1,503
Views
7
CrossRef citations to date
0
Altmetric
Review

Food Oral Processing and Tribology: Instrumental Approaches and Emerging Applications

, ORCID Icon & ORCID Icon

References

  • Bourne, M. Food Texture and Viscosity: Concept and Measurement; Elsevier: London, 2002.
  • Chen, J. Food Oral Processing: Some Important Underpinning Principles of Eating and Sensory Perception. Food Struct. 2014, 1(2), 91–105. DOI: 10.1016/j.foostr.2014.03.001.
  • Chen, J.;. Food Oral Processing: Mechanisms and Implications of Food Oral Destruction. Trends Food Sci. Technol. 2015, 45(2), 222–228. DOI: 10.1016/j.tifs.2015.06.012.
  • BOURNE, M. C. Is Rheology Enough for Food Texture Measurement? J. Texture Stud. 1975, 6(2), 259–262. DOI: 10.1111/j.1745-4603.1975.tb01253.x.
  • Foster, K. D.; Grigor, J. M. V.; Cheong, J. N.; Yoo, M. J. Y.; Bronlund, J. E.; Morgenstern, M. P. The Role of Oral Processing in Dynamic Sensory Perception. J. Food Sci. 2011, 76(2), R49–61. DOI: 10.1111/j.1750-3841.2010.02029.x.
  • Prakash, S.; Tan, D. D. Y.; Chen, J. Applications of Tribology in Studying Food Oral Processing and Texture Perception. Food Res. Int. 2013, 54(2), 1627–1635. DOI: 10.1016/j.foodres.2013.10.010.
  • Lee, M.-R. Objective Measurements of Textural and Rheological Properties of Cheese. J. Milk Sci. Biotechnol. 2018, 36(2), 73–80. DOI: 10.22424/jmsb.2018.36.2.73.
  • Lillford, P. Texture and Breakdown in the Mouth: An Industrial Research Approach. J. Texture Stud. 2018, 49(2), 213–218. DOI: 10.1111/jtxs.2018.49.issue-2.
  • Chen, J. Stokes, J. R. Rheology and Tribology: Two Distinctive Regimes of Food Texture Sensation. Trends Food Sci. Technol. 2012, 25(1), 4–12. DOI: 10.1016/j.tifs.2011.11.006.
  • Hutchings, I.; Shipway, P. Tribology: Friction and Wear of Engineering Materials; Butterworth-Heinemann: Cambridge, 2017.
  • Lind, J. Tribology of Polymer Composites for Elevated Temperature Applications; Uppsala University: Uppsala, 2017.
  • Villanueva, J.; Trino, L.; Thomas, J.; Bijukumar, D.; Royhman, D.; Stack, M. M.; Mathew, M. T. Corrosion, Tribology, and Tribocorrosion Research in Biomedical Implants: Progressive Trend in the Published Literature. J. Bio-and Tribo-Corros. 2017, 3(1), 1.
  • Duprat-de-Paule, S.; Guilbot, J.; Roso, A.; Cambos, S.; Pierre, A. Augmented Bio-based Lipids for Cosmetics. OCL. 2018, 25, D503. DOI: 10.1051/ocl/2018036.
  • Ermakov, S. F.; Myshkin, N. K. Liquid-Crystal Nanomaterials: Tribology and Applications; Springer: Switzerland, 2018; Vol. 267.
  • Shafi, W. K.; Raina, A.; Haq, M. I. U.; Khajuria, A. Applications of Industrial Tribology. International Research Journal of Engineering and Technology. 2018, 5(1), 1285–1289.
  • Chojnicka-Paszun, A.; De Jongh, H. H. J.; De Kruif, C. G. Sensory Perception and Lubrication Properties of Milk: Influence of Fat Content. Int. Dairy J. 2012, 26(1), 15–22. DOI: 10.1016/j.idairyj.2012.04.003.
  • Carvalho-da-Silva, A. M.; Van Damme, I.; Taylor, W.; Hort, J.; Wolf, B. Oral Processing of Two Milk Chocolate Samples. Food Funct. 2013, 4(3), 461–469. DOI: 10.1039/C2FO30173C.
  • Upadhyay, R.; Chen, J. Smoothness as a Tactile Percept: Correlating ‘oral’tribology with Sensory Measurements. Food Hydrocoll. 2019, 87, 38–47. DOI: 10.1016/j.foodhyd.2018.07.036.
  • Dresselhuis, D. M.; De Hoog, E. H. A.; Stuart, M. A. C.; Van Aken, G. A. Application of Oral Tissue in Tribological Measurements in an Emulsion Perception Context. Food Hydrocoll. 2008, 22(2), 323–335. DOI: 10.1016/j.foodhyd.2006.12.008.
  • Stokes, J. R.; Boehm, M. W.; Baier, S. K. Oral Processing, Texture and Mouthfeel: From Rheology to Tribology and Beyond. Curr. Opin. Colloid Interface Sci. 2013, 18(4), 349–359. DOI: 10.1016/j.cocis.2013.04.010.
