2,829
Views
54
CrossRef citations to date
0
Altmetric
Review

Recent Advances in the Recovery Techniques of Plant-Based Proteins from Agro-Industrial By-Products

, &
Pages 447-468 | Received 18 Sep 2019, Accepted 09 Dec 2019, Published online: 05 Jan 2020

References

  • Kumari, B.; Tiwari, B. K.; Hossain, M. B.; Brunton, N. P.; Rai, D. K. Recent Advances on Application of Ultrasound and Pulsed Electric Field Technologies in the Extraction of Bioactives from Agro-Industrial By-Products. Food Bioprocess Technol. 2018, 11(2), 223–241. DOI: 10.1007/s11947-017-1961-9.
  • FAO. Food Wastage Footprint; Impacts on Natural Resources: Summary Report; USA, 2013.
  • de Los Á. Fernández, M.; Espino, M.; Gomez, F. J. V.; Silva, M. F. Novel Approaches Mediated by Tailor-Made Green Solvents for the Extraction of Phenolic Compounds from Agro-Food Industrial by-Products. Food Chem. 2018, 239, 671–678. Doi:10.1016/j.foodchem.2017.06.150.
  • Cecilia, J. A.; García-Sancho, C.; Maireles-Torres, P. J.; Luque, R. Industrial Food Waste Valorization: A General Overview. In Biorefinery; Springer International Publishing, 2019; pp. 253–277. doi:10.1007/978-3-030-10961-5_11.
  • Abu-reidah, I. M.; Arráez-román, D.; Warad, I.; Fernández-gutiérrez, A.; Segura-carretero, A. UHPLC/MS 2 -based Approach for the Comprehensive Metabolite Pro Fi Ling of Bean (Vicia Faba L .) by-Products : A Promising Source of Bioactive Constituents. Food Res. Int. 2017, 93, 87–96. DOI: 10.1016/j.foodres.2017.01.014.
  • De Souza, D.; Sbardelotto, A. F.; Ziegler, D. R.; Marczak, L. D. F.; Tessaro, I. C. Characterization of Rice Starch and Protein Obtained by a Fast Alkaline Extraction Method. Food Chem. 2016, 191, 36–44. DOI: 10.1016/j.foodchem.2015.03.032.
  • Parniakov, O.; Barba, F. J.; Grimi, N.; Lebovka, N.; Vorobiev, E. Extraction Assisted by Pulsed Electric Energy as a Potential Tool for Green and Sustainable Recovery of Nutritionally Valuable Compounds from Mango Peels. Food Chem. 2016, 192, 842–848. DOI: 10.1016/j.foodchem.2015.07.096.
  • Oreopoulou, V.; Tzia, C. Utilization of Plant By-Products for the Recovery of Proteins, Dietary Fibers, Antioxidants, and Colorants. In Utilization of By-Products and Treatment of Waste in the Food Industry; Oreopoulou, V., Russ, W., Eds.; Springer: Boston, MA, 2007; pp. 209–232.
  • Görgüç, A.; Bircan, C.; Yılmaz, F. M. Sesame Bran as an Unexploited By-Product: Effect of Enzyme and Ultrasound-Assisted Extraction on the Recovery of Protein and Antioxidant Compounds. Food Chem. 2019, 283, 637–645. DOI: 10.1016/j.foodchem.2019.01.077.
  • Nyo, M. K.; Nguyen, L. T. Value-Addition of Defatted Peanut Cake by Proteolysis: Effects of Proteases and Degree of Hydrolysis on Functional Properties and Antioxidant Capacity of Peptides. Waste Biomass Valorization. 2019, 10(5), 1251–1259. DOI: 10.1007/s12649-017-0146-0.
  • Zardo, I.; de Espíndola Sobczyk, A.; Marczak, L. D. F.; Sarkis, J. Optimization of Ultrasound Assisted Extraction of Phenolic Compounds from Sunflower Seed Cake Using Response Surface Methodology. Waste Biomass Valorization. 2019, 10(1), 33–44. DOI: 10.1007/s12649-017-0038-3.
  • Richter, C. K.; Skulas-Ray, A. C.; Champagne, C. M.; Kris-Etherton, P. M. Plant Protein and Animal Proteins: Do They Differentially Affect Cardiovascular Disease Risk? Adv. Nutr. 2015, 6(6), 712–728. DOI: 10.3945/an.115.009654.
  • Gharib-bibalan, S. High Value-Added Products Recovery from Sugar Processing By-Products and Residuals by Green Technologies : Opportunities, Challenges, and Prospects. Food Eng. Rev. 2018, 10, 95–111.
  • Zhang, Y.; Wang, B.; Zhang, W.; Xu, W.; Hu, Z. Effects and Mechanism of Dilute Acid Soaking with Ultrasound Pretreatment on Rice Bran Protein Extraction. J. Cereal Sci. December, 2018, 2019(87), 318–324. DOI:10.1016/j.jcs.2019.04.018.
  • Udenigwe, C. C.; Okolie, C. L.; Qian, H.; Ohanenye, I. C.; Agyei, D.; Aluko, R. E. Ribulose-1,5-Bisphosphate Carboxylase as a Sustainable and Promising Plant Source of Bioactive Peptides for Food Applications. Trends Food Sci. Technol. 2017, 69, 74–82. DOI: 10.1016/j.tifs.2017.09.001.
