981–984. DOI: 10.1002/oby.20109.
  • Zhou, J.; Martin, R. J.; Tulley, R. T.; Raggio, A. M.; Shen, L.; Lissy, E.; McCutcheon, K.; Keenan, M. J. Failure to Ferment Dietary Resistant Starch in Specific Mouse Models of Obesity Results in No Body Fat Loss. J. Agric. Food Chem. 2009, 57(19), 8844–8851. DOI: 10.1021/jf901548e.
  • Kalmokoff, M.; Zwicker, B.; O’Hara, M.; Matias, F.; Green, J.; Shastri, P.; Green-Johnson, J.; Brooks, S. P. J. Temporal Change in the Gut Community of Rats Fed High Amylose Cornstarch Is Driven by Endogenous Urea Rather than Strictly on Carbohydrate Availability. J. Appl. Microbiol. 2013, 114(5), 1516–1528. DOI: 10.1111/jam.12157.
  • Lyte, M.; Chapel, A.; Lyte, J. M.; Ai, Y.; Proctor, A.; Jane, J. L.; Phillips, G. J. Resistant Starch Alters the Microbiota-Gut Brain Axis: Implications for Dietary Modulation of Behavior. PLoS ONE. 2016, 11(1), e0146406. DOI: 10.1371/journal.pone.0146406.
  • Kieffer, D. A.; Piccolo, B. D.; Marco, M. L.; Kim, E. B.; Goodson, M. L.; Keenan, M. J.; Dunn, T. N.; Knudsen, K. E. B.; Martin, R. J.; Adams, S. H. Mice Fed a High-Fat Diet Supplemented with Resistant Starch Display Marked Shifts in the Liver Metabolome Concurrent with Altered Gut Bacteria. J. Nutr. 2016, 146(12), 2476–2490. DOI: 10.3945/jn.116.238931.
  • Bindels, L. B.; Segura Munoz, R. R.; Gomes-Neto, J. C.; Mutemberezi, V.; Martínez, I.; Salazar, N.; Cody, E. A.; Quintero-Villegas, M. I.; Kittana, H.; de Los Reyes-Gavilán, C. G.; et al. Resistant Starch Can Improve Insulin Sensitivity Independently of the Gut Microbiota. Microbiome. 2017, 5, 12. DOI: 10.1186/s40168-017-0230-5.
  • Conlon, M. A.; Kerr, C. A.; McSweeney, C. S.; Dunne, R. A.; Shaw, J. M.; Kang, S.; Bird, A. R.; Morell, M. K.; Lockett, T. J.; Molloy, P. L.; et al. Resistant Starches Protect against Colonic DNA Damage and Alter Microbiota and Gene Expression in Rats Fed a Western Diet. J. Nutr. 2012, 142(5), 832–840. DOI: 10.3945/jn.111.147660.
  • Patten, G. S.; Kerr, C. A.; Dunne, R. A.; Shaw, J. M.; Bird, A. R.; Regina, A.; Morell, M. K.; Lockett, T. J.; Molloy, P. L.; Abeywardena, M. Y.; et al. Resistant Starch Alters Colonic Contractility and Expression of Related Genes in Rats Fed a Western Diet. Dig. Dis. Sci. 2015, 60(6), 1624–1632. DOI: 10.1007/s10620-015-3537-8.
  • Heizer, W. D.; Southern, S.; McGovern, S. The Role of Diet in Symptoms of Irritable Bowel Syndrome in Adults: A Narrative Review. J. Am. Diet. Assoc. 2009, 109(7), 1204–1214. DOI: 10.1016/j.jada.2009.04.012.
  • Serra, J.; Azpiroz, F.; Malagelada, J. R. Impaired Transit and Tolerance of Intestinal Gas in the Irritable Bowel Syndrome. Gut. 2001, 48(1), 14–19. DOI: 10.1136/gut.48.1.14.
  • Australian Bureau of Statistics. Principal Agricultural Commodities, Australia, Preliminary, 2015–16; Australian Bureau of Statistics: Canberra, Australia, 2015. http://www.abs.gov.au/AUSSTATS/[email protected]/Lookup/7111.0Main+Features12015-16?OpenDocument (accessed May 10, 2017).
  • Golley, S.; Corsini, N.; Topping, D.; Morell, M.; Mohr, P. Motivations for Avoiding Wheat Consumption in Australia: Results from a Population Survey. Public. Health. Nutr. 2015, 18(3), 490. DOI: 10.1017/S1368980014000652.
  • Chin, M. W.; Mallon, D. F.; Cullen, D. J.; Olynyk, J. K.; Mollison, L. C.; Pearce, C. B. Screening for Coeliac Disease Using Anti-Tissue Transglutaminase Antibody Assays, and Prevalence of the Disease in an Australian Community. Med. J. Aust. 2009, 190(8), 429–432. DOI: 10.5694/mja2.2009.190.issue-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.