832
Views
14
CrossRef citations to date
0
Altmetric
Review

Selective Methods to Investigate Authenticity and Geographical Origin of Mediterranean Food Products

, , , ORCID Icon, ORCID Icon, , ORCID Icon, , , , , , ORCID Icon, , ORCID Icon, & show all

References

  • Regulation (EC) No 178/2002 of the European Parliament and of the Council of 28 January 2002. Laying down the General Principles and Requirements of Food Law, Establishing the European Food SafetyAuthorityand Laying down Procedures in Matters of Food Safety.
  • Luykx, D. M. A. M. van Ruth, S. M. An Overview of Analytical Methods for Determining the Geographical Origin of Food Products. Food Chem. 2008, 107, 897–911. DOI: 10.1016/j.foodchem.2007.09.038.
  • Bryła, P. The Impact of Obtaining a European Quality Sign on Origin Food Producers. Qual. Assur. Saf. Crops Food 2018, 10, 155–164. DOI: 10.3920/QAS2017.1189.
  • Council Regulation (EC) No 509/2006 of 20 March 2006. On Agricultural Products and Foodstuffs as Traditional Specialities Guaranteed.
  • Regulation (EU) No 1151/2012 of the European Parliament and of the Council of 21 November 2012. On Quality Schemes for Agricultural Products and Foodstuffs; European Union.
  • CIHEAM/FAO; Mediterranean Food Consumption Patterns: Diet, Environment, Society, Economy and Health. A White Paper Priority 5 of Feeding Knowledge Programme, expo milan 2015. ciheam-iamB, Bari/Fao: Rome, 2015.
  • Danezis, G. P.; Tsagkaris, A. S.; Camin, F.; Brusic, V.; Georgiou, C. A. Food Authentication: Techniques, Trends & Emerging Approaches. Trends Anal. Chem. 2016, 85, 123–132. DOI: 10.1016/j.trac.2016.02.026.
  • Bryła, P. The Role of Appeals to Tradition in Origin Food Marketing. A Survey among Polish Consumers. Appetite 2015, 91, 302–310. DOI: 10.1016/j.appet.2015.04.056.
  • Charrouf, Z.; Guillaume, D. The Argan Oil Project: Going from Utopia to Reality in 20 Years. Oilseeds Fats, Crop. Lipids 2018, 25, D209. DOI: 10.1051/ocl/2018006.
  • Merkle, S.; Kleeberg, K.; Fritsche, J. Recent Developments and Applications of Solid Phase Microextraction (SPME) in Food and Environmental Analysis—A Review. Chromatography 2015, 2, 293–381. DOI: 10.3390/chromatography2030293.
  • Gliszczyńska-Świgło, A.; Chmielewski, J. Electronic Nose as A Tool for Monitoring the Authenticity of Food. A Review. Food Anal. Methods 2017, 10, 1800–1816. doi: 10.1007/s12161-016-0739-4.
  • Haddi, Z.; Amari, A.; Ali, A. O.; Bari, N. E.; Barhoumi, H.; Maaref, A.; Jaffrezic-Renault, N.; Bouchikhi, B. Discrimination and Identification of Geographical Origin Virgin Olive Oil by an E-Nose Based on MOS Sensors and Pattern Recognition Techniques. Procedia Eng. 2011, 25, 1137–1140. DOI: 10.1016/j.proeng.2011.12.280.
  • Kelly, S.; Heaton, K.; Hoogewerff, J. Tracing the Geographical Origin of Food: The Application of Multi-Element and Multi-Isotope Analysis. Trends Food Sci. Technol. 2005, 16, 555–567. DOI: 10.1016/j.tifs.2005.08.008.
  • Camin, F.; Boner, M.; Bontempo, L.; Fauhl-Hassek, C.; Kelly, S. D.; Riedl, J.; Rossmann, A. Stable Isotope Techniques for Verifying the Declared Geographical Origin of Food in Legal Cases. Trends Food Sci. Technol. 2017, 61, 176–187. DOI: 10.1016/j.tifs.2016.12.007.
  • Lopez-Bote, C. J. Sustained Utilization of the Iberian Pig Breed. Meat Sci. 1998, 49, S17–S27. DOI: 10.1016/S0309-1740(98)00072-2.
  • Commission Regulation (EC) No 2400/96 of 17. December. OJ L 327, December 18, 1996, p. 11
  • Commission Regulation (EC) No 944/2008 of 25 September.OJ L 258/54, September 26, 2008, p.12.
  • Commission Regulation (EC) No 617/2003 of 4 April. OJ L 89/3, April 5, 2003.
  • Commission Regulation (EC) No 943/2008, of 25 September. OJ L 258/52, September 26 2008.
  • Belo, C. C.; Coelho, I.; Rolo, J.; Reis, P. Sistemas Agroflorestais Em Portugal Continental: Parte II: Montados, Condições De Uso Do Solo E Evolução. Rev. Ciências Agrárias 2014, 37, 122–130.
  • Real Decreto No 4/2014 of 10 January 2014. Por El Que Se Aprueba La Norma de Calidad Para La Carne, El Jamón, La Paleta y La Caña de Lomo Ibérico; Kingdom of Spain.
  • Toro, M.; Silió, L.; Rodrigañez, J.; Rodriguez, C.; Fernández, J. Optimal Use of Genetic Markers in Conservation Programmes. Genet. Sel. Evol. 1999, 31, 255–261. DOI: 10.1186/1297-9686-31-3-255.
  • Toro, M.; Barragán, C.; Óvilo, C.; Rodrigañez, J.; Rodriguez, C.; Silió, L. Estimation of Coancestry in Iberian Pigs Using Molecular Markers. Conserv. Genet. 2002, 3, 309–320. DOI: 10.1023/A:1019921131171.
  • Ramírez, R.; Cava, R. Carcass Composition and Meat Quality of Three Different Iberian × Duroc Genotype Pigs. Meat Sci. 2007, 75, 388–396. DOI: 10.1016/j.meatsci.2006.08.003.