  • Sadh, P. K.; Duhan, S.; Duhan, J. S. Agro-Industrial Wastes and Their Utilization Using Solid State Fermentation: A Review. Bioresour. Bioprocess. 2018, 5(1), 1. DOI: 10.1186/s40643-017-0187-z.
  • Alibardi, L.; Cossu, R. Effects of Carbohydrate, Protein and Lipid Content of Organic Waste on Hydrogen Production and Fermentation Products. Waste Manag. 2016, 47, 69–77. DOI: 10.1016/j.wasman.2015.07.049.
  • Ling, B.; Ouyang, S.; Wang, S. Effect of Radio Frequency Treatment on Functional, Structural and Thermal Behaviors of Protein Isolates in Rice Bran. Food Chem. March, 2019, 289, 537–544. DOI: 10.1016/j.foodchem.2019.03.072.
  • Phongthai, S.; Homthawornchoo, W.; Rawdkuen, S. Preparation, Properties and Application of Rice Bran Protein: A Review. Int. Food Res. J. 2017, 24(1), 25–34.
  • Prosekov, A.; Babich, O.; Kriger, O.; Ivanova, S.; Pavsky, V.; Sukhikh, S.; Yang, Y.; Kashirskih, E. Functional Properties of the Enzyme-Modified Protein from Oat Bran. Food Biosci. 2018, 24, 46–49. July 2017. DOI:10.1016/j.fbio.2018.05.003.
  • Grudniewska, A.; De Melo, E. M.; Chan, A.; Gniłka, R.; Boratyński, F.; Matharu, A. S. Enhanced Protein Extraction from Oilseed Cakes Using Glycerol-Choline Chloride Deep Eutectic Solvents: A Biorefinery Approach. ACS Sustain. Chem. Eng. 2018, 6(11), 15791–15800. DOI: 10.1021/acssuschemeng.8b04359.
  • Barba, F. J.; Boussetta, N.; Vorobiev, E. Emerging Technologies for the Recovery of Isothiocyanates, Protein and Phenolic Compounds from Rapeseed and Rapeseed Press-Cake: Effect of High Voltage Electrical Discharges. Innov. Food Sci. Emerg. Technol. 2015, 31, 67–72. DOI: 10.1016/j.ifset.2015.06.008.
  • Ferreira, S. S.; Passos, C. P.; Cardoso, S. M.; Wessel, D. F.; Coimbra, M. A. Microwave Assisted Dehydration of Broccoli By-Products and Simultaneous Extraction of Bioactive Compounds. Food Chem. 2018, 246, 386–393. August 2017. DOI:10.1016/j.foodchem.2017.11.053.
  • Parniakov, O.; Roselló-Soto, E.; Barba, F. J.; Grimi, N.; Lebovka, N.; Vorobiev, E. New Approaches for the Effective Valorization of Papaya Seeds: Extraction of Proteins, Phenolic Compounds, Carbohydrates, and Isothiocyanates Assisted by Pulsed Electric Energy. Food Res. Int. 2015, 77, 711–717. DOI: 10.1016/j.foodres.2015.03.031.
  • Chemat, F.; Rombaut, N.; Meullemiestre, A.; Turk, M.; Perino, S.; Fabiano-Tixier, A. S.; Abert-Vian, M. Review of Green Food Processing Techniques. Preservation, Transformation, and Extraction. Innov. Food Sci. Emerg. Technol. April, 2017, 41, 357–377. DOI:10.1016/j.ifset.2017.04.016.
  • Barba, F. J.; Zhu, Z.; Koubaa, M.; Sant’Ana, A. S.; Orlien, V. Green Alternative Methods for the Extraction of Antioxidant Bioactive Compounds from Winery Wastes and By-Products: A Review. Trends Food Sci. Technol. 2016, 49, 96–109. DOI: 10.1016/j.tifs.2016.01.006.
  • Sui, X.; Dong, X.; Zhou, W. Combined Effect of PH and High Temperature on the Stability and Antioxidant Capacity of Two Anthocyanins in Aqueous Solution. Food Chem. 2014, 163, 163–170. DOI: 10.1016/j.foodchem.2014.04.075.
  • Papuc, C.; Goran, G. V.; Predescu, C. N.; Nicorescu, V. Mechanisms of Oxidative Processes in Meat and Toxicity Induced by Postprandial Degradation Products: A Review. Compr. Rev. Food Sci. Food Saf. 2017, 16(1), 96–123. DOI: 10.1111/1541-4337.12241.
  • Rodrigues, I. M.; Coelho, J. F. J.; Carvalho, M. G. V. S. Isolation and Valorisation of Vegetable Proteins from Oilseed Plants: Methods, Limitations and Potential. J. Food Eng. 2012, 109(3), 337–346. DOI: 10.1016/J.JFOODENG.2011.10.027.
  • Grandison, A.; Lewis, M. S. Separation Processes in the Food and Biotechnology Industries; Woodhead Publishing Limited: Cambridge, England, 1996.
  • Yalçin, E.; Çelik, S. Solubility Properties of Barley Flour, Protein Isolates and Hydrolysates. Food Chem. 2007, 104(4), 1641–1647. DOI: 10.1016/j.foodchem.2007.03.029.
  • Sarmadi, B. H.; Ismail, A. Antioxidative Peptides from Food Proteins: A Review. Peptides. 2010, 31(10), 1949–1956. DOI: 10.1016/J.PEPTIDES.2010.06.020.