  • Fiszman, S.; Tarrega, A. The Dynamics of Texture Perception of Hard Solid Food: A Review of the Contribution of the Temporal Dominance of Sensations Technique. J. Texture Stud. 2018, 49(2), 202–212. DOI: 10.1111/jtxs.2018.49.issue-2.
  • Feron, G.; Salles, C. Food Oral Processing in Humans: Links between Physiological Parameters, Release of Flavour Stimuli and Flavour Perception of Food. Int. J. Food Stud. 2018, 7(1), 1–12.
  • Krop, E. M.; Hetherington, M. M.; Nekitsing, C.; Miquel, S.; Postelnicu, L.; Sarkar, A. Influence of Oral Processing on Appetite and Food intake–A Systematic Review and Meta-analysis. Appetite. 2018, 125, 253–269. DOI: 10.1016/j.appet.2018.01.018.
  • Wang, X.; Chen, J. Food Oral Processing: Recent Developments and Challenges. Curr. Opin. Colloid Interface Sci. 2017, 28, 22–30. DOI: 10.1016/j.cocis.2017.01.001.
  • de Lavergne, M. D.; van de Velde, F.; Stieger, M. Bolus Matters: The Influence of Food Oral Breakdown on Dynamic Texture Perception. Food Funct. 2017, 8(2), 464–480. DOI: 10.1039/C6FO01005A.
  • Lillford, P. J.;. The Importance of Food Microstructure in Fracture Physics and Texture Perception. J. Texture Stud. 2011, 42(2), 130–136. DOI: 10.1111/j.1745-4603.2011.00293.x.
  • Carpenter, G.; Blissett, A. Mastication, Salivation and Their Interactions during Eating. Time-Dependent Meas. Percept. Sens. Eval. John Wiley & Sons Ltd: Chichester, 2017; pp 25–47.
  • Foegeding, E. A.; Daubert, C. R.; Drake, M. A.; Essick, G.; Trulsson, M.; Vinyard, C. J.; F. Van de velde. F. A Comprehensive Approach to Understanding Textural Properties of Semi‐and Soft‐solid Foods. J. Texture Stud. 2011, 42(2), 103–129.
  • Goldstein, E. B. Encyclopedia of perception; Sage: Los Angeles, 2009. vol. 1.
  • Spence, C.;. Mouth‐watering: The Influence of Environmental and Cognitive Factors on Salivation and Gustatory/flavor Perception. J. Texture Stud. 2011, 42(2), 157–171. DOI: 10.1111/j.1745-4603.2011.00299.x.
  • Oatley, K.;. Perceptions and Representations: The Theoretical Bases of Brain Research and Psychology; Routledge: London, 2017.
  • Liu, Y.; Gao, J.-H.; Liu, H.-L.; Fox, P. T. The Temporal Response of the Brain after Eating Revealed by Functional MRI. Nature. 2000, 405(6790), 1058. DOI: 10.1038/35016590.
  • Francis, S. T.; Eldeghaidy, S. Imaging Methodologies and Applications for Nutrition Research: What Can Functional MRI Offer? Proc. Nutr. Soc. 2015, 74(2), 89–98. DOI: 10.1017/S0029665114001530.
  • Quintero, A.; Ichesco, E.; Myers, C.; Schutt, R.; Gerstner, G. E. Brain Activity and Human Unilateral Chewing: An fMRI Study. J. Dent. Res. 2013, 92(2), 136–142. DOI: 10.1177/0022034512466265.
  • Onozuka, M.; Fujita, M.; Watanabe, K.; Hirano, Y.; Niwa, M.; Nishiyama, K.; Saito, S. Mapping Brain Region Activity during Chewing: A Functional Magnetic Resonance Imaging Study. J. Dent. Res. 2002, 81(11), 743–746.
  • Takahashi, T.; Miyamoto, T.; Terao, A.; Yokoyama, A. Cerebral Activation Related to the Control of Mastication during Changes in Food Hardness. Neuroscience. 2007, 145(3), 791–794. DOI: 10.1016/j.neuroscience.2006.12.044.
  • Prinz, J. F.; Janssen, A. M.; De Wijk, R. A. In Vitro Simulation of the Oral Processing of Semi-solid Foods. Food Hydrocoll. 2007, 21(3), 397–401. DOI: 10.1016/j.foodhyd.2006.04.009.
  • Funami, T.;. In Vivo and Rheological Approaches for Characterizing Food Oral Processing and Usefulness of Polysaccharides as Texture modifiers-A Review. Food Hydrocoll. 2017, 68, 2–14. DOI: 10.1016/j.foodhyd.2017.01.020.
  • Liu, D.; Deng, Y.; Sha, L.; Hashem, M. A.; Gai, S. Impact of Oral Processing on Texture Attributes and Taste Perception. J. Food Sci. Technol. 2017, 54(8), 2585–2593. DOI: 10.1007/s13197-017-2661-1.