  • Del Moral, F. G.; Guillén, A.; Del Moral, L. G.; O’Valle, F.; Martínez, L.; Del Moral, R. G. Duroc and Iberian Pork Neural Network Classification by Visible and near Infrared Reflectance Spectroscopy. J. Food Eng. 2009, 90, 540–547. DOI: 10.1016/j.jfoodeng.2008.07.027.
  • Guillén, A.; Del Moral, F. G.; Herrera, L. J.; Rubio, G.; Rojas, I.; Valenzuela, O.; Pomares, H. Using Near-Infrared Spectroscopy in the Classification of White and Iberian Pork with Neural Networks. Neural Comput. Appl. 2010, 19, 465–470. DOI: 10.1007/s00521-009-0327-2.
  • Zamora-Rojas, E.; Pérez-Marín, D.; De Pedro-Sanz, E.; Guerrero-Ginel, J. E.; Garrido-Varo, A. In-Situ Iberian Pig Carcass Classification Using a Micro-Electro-Mechanical System (Mems)-based near Infrared (NIR) Spectrometer. Meat Sci. 2012, 90, 636–642. DOI: 10.1016/j.meatsci.2011.10.006.
  • Recio, C. Método de Identificación de Productos Alimenticios. Patente Española No P20070210, October 16, 2007.
  • García Casco, J. M.; Muñoz, M.; González, E. Predictive Ability of the Feeding System in Iberian Pig by Means of Several Analytical Methods. Grasas y Aceites 2013, 64, 191–200. DOI: 10.3989/gya.130812.
  • López-Bascón, M. A.; Priego-Capote, F.; Calderón-Santiago, M.; Sánchez De Medina, V.; Moreno-Rojas, J. M.; García-Casco, J. M.; Luque De Castro, M. D. Determination of Fatty Acids and Stable Carbon Isotopic Ratio in Subcutaneous Fat to Identify the Feeding Regime of Iberian Pigs. J. Agric. Food Chem. 2015, 63, 692–699. DOI: 10.1021/jf505189x.
  • González-Martín, I.; González Pérez, C.; Hernández Méndez, J.; Sánchez González, C. Differentiation of Dietary Regimene of Iberian Swine by Means of Isotopic Analysis of Carbon and Sulphur in Hepatic Tissue. Meat Sci. 2001, 58, 25–30. DOI: 10.1016/S0309-1740(00)00126-1.
  • Recio, C.; Martín, Q.; Raposo, C. GC-C-IRMS Analysis of FAMEs as a Tool to Ascertain the Diet of Iberian Pigs Used for the Production of Pork Products with High Added Value. Grasas y Aceites 2013, 64, 181–190. DOI: 10.3989/gya.130712.
  • Delgado-Chavero, C. L.; Zapata-Márquez, E.; García-Casco, J. M.; Paredes-Torronteras, A. Statistical Model for Classifying the Feeding Systems of Iberian Pigs through Gas Chromatography (GC-FID) and Isotope Ratio Mass Spectrometry (GC-C-IRMS). Grasas y Aceites 2013, 64, 157–165. DOI: 10.3989/gya.130412.
  • Galián, M.; Peinado, B.; Martínez, C.; Periago, M. J.; Ros, G.; Poto, A. Comparative Study of the Characteristics of the Carcass and the Meat of the Chato Murciano Pig and Its Cross with Iberian Pig, Reared Indoors. Anim. Sci. J. 2007, 78, 659–667. DOI: 10.1111/j.1740-0929.2007.00487.x.
  • Castellano, R.; Aguinaga, M. A.; Nieto, R.; Aguilera, J. F.; Haro, A.; Seiquer, I. Utilization of Milk Minerals by Iberian Suckling Piglets. Spanish. J. Agric. Res. 2013, 11, 417–426. DOI: 10.5424/sjar/2013112-3415.
  • González-Martín, I.; González-Pérez, C.; Hernández-Méndez, J.; Alvarez-García, N. Mineral Analysis (Fe, Zn, Ca, Na, K) of Fresh Iberian Pork Loin by near Infrared Reflectance Spectrometry - Determination of Fe, Na and K with a Remote Fibre-Optic Reflectance Probe. Anal. Chim. Acta 2002, 468, 293–301. DOI: 10.1016/S0003-2670(02)00657-8.
  • Alves, E.; Óvilo, C.; Rodríguez, M. C.; Silió, L. Mitochondrial DNA Sequence Variation and Phylogenetic Relationships among Iberian Pigs and Other Domestic and Wild Pig Populations. Anim. Genet. 2003, 34, 319–324. DOI: 10.1046/j.1365-2052.2003.01010.x.
  • Clop, A.; Amills, M.; Noguera, J. L.; Fernández, A.; Capote, J.; Ramón, M. M.; Kelly, L.; Kijas, J. M.; Andersson, L.; Sànchez, A. Estimating the Frequency of Asian Cytochrome B Haplotypes in Standard European and Local Spanish Pig Breeds. Genet. Sel. Evol. 2004, 36, 97–104. DOI: 10.1186/1297-9686-36-1-97.
  • Van Asch, B.; Pereira, F.; Santos, L. S.; Carneiro, J.; Santos, N.; Amorim, A. Mitochondrial Lineages Reveal Intense Gene Flow between Iberian Wild Boars and South Iberian Pig Breeds. Anim. Genet. 2012, 43, 35–41. DOI: 10.1111/j.1365-2052.2011.02222.x.
  • Óvilo, C.; Cervera, M. T.; Castellanos, C.; Martínez-Zapater, J. M. Characterisation of Iberian Pig Genotypes Using AFLP Markers. Anim. Genet. 2000, 31, 117–122. DOI: 10.1046/j.1365-2052.2000.00603.x.
  • Alves, E.; Fernández, A. I.; Fernández-Rodríguez, A.; Pérez-Montarelo, D.; Benitez, R.; Ovilo, C.; Rodríguez, C.; Silió, L. Identification of Mitochondrial Markers for Genetic Traceability of European Wild Boars and Iberian and Duroc Pigs. Animals 2009, 86, 1216–1223. DOI: 10.1017/S1751731109004819.
  • Alves, E.; Castellanos, C.; Ovilo, C.; Silió, L.; Rodríguez, C. Differentiation of the Raw Material of the Iberian Pig Meat Industry Based on the Use of Amplified Fragment Length Polymorphism. Meat Sci. 2002, 61, 157–162. DOI: 10.1016/s0309-1740(01)00179-6.