  • Huang, Y.; Feng, F.; Jiang, J.; Qiao, Y.; Wu, T.; Voglmeir, J.; Chen, Z. G. Green and Efficient Extraction of Rutin from Tartary Buckwheat Hull by Using Natural Deep Eutectic Solvents. Food Chem. 2017, 221, 1400–1405. DOI: 10.1016/j.foodchem.2016.11.013.
  • Chemat, F.; Rombaut, N.; Sicaire, A. G.; Meullemiestre, A.; Fabiano-Tixier, A. S.; Abert-Vian, M. Ultrasound Assisted Extraction of Food and Natural Products. Mechanisms, Techniques, Combinations, Protocols and Applications. A Review. Ultrason. Sonochem. 2017, 34, 540–560. DOI: 10.1016/j.ultsonch.2016.06.035.
  • Chalamaiah, M.; Rao, G. N.; Rao, D. G.; Jyothirmayi, T. Protein Hydrolysates from Meriga (Cirrhinus Mrigala) Egg and Evaluation of Their Functional Properties. Food Chem. 2010, 120(3), 652–657. DOI: 10.1016/j.foodchem.2009.10.057.
  • Watanabe, M.; Yamada, C.; Maeda, I.; Techapun, C.; Kuntiya, A.; Leksawasdi, N.; Seesuriyachan, P.; Chaiyaso, T.; Takenaka, S.; Shiono, T.;, et al. Evaluating of Quality of Rice Bran Protein Concentrate Prepared by a Combination of Isoelectronic Precipitation and Electrolyzed Water Treatment. LWT. 2019, 99, 262–267. September 2018. DOI:10.1016/j.lwt.2018.09.059.
  • Zhu, K. X.; Sun, X. H.; Chen, Z. C.; Peng, W.; Qian, H. F.; Zhou, H. M. Comparison of Functional Properties and Secondary Structures of Defatted Wheat Germ Proteins Separated by Reverse Micelles and Alkaline Extraction and Isoelectric Precipitation. Food Chem. 2010, 123(4), 1163–1169. DOI: 10.1016/j.foodchem.2010.05.081.
  • Mondor, M.; Ali, F.; Ippersiel, D.; Lamarche, F. Impact of Ultrafiltration/Diafiltration Sequence on the Production of Soy Protein Isolate by Membrane Technologies. Innov. Food Sci. Emerg. Technol. 2010, 11(3), 491–497. DOI: 10.1016/j.ifset.2010.02.002.
  • Fuhrmeister, H.; Meuser, F. Impact of Processing on Functional Properties of Protein Products from Wrinkled Peas. J. Food Eng. 2003, 56(2–3), 119–129. DOI: 10.1016/S0260-8774(02)00241-8.
  • Taherian, A. R.; Mondor, M.; Labranche, J.; Drolet, H.; Ippersiel, D.; Lamarche, F. Comparative Study of Functional Properties of Commercial and Membrane Processed Yellow Pea Protein Isolates. Food Res. Int. 2011, 44(8), 2505–2514. DOI: 10.1016/j.foodres.2011.01.030.
  • Stone, A. K.; Karalash, A.; Tyler, R. T.; Warkentin, T. D.; Nickerson, M. T. Functional Attributes of Pea Protein Isolates Prepared Using Different Extraction Methods and Cultivars. Food Res. Int. 2015, 76(P1), 31–38. DOI: 10.1016/j.foodres.2014.11.017.
  • Sari, Y. W.; Mulder, W. J.; Sanders, J. P. M.; Bruins, M. E. Towards Plant Protein Refinery: Review on Protein Extraction Using Alkali and Potential Enzymatic Assistance. Biotechnol. J. 2015. DOI: 10.1002/biot.201400569.
  • Clemente, A.;. Enzymatic Protein Hydrolysates in Human Nutrition. Trends Food Sci. Technol. 2001, 11(7), 254–262. DOI: 10.1016/S0924-2244(01)00007-3.
  • Lemes, A. C.; Sala, L.; Ores, J. D. C.; Braga, A. R. C.; Egea, M. B.; Fernandes, K. F. A Review of the Latest Advances in Encrypted Bioactive Peptides from Protein-Richwaste. Int. J. Mol. Sci. 2016, 17(6). DOI: 10.3390/ijms17060950.
  • Sinha, R.; Radha, C.; Prakash, J.; Kaul, P. Whey Protein Hydrolysate: Functional Properties, Nutritional Quality and Utilization in Beverage Formulation. Food Chem. 2007, 101(4), 1484–1491. DOI: 10.1016/J.FOODCHEM.2006.04.021.
  • Gandhi, A. P.; Srivastava, J. Studies on the Production of Protein Isolates from Defatted Sesame Seed (Sesamum Indicum) Flour and Their Nutritional Profile. Int. Food Res. J. 2007, 14(3), 175–180.
  • Xia, N.; Wang, J. M.; Gong, Q.; Yang, X. Q.; Yin, S. W.; Qi, J. R. Characterization and in Vitro Digestibility of Rice Protein Prepared by Enzyme-Assisted Microfluidization: Comparison to Alkaline Extraction. J. Cereal Sci. 2012, 56(2), 482–489. DOI: 10.1016/j.jcs.2012.06.008.
  • Chittapalo, T.; Noomhorm, A. Ultrasonic Assisted Alkali Extraction of Protein from Defatted Rice Bran and Properties of the Protein Concentrates. Int. J. Food Sci. Technol. 2009, 44(9), 1843–1849. DOI: 10.1111/j.1365-2621.2009.02009.x.