  • Levine, M. J.; Reddy, M. S.; Tabak, L. A.; Loomis, R. E.; Bergey, E. J.; Jones, P. C.; Cohen, R. E.; Stinson, M. W.; Al-Hashimi, I. Structural Aspects of Salivary Glycoproteins. J. Dent. Res. 1987, 66(2), 436–441.
  • Glantz, P.-O.;. Interfacial Phenomena in the Oral Cavity. Colloids Surfaces A Physicochem. Eng. Asp. 1997, 123, 657–670. DOI: 10.1016/S0927-7757(96)03817-4.
  • Schipper, R. G.; Silletti, E.; Vingerhoeds, M. H. Saliva as Research Material: Biochemical, Physicochemical and Practical Aspects. Arch. Oral. Biol. 2007, 52(12), 1114–1135. DOI: 10.1016/j.archoralbio.2007.06.009.
  • Dickinson, E.;. On the Road to Understanding and Control of Creaminess Perception in Food Colloids. Food Hydrocoll. 2018, 77, 372–385. DOI: 10.1016/j.foodhyd.2017.10.014.
  • Mosca, A. C.; Chen, J. Food-saliva Interactions: Mechanisms and Implications. Trends Food Sci. Technol. 2017, 66, 125–134. DOI: 10.1016/j.tifs.2017.06.005.
  • García-Estévez, I.; Ramos-Pineda, A. M.; Escribano-Bailón, M. T. Interactions between Wine Phenolic Compounds and Human Saliva in Astringency Perception. Food Funct. 2018, 9(3), 1294–1309. DOI: 10.1039/C7FO02030A.
  • Guichard, E.; Galindo-Cuspinera, V.; Feron, G. Physiological Mechanisms Explaining Human Differences in Fat Perception and Liking in Food Spreads-a Review. Trends Food Sci. Technol. 2018, 74, 46–55. DOI: 10.1016/j.tifs.2018.01.010.
  • Sarkar, A.; Singh, H. Oral Behaviour of Food Emulsions. In Food Oral Processing: Fundamentals of Eating and Sensory Perception; Chen, J., Engelen, L., Eds.; Wiley-Blackwell: UK, 2012; pp 111–137.
  • Dawood, I. M.; El-Samarrai, S. K. Saliva and Oral Health. Int. J. Adv. Res. Biol. Sci. 2018, 5(7), 1–45. DOI: 10.22192/ijarbs.2018.05.07.001.
  • Silletti, E.; Vingerhoeds, M. H.; Norde, W.; Van Aken, G. A. The Role of Electrostatics in Saliva-induced Emulsion Flocculation. Food Hydrocoll. 2007, 21(4), 596–606. DOI: 10.1016/j.foodhyd.2006.07.004.
  • Davidov-Pardo, G.; Joye, I. J.; McClements, D. J. Food-grade Protein-based Nanoparticles and Microparticles for Bioactive Delivery: Fabrication, Characterization, and Utilization. In Advances in Protein Chemistry and Structural Biology; Elsevier: London, 2015; pp 293–325.
  • Gibbins, H. L.; Carpenter, G. H. Alternative Mechanisms of Astringency–What Is the Role of Saliva? J. Texture Stud. 2013, 44(5), 364–375. DOI: 10.1111/jtxs.2013.44.issue-5.
  • Bridges, J.; Smythe, J.; Reddrick, R. Impact of Salivary Enzyme Activity on the Oral Perception of Starch Containing Foods. J. Texture Stud. 2017, 48(4), 288–293. DOI: 10.1111/jtxs.12252.
  • De Wijk, R. A.; Prinz, J. F.; Janssen, A. M. Explaining Perceived Oral Texture of Starch-based Custard Desserts from Standard and Novel Instrumental Tests. Food Hydrocoll. 2006, 20(1), 24–34. DOI: 10.1016/j.foodhyd.2005.02.008.
  • Mattes, R. D.;. Oral Fatty Acid Signaling and Intestinal Lipid Processing: Support and Supposition. Physiol. Behav. 2011, 105(1), 27–35. DOI: 10.1016/j.physbeh.2011.02.016.
  • Rolls, E. T.;. The Neural Representation of Oral Texture Including Fat Texture. J. Texture Stud. 2011, 42(2), 137–156. DOI: 10.1111/j.1745-4603.2011.00296.x.
  • Peyron, M.-A.; Santé-Lhoutellier, V.; François, O.; Hennequin, M. Oral Declines and Mastication Deficiencies Cause Alteration of Food Bolus Properties. Food Funct. 2018, 9(2), 1112–1122. DOI: 10.1039/C7FO01628J.
  • Peyron M-A, W. A.;. An Update about Artificial Mastication. Curr. Opin. Food Sci. 2016, 9, 21–28. DOI: 10.1016/j.cofs.2016.03.006.
  • Kato, I.; Takanisi, A.; Asari, K.; Tani, T. Development of Artificial Mastication System. Construction of One Degree of Freedom Antagonistic Muscle Model WJ-O. Anat. Anz. 1988, 165(2–3), 197–203.