  • Garcia, D.; Martínez, A.; Dunner, S.; Vega-Pla, J. L.; Fernández, C.; Delgado, J. V.; Cañón, J. Estimation of the Genetic Admixture Composition of Iberian Dry-cured Ham Samples Using DNA Multilocus Genotypes. Meat Sci. 2006, 72, 560–566. DOI: 10.1016/j.meatsci.2005.09.005.
  • Fernandez, A.; Fabuel, E.; Alves, E.; Rodriguez, C.; Silió, L.; Óvilo, C. DNA Tests Based on Coat Color Genes for Authentication of the Raw Material of Meat Products from Iberian Pigs. J. Sci. Food Agric. 2004, 84, 1855–1860. DOI: 10.1002/jsfa.1829.
  • Charrouf, Z.; Guillaume, D. Ethnoeconomical,Ethnomedical, and Phytochemical Study of Argania Spinosa (L.) Skeels. J. Ethnopharmacol. 1999, 67, 7–14. DOI: 10.1016/S0378-8741(98)00228-1.
  • Ursoniu, S.; Sahebkar, A.; Serban, M.-C.; Banach, M. The Impact of Argan Oil on Plasma Lipids in Humans: Systematic Review and Meta-Analysis of Randomized Controlled Trials. Phyther. Res. 2018, 32, 377–383. DOI: 10.1002/ptr.5959.
  • Caporarello, N.; Olivieri, M.; Cristaldi, M.; Rusciano, D.; Lupo, G.; Anfuso, C. D. Melanogenesis in Uveal Melanoma Cells: Effect of Argan Oil. Int. J. Mol. Med. 2017, 40, 1277–1284. DOI: 10.3892/ijmm.2017.3104.
  • Ayad, A. Représentation Générale de l’Arganeraie Dans “Formation Forestière Continue”; Station de Recherche Forestière: Rabat. Mors, 1989; Vols. 13–17. pp 9–18.
  • UNESCO. Strengthening of the Argan Biosphere Reserve (SABR), Morocco http://www.unesco.org/new/en/natural-sciences/environment/ecological-sciences/biosphere-reserves/arab-states/morocco/arganeraie/sustainable-development/
  • Dahir of 4th March 1925. Sur La Protection et La Délimitation Des Forêts d’arganiers; Kingdom of Morocco.
  • Codirectorial Order of 1st May 1938. Codirectorial Order of 1. May 1938; Kingdom of Marocco.
  • Dahir of 28th March 1951. Portant Attribution d’une Partie Du Produit de La Vente Des Coupes de Bois Dans Les Forets d’arganiers Aux Collectivités Marocaines Usagères; Kingdom of Morocco.
  • Chaussod, R.; Adlouni, A.; Christon, R. L’arganier et l’huile d’argane Au Maroc: Vers La Mutation d’un Système Agroforestier Traditionnel?. Cah. Agric. 2005, 14, 351–356.
  • Charrouf, Z.; Guillaume, D. Secondary Metabolites from Argania Spinosa (L.) Skeels. Phytochem. Rev. 2002, 1, 345–354. DOI: 10.1023/A:1026030100167.
  • Gonzálvez, A.; Armenta, S.; de la Guardia, M. Adulteration Detection of Argan Oil by Inductively Coupled Plasma Optical Emission Spectrometry. Food Chem. 2010, 121, 878–886. DOI: 10.1016/j.foodchem.2009.11.091.
  • Gonzálvez, A.; Ghanjaoui, M. E.; El Rhazi, M.; De La Guardia, M. Inductively Coupled Plasma Optical Emission Spectroscopy Determination of Trace Element Composition of Argan Oil. Food Sci. Technol. Int. 2010, 16, 65–71. DOI: 10.1177/1082013209353343.
  • Mohammed, F. A. E.; Bchitou, R.; Bouhaouss, A.; Gharby, S.; Harhar, H.; Guillaume, D.; Charrouf, Z. Can the Dietary Element Content of Virgin Argan Oils Really Be Used for Adulteration Detection? Food Chem. 2013, 136, 105–108. DOI: 10.1016/j.foodchem.2012.07.098.
  • Zahar, M.; Reineccius, G.; Schirle-Keller, J. P. Identification of Aroma Compounds in Food Grade Argan-Oil; In The 234th American Chemical Society Meeting. Boston, Aug 19–13, 2007.
  • Matthäus, B.; Guillaume, D.; Gharby, S.; Haddad, A.; Harhar, H.; Charrouf, Z. Effect of Processing on the Quality of Edible Argan Oil. Food Chem. 2010, 120, 426–432. DOI: 10.1016/j.foodchem.2009.10.023.
  • Bougrini, M.; Tahri, K.; Haddi, Z.; Saidi, T.; El Bari, N.; Bouchikhi, B. Detection of Adulteration in Argan Oil by Using an Electronic Nose and a Voltammetric Electronic Tongue. J. Sens. 2014, 1–10. DOI: 10.1155/2014/245831.
  • Kharbach, M.; Kamal, R.; Mansouri, M. A.; Marmouzi, I.; Viaene, J.; Cherrah, Y.; Alaoui, K.; Vercammen, J.; Bouklouze, A.; Vander Heyden, Y. Selected-Ion Flow-Tube Mass-Spectrometry (SIFT-MS) Fingerprinting versus Chemical Profiling for Geographic Traceability of Moroccan Argan Oils. Food Chem. 2018, 263, 8–17. DOI: 10.1016/j.foodchem.2018.04.059.
  • Salghi, R.; Armbruster, W.; Schwack, W. Detection of Argan Oil Adulteration with Vegetable Oils by High-Performance Liquid Chromatography-Evaporative Light Scattering Detection. Food Chem. 2014, 153, 387–392. DOI: 10.1016/j.foodchem.2013.12.084.