  • Yu, X.; Gouyo, T.; Grimi, N.; Bals, O.; Vorobiev, E. Ultrasound Enhanced Aqueous Extraction from Rapeseed Green Biomass for Polyphenol and Protein Valorization. Comptes Rendus Chim. 2016, 19(6), 766–777. DOI: 10.1016/J.CRCI.2016.03.007.
  • Qu, W.; Ma, H.; Jia, J.; He, R.; Luo, L.; Enzymolysis Kinetics, P. Z. Activities of ACE Inhibitory Peptides from Wheat Germ Protein Prepared with SFP Ultrasound-Assisted Processing. Ultrason. Sonochem. 2012, 19(5), 1021–1026. DOI: 10.1016/j.ultsonch.2012.02.006.
  • Rajha, H. N.; Boussetta, N.; Louka, N.; Maroun, R. G.; Vorobiev, E. A Comparative Study of Physical Pretreatments for the Extraction of Polyphenols and Proteins from Vine Shoots. Food Res. Int. 2014, 65(PC), 462–468. DOI: 10.1016/j.foodres.2014.04.024.
  • Phongthai, S.; Lim, S. T.; Rawdkuen, S. Optimization of Microwave-Assisted Extraction of Rice Bran Protein and Its Hydrolysates Properties. J. Cereal Sci. 2016, 70, 146–154. DOI: 10.1016/j.jcs.2016.06.001.
  • Choi, I.; Cho, S. J.; Chun, J. K.; Moon, T. W. Extraction Yield of Soluble Protein and Microstructure of Soybean Affected by Microwave Heating. J. Food Process. Preserv. 2006, 30(4), 407–419. DOI: 10.1111/j.1745-4549.2006.00075.x.
  • Zoccola, M.; Aluigi, A.; Patrucco, A.; Vineis, C.; Forlini, F.; Locatelli, P.; Sacchi, M. C.; Tonin, C. Microwave-Assisted Chemical-Free Hydrolysis of Wool Keratin. Text. Res. J. 2012, 82(19), 2006–2018. DOI: 10.1177/0040517512452948.
  • Yu, X.; Bals, O.; Grimi, N.; Vorobiev, E. A New Way for the Oil Plant Biomass Valorization: Polyphenols and Proteins Extraction from Rapeseed Stems and Leaves Assisted by Pulsed Electric Fields. Ind. Crops Prod. 2015, 74, 309–318. DOI: 10.1016/j.indcrop.2015.03.045.
  • Sarkis, J. R.; Boussetta, N.; Blouet, C.; Tessaro, I. C.; Marczak, L. D. F.; Vorobiev, E. Effect of Pulsed Electric Fields and High Voltage Electrical Discharges on Polyphenol and Protein Extraction from Sesame Cake. Innov. Food Sci. Emerg. Technol. 2015, 29, 170–177. DOI: 10.1016/j.ifset.2015.02.011.
  • Wiboonsirikul, J.; Hata, S.; Tsuno, T.; Kimura, Y.; Adachi, S. Production of Functional Substances from Black Rice Bran by Its Treatment in Subcritical Water. LWT - Food Sci. Technol. 2007, 40(10), 1732–1740. DOI: 10.1016/J.LWT.2007.01.003.
  • Kazan, A.; Celiktas, M. S.; Sargin, S.; Yesil-Celiktas, O. Bio-Based Fractions by Hydrothermal Treatment of Olive Pomace: Process Optimization and Evaluation. Energy Convers. Manag. 2015, 103, 366–373. DOI: 10.1016/j.enconman.2015.06.084.
  • Ho, C. H. L.; Cacace, J. E.; Mazza, G. Extraction of Lignans, Proteins and Carbohydrates from Flaxseed Meal with Pressurized Low Polarity Water. LWT - Food Sci. Technol. 2007, 40(9), 1637–1647. DOI: 10.1016/j.lwt.2006.12.003.
  • Liu, R. L.; Yu, P.; Ge, X. L.; Bai, X. F.; Li, X. Q.; Fu, Q. Establishment of an Aqueous PEG 200-Based Deep Eutectic Solvent Extraction and Enrichment Method for Pumpkin (Cucurbita Moschata) Seed Protein. Food Anal. Methods. 2017, 10(6), 1669–1680. DOI: 10.1007/s12161-016-0732-y.
  • Esfandi, R.; Willmore, W. G.; Tsopmo, A. Peptidomic Analysis of Hydrolyzed Oat Bran Proteins, and Their in Vitro Antioxidant and Metal Chelating Properties. Food Chem. 2019. DOI: 10.1016/j.foodchem.2018.11.110.
  • Jodayree, S.; Smith, J. C.; Tsopmo, A. Use of Carbohydrase to Enhance Protein Extraction Efficiency and Antioxidative Properties of Oat Bran Protein Hydrolysates. Food Res. Int. 2012, 46(1), 69–75. DOI: 10.1016/J.FOODRES.2011.12.004.
  • Hamada, J. S.;. Characterization and Functional Properties of Rice Bran Proteins Modified by Commercial Exoproteases and Endoproteases. J. Food Sci. 2000, 65(2), 305–310. DOI: 10.1111/j.1365-2621.2000.tb15998.x.