  • Winquist, F.; Wide, P.; Eklöv, T.; Hjort, C.; Lundström, I. Crispbread Quality Evaluation Based on Fusion of Information from the Sensor Analogies to the Human Olfactory, Auditory and Tactile Senses. J. Food Process Eng. 1999, 22(5), 337–358. DOI: 10.1111/j.1745-4530.1999.tb00490.x.
  • Meullenet, J.-F.; Gandhapuneni, R. K. Development of the BITE Master II and Its Application to the Study of Cheese Hardness. Physiol. Behav. 2006, 89(1), 39–43. DOI: 10.1016/j.physbeh.2006.05.012.
  • Salles, C.; Tarrega, A.; Mielle, P.; Maratray, J.; Gorria, P.; Liaboeuf, J.; Liodenot J. J. Development of a Chewing Simulator for Food Breakdown and the Analysis of in Vitro Flavor Compound Release in a Mouth Environment. J. Food Eng. 2007, 82(2), 189–198.
  • Pap, J. S.; Xu, W. L.; Bronlund, J. A Robotic Human Masticatory System: Kinematics Simulations. Int. J. Intell. Syst. Technol. Appl. 2005, 1(1–2), 3–17.
  • Woda, A.; Mishellany-Dutour, A.; Batier, L.; François, O.; Meunier, J. P.; Reynaud, B.; Alric, M.; Peyron, M. A. Development and Validation of a Mastication Simulator. J. Biomech. 2010, 43(9), 1667–1673.
  • Mills, T.; Spyropoulos, F.; Norton, I. T.; Bakalis, S. Development of an In-vitro Mouth Model to Quantify Salt Release from Gels. Food Hydrocoll. 2011, 25(1), 107–113. DOI: 10.1016/j.foodhyd.2010.06.001.
  • Qazi, W. M.; Stading, M. In Vitro Models for Simulating Swallowing. In Dysphagia; Springer: Switzerland, 2017; pp 549–562.
  • Mielle, P.; Tarrega, A.; Sémon, E.; Maratray, J.; Gorria, P.; Liodenot, J. J. Liaboeuf, J.; Andrejewskib, J. L.; Sallesa, C. From Human to Artificial Mouth, from Basics to Results. Sensors. Actuators. B. Chem. 2010, 146(2), 440–445.
  • Mishellany-Dutour, A.; Peyron, M.-A.; Croze, J.; François, O.; Hartmann, C.; Alric, M.; Woda, A. Comparison of Food Boluses Prepared in Vivo and by the AM2 Mastication Simulator. Food. Qual. Prefer. 2011, 22(4), 326–331.
  • Xu, W. L.; Lewis, D.; Bronlund, J. E.; Morgenstern, M. P. Mechanism, Design and Motion Control of a Linkage Chewing Device for Food Evaluation. Mech. Mach. Theory. 2008, 43(3), 376–389. DOI: 10.1016/j.mechmachtheory.2007.03.004.
  • Ishihara, S.; Nakao, S.; Nakauma, M.; Funami, T.; Hori, K.; Ono, T.; Kohyama, K.;  Nishinari, K. Compression Test of Food Gels on Artificial Tongue and Its Comparison with Human Test. J. Texture Stud. 2013, 44(2), 104–114.
  • Redfearn, A.; Hanson, B. A Mechanical Simulator of Tongue–Palate Compression to Investigate the Oral Flow of non-Newtonian Fluids. IEEE/ASME Trans. Mechatron. 2018, 23(2), 958–965. DOI: 10.1109/TMECH.2018.2808704.
  • Harrison, S. M.; Eyres, G.; Cleary, P. W.; Sinnott, M. D.; Delahunty, C.; Lundin, L. Computational Modeling of Food Oral Breakdown Using Smoothed Particle Hydrodynamics. J. Texture Stud. 2014, 45(2), 97–109. DOI: 10.1111/jtxs.2014.45.issue-2.
  • Trelea, I. C.; Atlan, S.; Déléris, I.; Saint-Eve, A.; Marin, M.; Souchon, I. Mechanistic Mathematical Model for in Vivo Aroma Release during Eating of Semiliquid Foods. Chem. Senses. 2007, 33(2), 181–192. DOI: 10.1093/chemse/bjm077.
  • De Loubens, C.; Magnin, A.; Doyennette, M.; Tréléa, I. C.; Souchon, I. A Biomechanical Model of Swallowing for Understanding the Influence of Saliva and Food Bolus Viscosity on Flavor Release. J. Theor. Biol. 2011, 280(1), 180–188. DOI: 10.1016/j.jtbi.2011.04.016.
  • Deleris, I.; Doyennette, M.; De Loubens, C.; Panouill_e, M. S.; Eve, A.; Trelea, C. Mathematical Modeling of Inmouth Flavour Release: Toward Tool to Design Healthy and Palatable Foods. In: In Proceedings of 2nd International Conference on food oral processing, (Beaune, France). 2012. p. 32.