  • Pagliuca, G.; Bozzi, C.; Gallo, F. R.; Multari, G.; Palazzino, G.; Porrà, R.; Panusa, A. Triacylglycerol “Hand-shape Profile” of Argan Oil. Rapid and Simple UHPLC-PDA-ESI-TOF/MS and HPTLC Methods to Detect Counterfeit Argan Oil and Argan-Oil-Based Products. J. Pharm. Biomed. Anal. 2018, 150, 121–131. DOI: 10.1016/j.jpba.2017.11.059.
  • Ait Aabd, N.; El Asbahani, A.; El Alem, Y.; El Finti, A.; Msanda, F.; El Mousadik, A. Variation in Oil Content and Fatty Acid Composition in Preselected Argan Trees with Morphological Characters and Geographical Localization. Med. J. Nutrition Metab. 2013, 6, 217–225. DOI: 10.1007/s12349-013-0134-2.
  • Oussama, A.; Elabadi, F.; Devos, O. Analysis of Argan Oil Adulteration Using Infrared Spectroscopy. Spectrosc. Lett. 2012, 45, 458–463. DOI: 10.1080/00387010.2011.639121.
  • Ourrach, I.; Rada, M.; Pérez-Camino, M. C.; Benaissa, M.; Guinda, Á. Detection of Argan Oil Adulterated with Vegetable Oils: New Markers. Grasas y Aceites. 2012, 63, 355–364. DOI: 10.3989/gya.047212.
  • Khallouki, F.; Younos, C.; Soulimani, R.; Oster, T.; Charrouf, Z.; Spiegelhalder, B.; Bartsch, H.; Owen, R. W. Consumption of Argan Oil (Morocco) with Its Unique Profile of Fatty Acids, Tocopherols, Squalene, Sterols and Phenolic Compounds Should Confer Valuable Cancer Chemopreventive Effects. Eur. J. Cancer Prev. 2003, 12, 67–75. DOI: 10.1097/01.cej.0000051106.40692.d3.
  • Rueda, A.; Samaniego-Sánchez, C.; Olalla, M.; Giménez, R.; Cabrera-Vique, C.; Seiquer, I.; Lara, L. Combination of Analytical and Chemometric Methods as a Useful Tool for the Characterization of Extra Virgin Argan Oil and Other Edible Virgin Oils. Role of Polyphenols and Tocopherols. J. AOAC Int. 2016, 99, 489–494. DOI: 10.5740/jaoacint.15-0121.
  • Hilali, M.; Charrouf, Z.; Soulhi, A. E. A.; Hachimi, L.; Guillaume, D. Detection of Argan Oil Adulteration Using Quantitative Campesterol GC-Analysis. J. Am. Oil Chem. Soc. 2007, 84, 761–764. DOI: 10.1007/s11746-007-1084-y.
  • Venegas, C.; Cabrera-Vique, C.; García-Corzo, L.; Escames, G.; Acuña-Castroviejo, D.; López, L. C. Determination of Coenzyme Q 10, Coenzyme Q 9, and Melatonin Contents in Virgin Argan Oils: Comparison with Other Edible Vegetable Oils. J. Agric. Food Chem. 2011, 59, 12102–12108. DOI: 10.1021/jf203428t.
  • Zougagh, M.; Salghi, R.; Dhair, S.; Rios, A. Nanoparticle-Based Assay for the Detection of Virgin Argan Oil Adulteration and Its Rapid Quality Evaluation. Anal. Bioanal. Chem. 2011, 399, 2395–2405. DOI: 10.1007/s00216-010-4628-1.
  • Chakhchar, A.; Haworth, M.; El Modafar, C.; Lauteri, M.; Mattioni, C.; Wahbi, S.; Centritto, M. An Assessment of Genetic Diversity and Drought Tolerance in Argan Tree (Argania Spinosa) Populations: Potential for the Development of Improved Drought Tolerance. Front. Plant Sci. 2017, 8, 276. DOI: 10.3389/fpls.2017.00276.
  • Pakhrou, O.; Medraoui, L.; Yatrib, C.; Alami, M.; Ibn Souda-kouraichi, S. I.; El Mousadik, A.; Ferradous, A.; Msanda, F.; El Modafar, C.; Filali-maltouf, A.; et al. Study of Genetic Diversity and Differentiation of Argan Tree Population (Argania Spinosa L.) Using AFLP Markers. AJCS 2016, 10, 990–999.
  • Vietina, M.; Agrimonti, C.; Marmiroli, N. Detection of Plant Oil DNA Using High Resolution Melting (HRM) Post PCR Analysis: A Tool for Disclosure of Olive Oil Adulteration. Food Chem. 2013, 141, 3820–3826. DOI: 10.1016/j.foodchem.2013.06.075.
  • Agrimonti, C.; Marmiroli, N. Food Genomics for the Characterization of PDO and PGI Virgin Olive Oils. Eur. J. Lipid Sci.Tech. 2019, 121, 1800132. DOI: 10.1002/ejlt.201800132.
  • Krebs, R. E.; Krebs, C. A. Groundbreaking Scientific Experiments, Inventions, and Discoveries of the Ancient World; Greenwood Press: Westport, 2003.
  • Montossi, F.; Font-i-Furnols, M.; Del Campo, M.; San Julián, R.; Brito, G.; Sañudo, C. Sustainable Sheep Production and Consumer Preference Trends: Compatibilities, Contradictions, and Unresolved Dilemmas. Meat Sci. 2013, 95, 772–789. DOI: 10.1016/j.meatsci.2013.04.048.
  • Díaz, M. T.; Álvarez, I.; De La Fuente, J.; Sañudo, C.; Campo, M. M.; Oliver, M. A.; Cañeque, V. Fatty Acid Composition of Meat from Typical Lamb Production Systems of Spain, United Kingdom, Germany and Uruguay. Meat Sci. 2005, 71, 256–263. DOI: 10.1016/j.meatsci.2005.03.020.
  • Elloumi, M.; Alary, V.; Selmi, S. Politiques et Stratégies Des Éleveurs Dans Le Gouvernorat de Sidi Bouzid (Tunisie Centrale). Afr. Contemp. 2006, 3/2006, 63–79. DOI: 10.3917/afco.219.0063.