  • Kanu, P. J.; Kanu, J. B.; Sandy, E. H.; Kandeh, J. B. A.; Mornya, P. M. P.; Huiming, Z. Optimization of Enzymatic Hydrolysis of Defatted Sesame Flour by Different Proteases and Their Effect on the Functional Properties of the Resulting Protein Hydrolysate. Am. J. Food Technol. 2009, 4(6), 226–240. DOI: 10.3923/ajft.2009.226.240.
  • Latif, S.; Anwar, F. Aqueous Enzymatic Sesame Oil and Protein Extraction. Food Chem. 2011, 125(2), 679–684. DOI: 10.1016/j.foodchem.2010.09.064.
  • Ribeiro, B. D.; Barreto, D. W.; Coelho, M. A. Z. Enzyme-Enhanced Extraction of Phenolic Compounds and Proteins from Flaxseed Meal. ISRN Biotechnol. 2013, 2013, 1–6. DOI: 10.5402/2013/521067.
  • Sari, Y. W.; Bruins, M. E.; Sanders, J. P. M. Enzyme Assisted Protein Extraction from Rapeseed, Soybean, and Microalgae Meals. Ind. Crops Prod. 2013, 43(1), 78–83. DOI: 10.1016/j.indcrop.2012.07.014.
  • Jung, S.; Lamsal, B. P.; Stepien, V.; Johnson, L. A.; Murphy, P. A. Functionality of Soy Protein Produced by Enzyme-Assisted Extraction. JAOCS, J. Am. Oil Chem. Soc. 2006, 83(1), 71–78. DOI: 10.1007/s11746-006-1178-y.
  • Latif, S.; Anwar, F. Effect of Aqueous Enzymatic Processes on Sunflower Oil Quality. JAOCS, J. Am. Oil Chem. Soc. 2009, 86(4), 393–400. DOI: 10.1007/s11746-009-1357-8.
  • Zhao, G.; Liu, Y.; Ren, J.; Zhao, M.; Yang, B. Effect of Protease Pretreatment on the Functional Properties of Protein Concentrate from Defatted Peanut Flour. J. Food Process Eng. 2013, 36(1), 9–17. DOI: 10.1111/j.1745-4530.2011.00646.x.
  • Shen, L.; Wang, X.; Wang, Z.; Wu, Y.; Chen, J. Studies on Tea Protein Extraction Using Alkaline and Enzyme Methods. Food Chem. 2008, 107(2), 929–938. DOI: 10.1016/j.foodchem.2007.08.047.
  • Jain, S.; Anal, A. K. Optimization of Extraction of Functional Protein Hydrolysates from Chicken Egg Shell Membrane (ESM) by Ultrasonic Assisted Extraction (UAE) and Enzymatic Hydrolysis. LWT - Food Sci. Technol. 2016, 69, 295–302. DOI: 10.1016/j.lwt.2016.01.057.
  • Vergara-Barberán, M.; Mompó-Roselló, Ó.; Lerma-García, M. J.; Herrero-Martínez, J. M.; Simó-Alfonso, E. F. Enzyme-Assisted Extraction of Proteins from Citrus Fruits and Prediction of Their Cultivar Using Protein Profiles Obtained by Capillary Gel Electrophoresis. Food Control. 2017, 72, 14–19. DOI: 10.1016/j.foodcont.2016.07.025.
  • Latif, S.; Anwar, F.; Hussain, A. I.; Shahid, M. Aqueous Enzymatic Process for Oil and Protein Extraction from Moringa Oleifera Seed. Eur. J. Lipid Sci. Technol. 2011, 113(8), 1012–1018. DOI: 10.1002/ejlt.201000525.
  • Wouters, A. G. B.; Rombouts, I.; Fierens, E.; Brijs, K.; Delcour, J. A. Relevance of the Functional Properties of Enzymatic Plant Protein Hydrolysates in Food Systems. Compr. Rev. Food Sci. Food Saf. 2016, 15(4), 786–800. DOI: 10.1111/1541-4337.12209.
  • HSU, J.; HEATHERBELL, D.; FLORES, J.; WATSON, B. Heat-Unstable Proteins in Grape Juice and Wine. II. Characterization and Removal by Ultrafiltration. Am. J. Enol. Vitic. 1987, 38(1), 17–22.
  • Thamnarathip, P.; Jangchud, K.; Jangchud, A.; Nitisinprasert, S.; Tadakittisarn, S.; Extraction, V. B. Characterisation of Riceberry Bran Protein Hydrolysate Using Enzymatic Hydrolysis. Int. J. Food Sci. Technol. 2016, 51(1), 194–202. DOI: 10.1111/ijfs.13008.
  • Dei Piu’, L.; Babini, E.; Gianotti, A.; Tassoni, A.; Ferri, M.; Serrazanetti, D. I.; Tagliazucchi, D. Exploitation of Starch Industry Liquid By-Product to Produce Bioactive Peptides from Rice Hydrolyzed Proteins. Food Chem. 2014, 155, 199–206. DOI: 10.1016/j.foodchem.2014.01.055.
  • Musielak, G.; Mierzwa, D.; Kroehnke, J. Food Drying Enhancement by Ultrasound – A Review. Trends Food Sci. Technol. 2016, 56, 126–141. DOI: 10.1016/j.tifs.2016.08.003.
  • Ozuna, C.; Paniagua-Martínez, I.; Castaño-Tostado, E.; Ozimek, L.; Amaya-Llano, S. L. Innovative Applications of High-Intensity Ultrasound in the Development of Functional Food Ingredients: Production of Protein Hydrolysates and Bioactive Peptides. Food Res. Int. 2015, 77, 685–696. DOI: 10.1016/J.FOODRES.2015.10.015.