  • Kravchuk, O.; Torley, P.; Stokes, J. R. Food Texture is Only Partly Rheology. In Food Material Science and Engineering; Bhandari, B., Roos, Y. H., Eds.; United Kingdom: Blackwell Publishing, 2012; pp 349–372.
  • Stieger, M.; van de Velde, F. Microstructure, Texture and Oral Processing: New Ways to Reduce Sugar and Salt in Foods. Curr. Opin. Colloid Interface Sci. 2013, 18(4), 334–348. DOI: 10.1016/j.cocis.2013.04.007.
  • van Vliet, T.; van Aken, G. A.; de Jongh, H. H. J.; Hamer, R. J. Colloidal Aspects of Texture Perception. Adv. Colloid Interface Sci. 2009, 150(1), 27–40. DOI: 10.1016/j.cis.2009.04.002.
  • Szczesniak, A. S.;. Texture Is a Sensory Property. Food. Qual. Prefer. 2002, 13(4), 215–225. DOI: 10.1016/S0950-3293(01)00039-8.
  • Nguyen, P. T. M.; Bhandari, B.; Prakash, S. Tribological Method to Measure Lubricating Properties of Dairy Products. J. Food Eng. 2016, 168, 27–34. DOI: 10.1016/j.jfoodeng.2015.07.011.
  • Delwiche, J.;. The Impact of Perceptual Interactions on Perceived Flavor. Food. Qual. Prefer. 2004, 15(2), 137–146. DOI: 10.1016/S0950-3293(03)00041-7.
  • Cliff, M.; Heymann, H. Development and Use of Time-intensity Methodology for Sensory Evaluation: A Review. Food Res. Int. 1993, 26(5), 375–385. DOI: 10.1016/0963-9969(93)90081-S.
  • Pineau, N.; Schlich, P.; Cordelle, S.; Mathonnière, C.; Issanchou, S.; Imbert, A.; Rogeaux, M.; Etiévantc, P.; Köster, E. Temporal Dominance of Sensations: Construction of the TDS Curves and Comparison with Time–Intensity. Food. Qual. Prefer. 2009, 20(6), 450–455.
  • Labbe, D.; Schlich, P.; Pineau, N.; Gilbert, F.; Martin, N. Temporal Dominance of Sensations and Sensory Profiling: A Comparative Study. Food. Qual. Prefer. 2009, 20(3), 216–221. DOI: 10.1016/j.foodqual.2008.10.001.
  • Shupe, G. E.; Wilson, A.; Luckett, C. R. The Effect of Oral Tactile Sensitivity on Texture Perception and Mastication Behavior in Humans. bioRxiv. 2018, 466342.
  • Fischer, P.; Windhab, E. J. Rheology of Food Materials. Curr. Opin. Colloid Interface Sci. 2011, 16(1), 36–40. DOI: 10.1016/j.cocis.2010.07.003.
  • Friedman, H. H.; Whitney, J. E.; Szczesniak, A. S. The Texturometer—A New Instrument for Objective Texture Measurement. J. Food Sci. 1963, 28(4), 390–396. DOI: 10.1111/j.1365-2621.1963.tb00216.x.
  • Brossard, N.; Cai, H.; Osorio, F.; Bordeu, E.; Chen, J. “Oral” Tribological Study on the Astringency Sensation of Red Wines. J. Texture Stud. 2016, 47(5), 392–402. DOI: 10.1111/jtxs.12184.
  • Foegeding, E. A.; Drake, M. A. Invited Review: Sensory and Mechanical Properties of Cheese Texture. J. Dairy Sci. 2007, 90(4), 1611–1624. DOI: 10.3168/jds.2006-703.
  • Hort, J.; Le Grys, G. Developments in the Textural and Rheological Properties of UK Cheddar Cheese during Ripening. Int. Dairy J. 2001, 11(4–7), 475–481. DOI: 10.1016/S0958-6946(01)00074-7.
  • Katz, E. E.; Labuza, T. P. Effect of Water Activity on the Sensory Crispness and Mechanical Deformation of Snack Food Products. J. Food Sci. 1981, 46(2), 403–409. DOI: 10.1111/j.1365-2621.1981.tb04871.x.
  • VICKERS, Z.; BOURNE, M. C. Crispness in Foods‐a Review. J. Food Sci. 1976, 41(5), 1153–1157. DOI: 10.1111/j.1365-2621.1976.tb14406.x.
  • Saeleaw, M.; Schleining, G. A Review: Crispness in Dry Foods and Quality Measurements Based on Acoustic–Mechanical Destructive Techniques. J. Food Eng. 2011, 105(3), 387–399. DOI: 10.1016/j.jfoodeng.2011.03.012.
  • Shama, F.; Sherman, P. Identification of Stimuli Controlling the Sensory Evaluation of Viscosity II. Oral Methods. J. Texture Stud. 1973, 4(1), 111–118. DOI: 10.1111/j.1745-4603.1973.tb00657.x.
  • Terpstra, M. E. J.; Janssen, A. M.; Prinz, J. F.; De Wijk, R. A.; Weenen, H.; Van Der Linden, E. Modeling of Thickness for Semisolid Foods. J. Texture Stud. 2005, 36(2), 213–233. DOI: 10.1111/j.1745-4603.2005.00012.x.