  • Ådnøy, T.; Haug, A.; Sørheim, O.; Thomassen, M. S.; Varszegi, Z.; Eik, L. O. Grazing on Mountain Pastures-Does It Affect Meat Quality in Lambs? Livest. Prod. Sci. 2005, 94, 25–31. DOI: 10.1016/j.livprodsci.2004.11.026.
  • Smeti, S.; Mahouachi, M.; Atti, N. Effects of Finishing Lambs in Rich Aromatic Plant Pasture or in Feedlot on Growth and Meat Quality. J. Appl. Anim. Res. 2014, 42, 297–303. DOI: 10.1080/09712119.2013.845102.
  • Cox, R. B.; Kerth, C. R.; Gentry, J. G.; Prevatt, J. W.; Braden, K. W.; Jones, W. R. Determining Acceptance of Domestic Forage- or Grain-Finished Beef by Consumers from Three Southeastern U.S. States. J. Food Sci. 2006, 71, S542–S546. DOI: 10.1111/j.1750-3841.2006.00124.x.
  • Khemiri, I.; Khelifa, S.; Boughamoura, O.; Abbes, C. Participatory Mapping:A Tool to Show Natural Landscapes Richness of Kroumirie-Mogods Forest Area (Tunisia). J. New Sci. 2017, 41, 2260–2267.
  • Hajji, H.; Joy, M.; Ripoll, G.; Smeti, S.; Mekki, I.; Gahete, F. M.; Mahouachi, M.; Atti, N. Meat Physicochemical Properties, Fatty Acid Profile, Lipid Oxidation and Sensory Characteristics from Three North African Lamb Breeds, as Influenced by Concentrate or Pasture Finishing Diets. J. Food Compos. Anal. 2016, 48, 102–110. DOI: 10.1016/j.jfca.2016.02.011.
  • Mekki, I.; Smeti, S.; Hajji, H.; Yagoubi, Y.; Mahouachi, M.; Atti, N. Effect of Oak Acorn (Quercus Ilex) Intake during Suckling and Fattening of Barbarine Lambs on Growth, Meat Quality and Fatty Acid Profile. J. Anim. Feed Sci. 2019, 28, 22–30. DOI: 10.22358/jafs.102757.2019.
  • Atti, N.; Mahouachi, M. The Effects of Diet, Slaughter Weight and Docking on Growth, Carcass Composition and Meat Quality of Fat-Tailed Barbarine Lambs. A Review. Trop. Anim. Health Prod. 2011, 43, 1371–1378. DOI: 10.1007/s11250-011-9865-6.
  • Smeti, S.; Atti, N.; Mahouachi, M. Effects of Finishing Lambs in Rich Aromatic Plant Pasture or in Feedlot on Lamb Growth and Meat Quality. J. App. Anim. Res. 2014, 42, 297–303. DOI: 10.1080/09712119.2013.845102.
  • Slimeni, O. Etude de La Qualité de La Viande de Chevreaux Provenant de Deux Zones Différentes Du Nord-Ouest Master Thesis, Université de Carthage, Tunis, Tunisia, 2013.
  • Hajji, H.; Prache, S.; Andueza, D.; Smeti, S.; Mahouachi, M.; Atti, N. Reliability of Visible Reflectance Spectroscopy in Discriminating between Pasture and Stall Fed Lambs from Thin and Fat Tailed Sheep Breeds in Dry and Hot Environment. Animal 2019, 13, 2669–2678. DOI: 10.1017/S1751731119000909.
  • Mekki, I.; Camin, F.; Perini, M.; Smeti, S.; Hajji, H.; Mahouachi, M.; Piasentier, E.; Atti, N. Differentiating the Geographical Origin of Tunisian Indigenous Lamb Using Stable Isotope Ratio and Fatty Acid Content. J. Food Compos. Anal. 2016, 53, 40–48. DOI: 10.1016/j.jfca.2016.09.002.
  • Chalh, A.; El Gazzah, M.; Djemali, M.; Chalbi, N. Genetic and Phenotypic Characterization of the Tunisian Noire De Thibar Lambs on Their Growth Traits. J. Biol. Sci. 2007, 7, 1347–1353. DOI: 10.3923/jbs.2007.1347.1353.
  • Bonito, G. M.; Gryganskyi, A. P.; Trappe, J. M.; Vilgalys, R. A Global Meta-Analysis of Tuber ITS RDNA Sequences: Species Diversity, Host Associations and Long-Distance Dispersal. Mol. Ecol. 2010, 19, 4994–5008. DOI: 10.1111/j.1365-294X.2010.04855.x.
  • Angelini, P.; Bricchi, E.; Akhtar, M. S.; Properzi, A.; Fleming, J.-L. E.; Tirillini, B.; Venanzoni, R. Isolation and Identification of Allelochemicals from Ascocarp of Tuber Species. In In Plant, Soil and Microbes; Hakeem, K., Akhtar, M., Eds.; Springer: Cham, 2016; pp 225–252.
  • Patel, S.; Rauf, A.; Khan, H.; Khalid, S.; Mubarak, M. S. Potential Health Benefits of Natural Products Derived from Truffles: A Review. Trends Food Sci. Technol. 2017, 70, 1–8. DOI: 10.1016/j.tifs.2017.09.009.
  • Wang, S.; Marcone, M. F. The Biochemistry and Biological Properties of the World’s Most Expensive Underground Edible Mushroom: Truffles. Food Res. Int. 2011, 44, 2567–2581. DOI: 10.1016/j.foodres.2011.06.008.
  • Piltaver, A.; Ratoša, I. A Contribution to Better Knowledge of Hypogeous Fungi in Slovenia. Gozdarski Vestn. 2006, 64, 303–330.
  • Mello, A.; Cantisani, A.; Vizzini, A.; Bonfante, P. Genetic Variability of Tuber Uncinatum and Its Relatedness to Other Black Truffles. Environ. Microbiol. 2002, 4, 584–594. DOI: 10.1046/j.1462-2920.2002.00343.x.
  • Paolocci, F.; Rubini, A.; Riccioni, C.; Topini, F.; Arcioni, S. Tuber Aestivum and Tuber Uncinatum: Two Morphotypes or Two Species? FEMS Microbiol. Lett. 2004, 235, 109–115. DOI: 10.1016/j.femsle.2004.04.029.