  • Preece, K. E.; Hooshyar, N.; Krijgsman, A. J.; Fryer, P. J.; Zuidam, N. J. Intensification of Protein Extraction from Soybean Processing Materials Using Hydrodynamic Cavitation. Innov. Food Sci. Emerg. Technol. 2017, 41, 47–55. DOI: 10.1016/j.ifset.2017.01.002.
  • Luo, X.; Cui, J.; Zhang, H.; Duan, Y.; Zhang, D.; Cai, M.; Chen, G. Ultrasound Assisted Extraction of Polyphenolic Compounds from Red Sorghum (Sorghum Bicolor L.) Bran and Their Biological Activities and Polyphenolic Compositions. Ind. Crop Prod. 2018, 112(301), 296–304. DOI: 10.1016/j.indcrop.2017.12.019.
  • Freitas de Oliveira, C.; Giordani, D.; Lutckemier, R.; Gurak, P. D.; Cladera-Olivera, F.; Ferreira Marczak, L. D. Extraction of Pectin from Passion Fruit Peel Assisted by Ultrasound. LWT - Food Sci. Technol. 2016, 71, 110–115. DOI: 10.1016/j.lwt.2016.03.027.
  • Tiwari, B. K.;. Ultrasound: A Clean, Green Extraction Technology. TrAC - Trends Anal. Chem. 2015, 71, 100–109. DOI: 10.1016/j.trac.2015.04.013.
  • Kadam, S. U.; Tiwari, B. K.; Álvarez, C.; O’Donnell, C. P. Ultrasound Applications for the Extraction, Identification and Delivery of Food Proteins and Bioactive Peptides. Trends Food Sci. Technol. 2015, 46(1), 60–67. DOI: 10.1016/j.tifs.2015.07.012.
  • Dong, X. Y.; Guo, L. L.; Wei, F.; Li, J. F.; Jiang, M. L.; Li, G. M.; Di, Z. Y.; Chen, H. Some Characteristics and Functional Properties of Rapeseed Protein Prepared by Ultrasonication, Ultrafiltration and Isoelectric Precipitation. J. Sci. Food Agric. 2011, 91(8), 1488–1498. DOI: 10.1002/jsfa.4339.
  • Kim, S. M.; Jung, Y. J.; Kwon, O. N.; Cha, K. H.; Um, B. H.; Chung, D.; Pan, C. H. A Potential Commercial Source of Fucoxanthin Extracted from the Microalga Phaeodactylum Tricornutum. Appl. Biochem. Biotechnol. 2012, 166(7), 1843–1855. DOI: 10.1007/s12010-012-9602-2.
  • McClements, D. J.;. Advances in the Application of Ultrasound in Food Analysis and Processing. Trends Food Sci. Technol. 1995, 6(9), 293–299. DOI: 10.1016/S0924-2244(00)89139-6.
  • Özer, P.; Görgüç, A.; Yılmaz, F. M. The Use of Microwave Technology on the Extraction of Macro and Micro Components from Plant Tissues. Gida/J. Food. 2018, 43, 765–775. DOI: 10.15237/gida.gd18060.
  • Roselló-Soto, E.; Barba, F. J.; Parniakov, O.; Galanakis, C. M.; Lebovka, N.; Grimi, N.; Vorobiev, E. High Voltage Electrical Discharges, Pulsed Electric Field, and Ultrasound Assisted Extraction of Protein and Phenolic Compounds from Olive Kernel. Food Bioprocess Technol. 2015, 8(4), 885–894. DOI: 10.1007/s11947-014-1456-x.
  • çavdar, H. K.; Yanik, D. K.; Gok, U.; Gogus, F. Optimisation of Microwave-Assisted Extraction of Pomegranate (Punica Granatum L.) Seed Oil and Evaluation of Its Physicochemical and Bioactive Properties. Food Technol. Biotechnol. 2017;55(1):86–94. Doi:10.17113/ftb.55.01.17.4638.
  • Ochoa-Rivas, A.; Nava-Valdez, Y.; Serna-Saldívar, S. O.; Chuck-Hernández, C. Microwave and Ultrasound to Enhance Protein Extraction from Peanut Flour under Alkaline Conditions: Effects in Yield and Functional Properties of Protein Isolates. Food Bioprocess Technol. 2017, 10(3), 543–555. DOI: 10.1007/s11947-016-1838-3.
  • Joshi, R. P.; Schoenbach, K. H. Mechanism for Membrane Electroporation Irreversibility under High-Intensity, Ultrashort Electrical Pulse Conditions. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 2002, 66(5), 4. DOI: 10.1103/PhysRevE.66.052901.
  • Lin, S.; Liang, R.; Xue, P.; Zhang, S.; Liu, Z.; Dong, X. Antioxidant Activity Improvement of Identified Pine Nut Peptides by Pulsed Electric Field (PEF) and the Mechanism Exploration. LWT. 2017, 75, 366–372. DOI: 10.1016/J.LWT.2016.09.017.
  • Angersbach, A.; Heinz, V.; Knorr, D. Effects of Pulsed Electric Fields on Cell Membranes in Real Food Systems. Innov. Food Sci. Emerg. Technol. 2000, 1(2), 135–149. DOI: 10.1016/S1466-8564(00)00010-2.