  • de Wijk, R. A.; Prinz, J. F. The Role of Friction in Perceived Oral Texture. Food. Qual. Prefer. 2005, 16(2), 121–129. DOI: 10.1016/j.foodqual.2004.03.002.
  • Krop, E. M.; Hetherington, M. M.; Holmes, M.; Miquel, S.; Sarkar, A. On Relating Rheology and Oral Tribology to Sensory Properties in Hydrogels. Food Hydrocoll. 2019, 88, 101–113. DOI: 10.1016/j.foodhyd.2018.09.040.
  • Shewan, H. M.; Pradal, C.; Stokes, J. R. Tribology and Its Growing Use Towards the Study of Food Oral Processing and Sensory Perception. J. Texture Stud. 2019. DOI: 10.1111/jtxs.12452.
  • Stachowiak, G.; Batchelor, A. W. Engineering Tribology; USA: Butterworth-Heinemann, 2013.
  • Carpenter, G. Role of Saliva in the Oral Processing of Food. In Food Oral Process; Chen, J.; Engelen, L., Eds.; Chishester: Wiley-Blackwell. 2012; pp 45–60.
  • Pramanik, R.; Osailan, S. M.; Challacombe, S. J.; Urquhart, D.; Proctor, G. B. Protein and Mucin Retention on Oral Mucosal Surfaces in Dry Mouth Patients. Eur. J. Oral Sci. 2010, 118(3), 245–253. DOI: 10.1111/j.1600-0722.2010.00728.x.
  • Humphrey, S. P.; Williamson, R. T. A Review of Saliva: Normal Composition, Flow, and Function. J. Prosthet. Dent. 2001, 85(2), 162–169. DOI: 10.1067/mpr.2001.113778.
  • Ranc, H.; Elkhyat, A.; Servais, C.; Mac-Mary, S.; Launay, B.; Humbert, P. Friction Coefficient and Wettability of Oral Mucosal Tissue: Changes Induced by a Salivary Layer. Colloids Surfaces A Physicochem. Eng. Asp. 2006, 276(1–3), 155–161. DOI: 10.1016/j.colsurfa.2005.10.033.
  • Ployon, S.; Belloir, C.; Bonnotte, A.; Lherminier, J.; Canon, F.; Morzel, M. The Membrane-associated MUC1 Improves Adhesion of Salivary MUC5B on Buccal Cells. Application to Development of an in Vitro Cellular Model of Oral Epithelium. Arch. Oral. Biol. 2016, 61, 149–155. DOI: 10.1016/j.archoralbio.2015.11.002.
  • Bongaerts, J. H. H.; Rossetti, D.; Stokes, J. R. The Lubricating Properties of Human Whole Saliva. Tribol. Lett. 2007, 27(3), 277–287. DOI: 10.1007/s11249-007-9232-y.
  • Selway, N.; Stokes, J. R. Insights into the Dynamics of Oral Lubrication and Mouthfeel Using Soft Tribology: Differentiating Semi-fluid Foods with Similar Rheology. Food Res. Int. 2013, 54(1), 423–431. DOI: 10.1016/j.foodres.2013.07.044.
  • Miller, J. L.; Watkin, K. L. The Influence of Bolus Volume and Viscosity on Anterior Lingual Force during the Oral Stage of Swallowing. Dysphagia. 1996, 11(2), 117–124. DOI: 10.1007/BF00417901.
  • Hiiemae, K. M.; Palmer, J. B. Tongue Movements in Feeding and Speech. Crit. Rev. Oral. Biol. Med. 2003, 14(6), 413–429. DOI: 10.1177/154411130301400604.
  • Pradal, C.; Stokes, J. R. Oral Tribology: Bridging the Gap between Physical Measurements and Sensory Experience. Curr. Opin. Food Sci. 2016, 9, 34–41. DOI: 10.1016/j.cofs.2016.04.008.
  • Prakash, S. From Rheology to Tribology: Applications of Tribology in Studying Food Oral Processing and Texture Perception. In Advances in Food Rheology and Its Applications; Ahmed, J., Ed.; Elsevier: United Kingdom, 2016; pp 65–86.
  • Cassin, G. Heinrich, E.; Spikes, H. A. The Influence of Surface Roughness on the Lubrication Properties of Adsorbing and Non-adsorbing Biopolymers. Tribol. Lett. 2001, 11(2), 95–102. DOI: 10.1023/A:1016702906095.
  • Gabriele, A.; Spyropoulos, F.; Norton, I. T. A Conceptual Model for Fluid Gel Lubrication. Soft Matter. 2010, 6(17), 4205–4213. DOI: 10.1039/c001907k.
  • Butt, H.-J.; Graf, K.; Kappl, M. Physics and Chemistry of Interfaces;  Weinheim: John Wiley & Sons, 2006.