  • Hall, I. R.; Zambonelli, A.; Primavera, F. Ectomycorrhizal Fungi with Edible Fruiting Bodies 3. Tuber Magnatum, Tuberaceae. Econ. Bot. 1998, 52, 192–200. DOI: 10.1007/BF02861209.
  • Rubini, A.; Paolocci, F.; Riccioni, C.; Vendramin, G. G.; Arcioni, S. Genetic and Phylogeographic Structures of the Symbiotic Fungus Tuber Magnatum. Appl. Environ. Microbiol. 2005, 71, 6584–6589. DOI: 10.1128/AEM.71.11.6584-6589.2005.
  • Mello, A.; Miozzi, L.; Vizzini, A.; Napoli, C.; Kowalchuk, G.; Bonfante, P. Bacterial and Fungal Communities Associated with Tuber Magnatum-Productive Niches. Plant Biosyst. 2010, 144, 323–332. DOI: 10.1080/11263500903374724.
  • Bragato, G.; Vignozzi, N.; Pellegrini, S.; Sladonja, B. Physical Characteristics of the Soil Environment Suitable for Tuber Magnatum Production in Fluvial Landscapes. Plant Soil 2010, 329, 51–63. DOI: 10.1007/s11104-009-0133-8.
  • Bratek, Z.; Gógán, A.; Halàsz, K.; Bagi, I.; Erdei, V.; Bujàki, G. The Northernmost Habitats of Tuber Magnatum Known from Hungary. In First hypogean mushroom conference, Rabat, Morocco, Apr 6–8, 2004.
  • Sourzat, P.;. Trufficulture: Résultats Techniques d’expérimentations; à l’usage Pratique Des Trufficulteurs; Lycée professionnel agricole et viticole de Cahors-Le Montat: Le Montat, 2000.
  • Chevalier, G.; Frochot, H. La Truffe De Bourgogne : Tuber Uncinatum Chatin; Pétrarque: Levallois-Perret, 2002.
  • Berch, S. M. Truffle Cultivation and Commercially Harvested Native Truffles. In International Symposium on Forest Mushroom; Korea Forest Research Institute: Seoul, South Korea, Aug6, 2013.
  • Murat-Furminieux, C. Etude de La Diversité Génétique de La Truffe Blanche Du Piémont (Tuber Magnatum Pico) et de La Truffe Noire Du Périgord (Tuber Melanosporum Vittad.) PhD Thesis, Université Henri Poincaré, Nancy, France and Università degli Studi di Torino, Torino, Italy, 2004.
  • Büntgen, U.; Egli, S.; Camarero, J. J.; Fischer, E. M.; Stobbe, U.; Kauserud, H.; Tegel, W.; Sproll, L.; Stenseth, N. C. Drought-Induced Decline in Mediterranean Truffle Harvest. Nat. Clim. Change 2012, 2, 827–829. DOI: 10.1038/nclimate1733.
  • Rupp, R. The Trouble With Truffles https://www.nationalgeographic.com/people-and-culture/food/the-plate/2016/october/the-trouble-with-truffles/ ( accessed Aug 1, 2018).
  • Culleré, L.; Ferreira, V.; Venturini, M. E.; Marco, P.; Blanco, D. Potential Aromatic Compounds as Markers to Differentiate between Tuber Melanosporum and Tuber Indicum Truffles. Food Chem. 2013, 141, 105–110. DOI: 10.1016/j.foodchem.2013.03.027.
  • Riousset, L.; Riousset, G.; Chevalier, G.; Bardet, M. Truffes D’ Europe Et De Chine; INRA: Paris, 2001.
  • Amicucci, A.; Guidi, C.; Zambonelli, A.; Potenza, L.; Stocchi, V. Molecular Approaches for the Detection of Truffle Species in Processed Food Products. J. Sci. Food Agric. 2002, 82, 1391–1397. DOI: 10.1002/jsfa.1196.
  • Rizzello, R.; Zampieri, E.; Vizzini, A.; Autino, A.; Cresti, M.; Bonfante, P.; Mello, A. Authentication of Prized White and Black Truffles in Processed Products Using Quantitative Real-Time PCR. Food Res. Int. 2012, 48, 792–797. DOI: 10.1016/j.foodres.2012.06.019.
  • Scopoli, G. A. Flora Carniolica Exhibiens Plantas Carnioliae Indigenas Et Distributas in Classes, Genera, Species, Varietates Ordine Linnaeano. Bibliopolae Vindobonensis; Impensis Ioannis Pauli, K., Ed.; Vienna, 1772.
  • Uradni List Republike Slovenije No 57/98 of 14 August 1998. Uredba o Varstvu Samoniklih Gliv; Republic of Slovenia.
  • Uradni List Republike Slovenije No 58/11 of 22 July 2011. Uredba o Zavarovanih Prosto Živečih Vrstah Gliv; Republic of Slovenia.
  • Grebenc, T.; Kraigher, H.; Martin, M. P.; Piltaver, A.; Ratosa, I. Research and Cultivation of Truffle in Slovenia–current Status. In La Culture De La Truffe Dans Le Monde; Brive-la-Gaillarde: France, Feb 2, 2007.
  • Grebenc, T.; Planinsek, S.; Japelj, A. Gojenje Nelesnih Gozdnih Dobrin = Growing the Non-wood Forest Products. Gozdarski Vestn. 2013, 71, 365–371.
  • Bergant, J.; Vrščaj, B.; Piltaver, A.; Ogris, N.; Šinkovec, M. Moznosti in Omejitve Pri Nabiranju Gob V Gozdovih in Razvoj Gomoljikarstva V Sloveniji : Projekt CRP V4-1145. Sklop D; Kmetijski institut Slovenije: Ljubljana, 2013.
  • Bergant, J.; Vrščaj, B. Karta Potencialnih Naravnih Rastisc Poletne Gomoljike. In In Digitalni Prostor; Ciglič, R., Perko, D., Zorn, M., Eds.; Založba ZRC: Ljubljana, 2014; pp 95–103.
  • Fantinic, J. Možnosti Gojenja Gomoljik (Tuber Sp.). BSc Thesis, Biotehnical Faculty, University of Ljubljana, Ljubljana, Slovenia, 2014.