  • López, N.; Puértolas, E.; Condón, S.; Raso, J.; Ignacio, Á. Enhancement of the Solid-Liquid Extraction of Sucrose from Sugar Beet (Beta Vulgaris) by Pulsed Electric Fields. LWT - Food Sci. Technol. 2009, 42(10), 1674–1680. DOI: 10.1016/j.lwt.2009.05.015.
  • Fromm, M.; Taylor, L. P.; Walbot, V. Expression of Genes Transferred into Monocot and Dicot Plant Cells by Electroporation. Proc. Natl. Acad. Sci. 2006, 82(17), 5824–5828. DOI: 10.1073/pnas.82.17.5824.
  • Toepfl, S.;. Pulsed Electric Field Food Treatment - Scale up from Lab to Industrial Scale. Procedia Food Sci. 2011, 1, 776–779. DOI: 10.1016/j.profoo.2011.09.117.
  • Zhao, W.; Tang, Y.; Lu, L.; Chen, X.; Li, C. Review: Pulsed Electric Fields Processing of Protein-Based Foods. Food Bioprocess. Technol. January, 2014, 114–125. doi:10.1007/s11947-012-1040-1.
  • Parniakov, O.; Barba, F. J.; Grimi, N.; Lebovka, N.; Vorobiev, E. Impact of Pulsed Electric Fields and High Voltage Electrical Discharges on Extraction of High-Added Value Compounds from Papaya Peels. Food Res. Int. 2014, 65, 337–343. DOI: 10.1016/J.FOODRES.2014.09.015.
  • Roselló-Soto, E.; Koubaa, M.; Moubarik, A.; Lopes, R. P.; Saraiva, J. A.; Boussetta, N.; Grimi, N.; Barba, F. J. Emerging Opportunities for the Effective Valorization of Wastes and By-Products Generated during Olive Oil Production Process: Non-Conventional Methods for the Recovery of High-Added Value Compounds. Trends Food Sci. Technol. 2015, 45(2), 296–310. DOI: 10.1016/j.tifs.2015.07.003.
  • Boussetta, N.; Vorobiev, E. Extraction of Valuable Biocompounds Assisted by High Voltage Electrical Discharges: A Review. Comptes Rendus Chim. 2014, 17(3), 197–203. DOI: 10.1016/j.crci.2013.11.011.
  • El Kantar, S.; Boussetta, N.; Rajha, H. N.; Maroun, R. G.; Louka, N.; Vorobiev, E. High Voltage Electrical Discharges Combined with Enzymatic Hydrolysis for Extraction of Polyphenols and Fermentable Sugars from Orange Peels. Food Res. Int. 2018, 107, 755–762. January 2018. DOI:10.1016/j.foodres.2018.01.070.
  • Deng, Y.; Ju, T.; Xi, J. Circulating Polyphenols Extraction System with High-Voltage Electrical Discharge: Design and Performance Evaluation. ACS Sustain. Chem. Eng. 2018, 6(11), 15402–15410. DOI: 10.1021/acssuschemeng.8b03827.
  • Li, Z.; Fan, Y.; Xi, J. Recent Advances in High Voltage Electric Discharge Extraction of Bioactive Ingredients from Plant Materials. Food Chem. 2019, 277, 246–260. DOI: 10.1016/J.FOODCHEM.2018.10.119.
  • Roselló-Soto, E.; Barba, F. J.; Parniakov, O.; Galanakis, C. M.; Lebovka, N.; Grimi, N.; Vorobiev, E. High Voltage Electrical Discharges, Pulsed Electric Field, and Ultrasound Assisted Extraction of Protein and Phenolic Compounds from Olive Kernel. Food Bioprocess Technol. 2015, 8(4), 885–894. DOI: 10.1007/s11947-014-1456-x.
  • Boussetta, N.; Vorobiev, E.; Reess, T.; De Ferron, A.; Pecastaing, L.; Ruscassié, R.; Lanoisellé, J.-L. Scale-up of High Voltage Electrical Discharges for Polyphenols Extraction from Grape Pomace: Effect of the Dynamic Shock Waves. Innov. Food Sci. Emerg. Technol. 2012, 16, 129–136. DOI: 10.1016/J.IFSET.2012.05.004.
  • Knirsch, M. C.; Dos Santos, C. A.; de Oliveira Soares Vicente, A. A. M.; Penna, T. C. V. Ohmic Heating – A Review. Trends Food Sci. Technol. 2010, 21(9), 436–441. DOI: 10.1016/J.TIFS.2010.06.003.
  • Varghese, K. S.; Pandey, M. C.; Radhakrishna, K.; Bawa, A. S. Technology, Applications and Modelling of Ohmic Heating: A Review. J. Food Sci. Technol. 2014, 2304–2317. Springer. doi:10.1007/s13197-012-0710-3.
  • Pojić, M.; Mišan, A.; Tiwari, B. Eco-Innovative Technologies for Extraction of Proteins for Human Consumption from Renewable Protein Sources of Plant Origin. Trends Food Sci. Technol. 2018, 75, 93–104. DOI: 10.1016/J.TIFS.2018.03.010.
  • Coelho, M.; Pereira, R.; Rodrigues, A. S.; Teixeira, J. A.; Pintado, M. E. Extraction of Tomato By-Products’ Bioactive Compounds Using Ohmic Technology. Food Bioprod. Process. 2019, 117, 329–339. DOI: 10.1016/J.FBP.2019.08.005.