  • Stokes, J. R. 11 ‘Oral’Rheology. In Food Oral Process Fundam. Eat Sens. Percept; Chen, J., Engelen, L., Eds.; Wiley-Blackwell: Chishester, 2012; pp 225–263.
  • Nguyen, P. T. M.; Kravchuk, O.; Bhandari, B.; Prakash, S. Effect of Different Hydrocolloids on Texture, Rheology, Tribology and Sensory Perception of Texture and Mouthfeel of Low-fat Pot-set Yoghurt. Food Hydrocoll. 2017, 72, 90–104. DOI: 10.1016/j.foodhyd.2017.05.035.
  • Dresselhuis, D. M.; Klok, H. J.; Stuart, M. A. C.; de Vries, R. J.; van Aken, G. A.; de Hoog, E. H. A. Tribology of O/w Emulsions under Mouth-like Conditions: Determinants of Friction. Food Biophys. 2007, 2(4), 158–171. DOI: 10.1007/s11483-007-9040-9.
  • Sonne, A.; Busch-Stockfisch, M.; Weiss, J.; Hinrichs, J. Improved Mapping of In-mouth Creaminess of Semi-solid Dairy Products by Combining Rheology, Particle Size, and Tribology Data. LWT-Food Sci. Technol. 2014, 59(1), 342–347. DOI: 10.1016/j.lwt.2014.05.047.
  • Chojnicka-Paszun, A.; de Jongh, H. H. J. Friction Properties of Oral Surface Analogs and Their Interaction with polysaccharide/MCC Particle Dispersions. Food Res. Int. 2014, 62, 1020–1028. DOI: 10.1016/j.foodres.2014.05.028.
  • Joyner, H. S.; Pernell, C. W.; Daubert, C. R. Impact of Formulation and Saliva on Acid Milk Gel Friction Behavior. J. Food Sci. 2014, 79(5), E867–80. DOI: 10.1111/1750-3841.12439.
  • Baier, S.; Elmore, D.; Guthrie, B.; Lindgren, T.; Smith, S.; Steinbach, A.; Debon, S.; Vanhemelrijck, J.; Heyer, P.; Läuger, J. A New Tribology Device for Assessing Mouthfeel Attributes of Foods. In: 5th International Symposium on Food Structure and Rheology. ETH Zurich Switzerland, 2009.
  • Goh, S. M.; Versluis, P.; Appelqvist, I. A. M.; Bialek, L. Tribological Measurements of Foods Using a Rheometer. Food Res. Int. 2010, 43(1), 183–186. DOI: 10.1016/j.foodres.2009.09.024.
  • Chen, J.; Liu, Z.; Prakash, S. Lubrication Studies of Fluid Food Using a Simple Experimental Set Up. Food Hydrocoll. 2014, 42, 100–105. DOI: 10.1016/j.foodhyd.2014.01.003.
  • Mermelstein, N. H.;. Fact or Friction: Characterizing Food by Tribology. Food Technol. 2016, 70(12), 68–71.
  • Chen, J.; Eaton, L. Multimodal Mechanisms of Food Creaminess Sensation. Food Funct. 2012, 3(12), 1265–1270. DOI: 10.1039/c2fo30116d.
  • Jervis, S. M.; Gerard, P.; Drake, S.; Lopetcharat, K.; Drake, M. A. The Perception of Creaminess in Sour Cream. J. Sens. Stud. 2014, 29(4), 248–257. DOI: 10.1111/joss.2014.29.issue-4.
  • Olivares, M. L.; Shahrivar, K.; de Vicente, J. Soft Lubrication Characteristics of Microparticulated Whey Proteins Used as Fat Replacers in Dairy Systems. J. Food Eng. 2019, 245, 157–165. DOI: 10.1016/j.jfoodeng.2018.10.015.
  • Ciron, C. I. E.; Gee, V. L.; Kelly, A. L.; Auty, M. A. E. Effect of Microfluidization of Heat-treated Milk on Rheology and Sensory Properties of Reduced Fat Yoghurt. Food Hydrocoll. 2011, 25(6), 1470–1476. DOI: 10.1016/j.foodhyd.2011.02.012.
  • Rovers, T. A. M.; Sala, G.; der Linden, E.; Meinders, M. B. J. Potential of Microbubbles as Fat Replacer: Effect on Rheological, Tribological and Sensorial Properties of Model Food Systems. J. Texture Stud. 2016, 47(3), 220–230. DOI: 10.1111/jtxs.12175.
  • Zhu, Y.; Bhandari, B.; Pang, Z.; Liu, X.; Prakash, S. Protein Concentration and Hydrocolloid Effect on the Rheological and Tribological Behaviour of Resulting Protein Solution. LWT. 2019, 100, 150–157. DOI: 10.1016/j.lwt.2018.10.042.
  • Ningtyas, D. W.; Bhandari, B.; Bansal, N.; Prakash, S. Sequential Aspects of Cream Cheese Texture Perception Using Temporal Dominance of Sensations (TDS) Tool and Its Relation with Flow and Lubrication Behaviour. Food Res. Int. 2019, 120, 586–594. DOI: 10.1016/j.foodres.2018.11.009.