  • Vrščaj, B.; Bergant, J. Ocena Potencialov Za Gomoljikarstvo Kot Dodatne Dejavnosti Na Marginalnih Kmetijskih Zemljiscih V Sloveniji; In Novi izzivi v agronomiji 2015: Laško, Slovenia, Jan, 2015; 19–30.
  • Pico, V. Melethemata Inauguralia: De Fungorum Generatione Et Propagatione. PhD Thesis, Royal University of Turin, Torino, Italy, 1788.
  • Pacioni, G.; Rittersma, R.; Iotti, M. Rufum Author Name : Picco Vs Pico. Ital. J. Mycol. 2018, 47, 1–12. DOI: 10.6092/issn.2531-7342/7748.
  • Legge No 752 of 16 December 1985; Normativa Quadro in Materia Di Raccolta, Coltivazione e Commercio Dei Tartufi Freschi o Conservati Destinati Al Consumo; Italian Republic.
  • Legge No 162 of 17 May 1991; Modifiche Alla Legge 16 Dicembre 1985, n. 752, Recante Normativa Quadro in Materia Di Raccolta, Coltivazione e Commercio Dei Tartufi Freschi o Conservati Destinati Al Consumo; Italian Republic.
  • Furlani, A. La Raccolta Del Tartufo in Italia: Una Importante Attivita’ Socio-Economica Del Settore Forestale. MSc Thesis, Scuola di Agraria e Medicina Veterinaria Università degli studi di Padova, Padova, Italy, 2015.
  • Henn, M. R.; Chapela, I. H. Differential C Isotope Discrimination by Fungi during Decomposition of C3- and C4-Derived Sucrose. Appl. Environ. Microbiol. 2000, 66, 4180–4186. DOI: 10.1128/AEM.66.10.4180-4186.2000.
  • Ciolfi, M.; Chiocchini, F.; Gravichkova, O.; Pisanelli, A.; Portarena, S.; Scartazza, A.; Brugnoli, E.; Lauteri, M., Isotopi Stabili, Modellizzazione Spaziotemporale E Strategie Adattative Di Tuber Aestivum Al Disturbo Ecologico. In 10° Congresso Nazionale SISEF; Sostenere Il Pianeta, Boschi per La Vita; Travaglini, D., Rossi, P., Bucci, G.,Eds.; Ricerca e innovazione per la tutela e la valorizzazione delle risorse forestali: Florence, Italiy, Sep, 2015; 15–18.
  • Hobbie, E. A.; Weber, N. S.; Trappe, J. M. Mycorrhizal Vs Saprotrophic Status of Fungi: The Isotopic Evidence. New Phytol. 2001, 150, 601–610. DOI: 10.1046/j.1469-8137.2001.00134.x.
  • Sciarrone, D.; Schepis, A.; Zoccali, M.; Donato, P.; Vita, F.; Creti, D.; Alpi, A.; Mondello, L. Multidimensional Gas Chromatography Coupled to Combustion-Isotope Ratio Mass Spectrometry/Quadrupole MS with a Low-Bleed Ionic Liquid Secondary Column for the Authentication of Truffles and Products Containing Truffle. Anal. Chem. 2018, 90, 6610–6617. DOI: 10.1021/acs.analchem.8b00386.
  • Wernig, F.; Buegger, F.; Pritsch, K.; Splivallo, R. Composition and Authentication of Commercial and Home-Made White Truffle-Flavored Oils. Food Control 2018, 87, 9–16. DOI: 10.1016/j.foodcont.2017.11.045.
  • Chung, I. M.; Han, J. G.; Kong, W. S.; Kim, J. K.; An, M. J.; Lee, J. H.; An, Y. J.; Jung, M. Y.; Kim, S. H. Regional Discrimination of Agaricus Bisporus Mushroom Using the Natural Stable Isotope Ratios. Food Chem. 2018, 264, 92–100. DOI: 10.1016/j.foodchem.2018.04.138.
  • Puscas, R. H.; Cristea, G. I.; Radu, S. Stable Isotope Determination in Edible Mushrooms from the Spontaneous Flora of Transylvania. Anal. Lett. 2019, 52, 102–110. DOI: 10.1080/00032719.2017.1376218.
  • Sawaya, W. N.; Al-Shalhat, A.; Al-Sogair, A.; Al-Mohammad, M. Chemical Composition and Nutritive Value of Truffles of Saudi Arabia. J. Food Sci. 1985, 50, 450–453. DOI: 10.1111/j.1365-2621.1985.tb13425.x.
  • Segneanu, A. E.; Sfirloaga, P.; David, I.; Balcu, I.; Grozescu, I. Characterisation of Truffles Using Electrochemical and Analytical Methods. Dig. J. Nanomater. Biostruct. 2012, 7, 199–205.
  • Giannaccini, G.; Betti, L.; Palego, L.; Mascia, G.; Schmid, L.; Lanza, M.; Mela, A.; Fabbrini, L.; Biondi, L.; Lucacchini, A. The Trace Element Content of Top-Soil and Wild Edible Mushroom Samples Collected in Tuscany, Italy. Environ. Monit. Assess. 2012, 184, 7579–7595. DOI: 10.1007/s10661-012-2520-5.
  • Nikkarinen, M.; Mertanen, E. Impact of Geological Origin on Trace Element Composition of Edible Mushrooms. J. Food Compos. Anal. 2004, 17, 301–310. DOI: 10.1016/j.jfca.2004.03.013.
  • Lanfranco, L.; Wyss, P.; Marzachi, C.; Bonfante, P. DNA Probes for Identification of the Ectomycorrhizal Fungus Tuber Magnatum Pico. FEMS Microbiol. Lett. 1993, 114, 245–251. DOI: 10.1111/j.1574-6968.1993.tb06581.x.
  • Rubini, A.; Paolocci, F.; Granetti, B.; Arcioni, S. Single Step Molecular Characterization of Morphologically Similar Black Truffle Species. FEMS Microbiol. Lett. 1998, 164, 7–12. DOI: 10.1111/j.1574-6968.1998.tb13060.x.