  • Muangrat, R.; Williams, P. T.; Saengcharoenrat, P. Subcritical Solvent Extraction of Total Anthocyanins from Dried Purple Waxy Corn: Influence of Process Conditions. J. Food Process. Preserv. 2017, 41, 6. DOI: 10.1111/jfpp.13252.
  • Ravber, M.; Knez, Ž.; Škerget, M. Simultaneous Extraction of Oil- and Water-Soluble Phase from Sunflower Seeds with Subcritical Water. Food Chem. 2015, 166, 316–323. DOI: 10.1016/j.foodchem.2014.06.025.
  • Lian Chee, F.; Iqbal, S.; Ismail, M. Effects of Supercritical Fluid Extraction Conditions on Yield of Protein from Defatted Rice Bran. J. Chem. Soc. Pak. 2013, 35(1), 192–197.
  • KATAOKA, M.; WIBOONSIRIKUL, J.; KIMURA, Y.; ADACHI, S. Properties of Extracts from Wheat Bran by Subcritical Water Treatment. Food Sci. Technol. Res. 2009, 14(6), 553–556. DOI: 10.3136/fstr.14.553.
  • Sunphorka, S.; Chavasiri, W.; Oshima, Y.; Ngamprasertsith, S. Protein and Sugar Extraction from Rice Bran and De-Oiled Rice Bran Using Subcritical Water in a Semi-Continuous Reactor: Optimization by Response Surface Methodology. Int. J. Food Eng. 2012, 8(3). DOI: 10.1515/1556-3758.2262.
  • Keskin, S.; Kayrak-Talay, D.; Akman, U.; Hortaçsu, Ö. A Review of Ionic Liquids Towards Supercritical Fluid Applications. J. Supercrit. Fluids. 2007, 43(1), 150–180. DOI: 10.1016/j.supflu.2007.05.013.
  • Ma, J.; Xu, R. R.; Lu, Y.; Ren, D. F.; Composition, L. J. Antimicrobial and Antioxidant Activity of Supercritical Fluid Extract of Elsholtzia Ciliata. J. Essent. Oil-Bearing Plants. 2018, 21(2), 556–562. DOI: 10.1080/0972060X.2017.1409657.
  • Machmudah, S.; Kondo, M.; Sasaki, M.; Goto, M.; Munemasa, J.; Yamagata, M. Pressure Effect in Supercritical CO2 Extraction of Plant Seeds. J. Supercrit. Fluids. 2008, 44(3), 301–307. DOI: 10.1016/j.supflu.2007.09.024.
  • Barba, F. J.; Zhu, Z.; Koubaa, M.; Sant’Ana, A. S.; Orlien, V. Green Alternative Methods for the Extraction of Antioxidant Bioactive Compounds from Winery Wastes and By-Products: A Review. Trends Food Sci. Technol. 2016, 49, 96–109. DOI: 10.1016/J.TIFS.2016.01.006.
  • Nagarajan, J.; Wah Heng, W.; Galanakis, C. M.; Nagasundara Ramanan, R.; Raghunandan, M. E.; Sun, J.; Ismail, A.; Beng-Ti, T.; Prasad, K. N. Extraction of Phytochemicals Using Hydrotropic Solvents. Sep. Sci. Technol. 2016, 51(7), 1151–1165. DOI: 10.1080/01496395.2016.1143842.
  • Desai, M. A.; Parikh, J. Hydrotropic Extraction of Citral from Cymbopogon Flexuosus (Steud.) Wats. Ind. Eng. Chem. Res. 2012, 51(9), 3750–3757. DOI: 10.1021/ie202025b.
  • Xu, K.; Wang, Y.; Huang, Y.; Li, N.; Wen, Q. A Green Deep Eutectic Solvent-Based Aqueous Two-Phase System for Protein Extracting. Anal. Chim. Acta. 2014, 864, 9–20. DOI: 10.1016/j.aca.2015.01.026.
  • Hashemi, B.; Zohrabi, P.; Dehdashtian, S. Application of Green Solvents as Sorbent Modifiers in Sorptive-Based Extraction Techniques for Extraction of Environmental Pollutants. TrAC Trends Anal. Chem. 2018, 109, 50–61. DOI: 10.1016/J.TRAC.2018.09.026.
  • Bosiljkov, T.; Dujmić, F.; Cvjetko Bubalo, M.; Hribar, J.; Vidrih, R.; Brnčić, M.; Zlatic, E.; Radojčić Redovniković, I.; Jokić, S. Natural Deep Eutectic Solvents and Ultrasound-Assisted Extraction: Green Approaches for Extraction of Wine Lees Anthocyanins. Food Bioprod. Process. 2017, 102, 195–203. DOI: 10.1016/J.FBP.2016.12.005.
  • Pang, J.; Sha, X.; Chao, Y.; Chen, G.; Han, C.; Zhu, W.; Li, H.; Zhang, Q. Green Aqueous Biphasic Systems Containing Deep Eutectic Solvents and Sodium Salts for the Extraction of Protein. RSC Adv. 2017, 7(78), 49361–49367. DOI: 10.1039/c7ra07315a.
  • Duan, L.; Dou, L. L.; Guo, L.; Li, P.; Liu, E. H. Comprehensive Evaluation of Deep Eutectic Solvents in Extraction of Bioactive Natural Products. ACS Sustain. Chem. Eng. 2016, 4(4), 2405–2411. DOI: 10.1021/acssuschemeng.6b00091.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.