  • Liu, K.; Stieger, M.; van der Linden, E. Van De Velde F. Fat Droplet Characteristics Affect Rheological, Tribological and Sensory Properties of Food Gels. Food Hydrocoll. 2015, 44, 244–259. DOI: 10.1016/j.foodhyd.2014.09.034.
  • Upadhyay, R.; Brossard, N.; Chen, J. Mechanisms Underlying Astringency: Introduction to an Oral Tribology Approach. J. Phys. D Appl. Phys. 2016, 49(10), 104003. DOI: 10.1088/0022-3727/49/10/104003.
  • Green, B. G.;. Oral Astringency: A Tactile Component of Flavor. Acta Psychol (Amst). 1993, 84(1), 119–125. DOI: 10.1016/0001-6918(93)90078-6.
  • Jöbstl, E.; O’Connell, J.; Fairclough, J. P. A.; Williamson, M. P. Molecular Model for Astringency Produced by Polyphenol/protein Interactions. Biomacromolecules. 2004, 5(3), 942–949. DOI: 10.1021/bm0345110.
  • Rossetti, D.; Bongaerts, J. H. H.; Wantling, E.; Stokes, J. R.; Williamson, A.-M. Astringency of Tea Catechins: More than an Oral Lubrication Tactile Percept. Food Hydrocoll. 2009, 23(7), 1984–1992. DOI: 10.1016/j.foodhyd.2009.03.001.
  • Vardhanabhuti, B.; Cox, P. W.; Norton, I. T.; Foegeding, E. A. Lubricating Properties of Human Whole Saliva as Affected by $β$-lactoglobulin. Food Hydrocoll. 2011, 25(6), 1499–1506. DOI: 10.1016/j.foodhyd.2011.02.021.
  • Li, Y.; Joyner, H. S.; Lee, A. P.; Drake, M. A. Impact of Pasteurization Method and Fat on Milk: Relationships among Rheological, Tribological, and Astringency Behaviors. Int. Dairy J. 2018, 78, 28–35. DOI: 10.1016/j.idairyj.2017.10.006.
  • Liu, L.; Meng, Y.; Dai, X.; Chen, K.; Zhu, Y. 3D Printing Complex Egg White Protein Objects: Properties and Optimization. Food Bioprocess Technol. 2019, 12(2), 267–279. DOI: 10.1007/s11947-018-2209-z.
  • Mantihal, S.; Prakash, S.; Godoi, F. C.; Bhandari, B. Effect of Additives on Thermal, Rheological and Tribological Properties of 3D Printed Dark Chocolate. Food Res. Int. 2019, 119, 161–169. DOI: 10.1016/j.foodres.2019.01.056.
  • Mauer, L. J.; Chernyshova, A. A.; Hiatt, A.; Deering, A.; Davis, R. Melamine Detection in Infant Formula Powder Using Near-and Mid-infrared Spectroscopy. J. Agric. Food Chem. 2009, 57(10), 3974–3980. DOI: 10.1021/jf900587m.
  • Kobayashi, T.; Okada, A.; Fujii, Y.; Niimi, K.; Hamamoto, S.; Yasui, T.; Tozawa, K.; Kohri, K. The Mechanism of Renal Stone Formation and Renal Failure Induced by Administration of Melamine and Cyanuric Acid. Urol. Res. 2010, 38(2), 117–125.
  • Liu, Y.; Hu, J.; Zhong, M.; Xu, W. A Novel, Simple and Rapid Method for the Detection of Melamine from Milk Based on Tribology Measurements. Tribol. Int. 2018, 119, 66–72. DOI: 10.1016/j.triboint.2017.10.031.
  • Krzeminski, A.; Prell, K. A.; Busch-Stockfisch, M.; Weiss, J.; Hinrichs, J. Whey Protein–Pectin Complexes as New Texturising Elements in Fat-reduced Yoghurt Systems. Int. Dairy J. 2014, 36(2), 118–127. DOI: 10.1016/j.idairyj.2014.01.018.
  • Le Calvé, B.; Saint‐Léger, C.; Babas, R.; Gelin, J.; Parker, A.; Erni, P.; Cayeux, I. Fat Perception: How Sensitive are We?. J. Texture Stud. 2015, 46(3), 200–211.
  • Liu, Y.; Qu, F.; Luo, L.; Xu, W.; Zhong, M. Detection of Rice Syrup from Acacia Honey Based on Lubrication Properties Measured by Tribology Technique. Tribol. Int. 2019, 129, 239–245. DOI: 10.1016/j.triboint.2018.08.027.
  • Li, S.; Zhang, X.; Shan, Y.; Su, D.; Ma, Q.; Wen, R.;  Li, J. Qualitative and Quantitative Detection of Honey Adulterated with High-fructose Corn Syrup and Maltose Syrup by Using Near-infrared Spectroscopy. Food Chem. 2017, 218, 231–236. DOI: 10.1016/j.foodchem.2016.08.105.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.