  • Paolocci, F.; Rubini, A.; Granetti, B.; Arcioni, S. Rapid Molecular Approach for a Reliable Identification of Tuber Spp. Ectomycorrhizae. FEMS Microbiol. Ecol. 1999, 28, 23–30. DOI: 10.1016/S0168-6496(98)00088-9.
  • Amicucci, A.; Guidi, C.; Zambonelli, A.; Potenza, L.; Stocchi, V. Multiplex PCR for the Identification of White Tuber Species. FEMS Microbiol. Lett. 2000, 189, 265–269. DOI: 10.1016/S0378-1097(00)00296-2.
  • Giomaro, G.; Sisti, D.; Zambonelli, A.; Amicucci, A.; Cecchini, M.; Comandini, O.; Stocchi, V. Comparative Study and Molecular Characterization of Ectomycorrhizas in Tilia Americana and Quercus Pubescens with Tuber Brumale. FEMS Microbiol. Lett. 2002, 216, 9–14. DOI: 10.1111/j.1574-6968.2002.tb11407.x.
  • Bertini, L.; Rossi, I.; Zambonelli, A.; Amicucci, A.; Sacchi, A.; Cecchini, M.; Gregori, G.; Stocchi, V. Molecular Identification of Tuber Magnatum Ectomycorrhizae in the Field. Microbiol. Res. 2006, 161, 59–64. DOI: 10.1016/j.micres.2005.06.003.
  • Frizzi, G.; Lalli, G.; Miranda, M.; Pacioni, G. Intraspecific Isozyme Variability in Italian Populations of the White Truffle Tuber Magnatum. Mycol. Res. 2001, 105, 365–369. DOI: 10.1017/S0953756201003513.
  • Jeandroz, S.; Murat, C.; Wang, Y.; Bonfante, P.; Tacon, F. L. Molecular Phylogeny and Historical Biogeography of the Genus Tuber, the “True Truffles. J. Biogeogr. 2008, 35, 815–829. DOI: 10.1111/j.1365-2699.2007.01851.x.
  • Bonito, G.; Smith, M. E.; Nowak, M.; Healy, R. A.; Guevara, G.; Cázares, E.; Kinoshita, A.; Nouhra, E. R.; Domínguez, L. S.; Tedersoo, L. et al.; Historical Biogeography and Diversification of Truffles in the Tuberaceae and Their Newly Identified Southern Hemisphere Sister Lineage. PLoS One 2013, 8, 1–15. DOI: 10.1371/journal.pone.0052765.
  • Séjalon-Delmas, N.; Roux, C.; Martins, M.; Kulifaj, M.; Bécard, G.; Dargent, R. Molecular Tools for the Identification of Tuber Melanosporum in Agroindustry. J. Agric. Food Chem. 2000, 48, 2608–2613. DOI: 10.1021/jf9910382.
  • Islam, M. T.; Mohamedali, A.; Garg, G.; Khan, J. M.; Gorse, A. D.; Parsons, J.; Marshall, P.; Ranganathan, S.; Baker, M. S. Unlocking the Puzzling Biology of the Black Périgord Truffle Tuber Melanosporum. J. Proteome Res. 2013, 12, 5349–5356. DOI: 10.1021/pr400650c.
  • Falasconi, M.; Pardo, M.; Sberveglieri, G.; Battistutta, F.; Piloni, M.; Zironi, R. Study of White Truffle Aging with SPME-GC-MS and the Pico2-Electronic Nose. Sens. Actuators B Chem. 2005, 106, 88–94. DOI: 10.1016/j.snb.2004.05.041.
  • Dı́az, P.; Ibáñez, E.; Señoráns, F.; Reglero, G. Truffle Aroma Characterization by Headspace Solid-Phase Microextraction. J. Chromatogr. A 2003, 1017, 207–214. DOI: 10.1016/j.chroma.2003.08.016.
  • March, R. E.; Richards, D. S.; Ryan, R. W. Volatile Compounds from Six Species of Truffle – Head-Space Analysis and Vapor Analysis at High Mass Resolution. Int. J. Mass Spectrom. 2006, 249–250, 60–67. DOI: 10.1016/j.ijms.2005.12.038.
  • Aprea, E.; Biasioli, F.; Carlin, S.; Versini, G.; Märk, T. D.; Gasperi, F. Rapid White Truffle Headspace Analysis by Proton Transfer Reaction Mass Spectrometry and Comparison with Solid-Phase Microextraction Coupled with Gas Chromatography/Mass Spectrometry. Rapid Commun. Mass Spectrom. 2007, 21, 2564–2572. DOI: 10.1002/rcm.3118.
  • Zampioglou, D.; Kalomiros, J. Development of an Odor-Discriminating Sensor-Array for the Detection of the Aroma of Ascomycete Tuber.In 2013 IEEE 7th International Conference on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS), Berlin, Germany, September 12-14, 2013.
  • Vita, F.; Taiti, C.; Pompeiano, A.; Bazihizina, N.; Lucarotti, V.; Mancuso, S.; Alpi, A. Volatile Organic Compounds in Truffle (Tuber Magnatum Pico): Comparison of Samples from Different Regions of Italy and from Different Seasons. Sci. Rep. 2015, 5, 12629. DOI: 10.1038/srep12629.
  • Culleré, L.; Ferreira, V.; Chevret, B.; Venturini, M. E.; Sánchez-Gimeno, A. C.; Blanco, D. Characterisation of Aroma Active Compounds in Black Truffles (Tuber Melanosporum) and Summer Truffles (Tuber Aestivum) by Gas Chromatography–olfactometry. Food Chem. 2010, 122, 300–306. DOI: 10.1016/j.foodchem.2010.02.024.
  • D’Auria, M.; Rana, G. L.; Racioppi, R.; Laurita, A. Studies on Volatile Organic Compounds of Tuber Borchii and T. Asa-Foetida. J. Chromatogr. Sci. 2012, 50, 775–778. DOI: 10.1093/chromsci/bms060.
  • D’Auria, M.; Racioppi, R.; Rana, G. L.; Laurita, A. Studies on Volatile Organic Compounds of Some Truffles and False Truffles. Nat. Prod. Res. 2014, 28, 1709–1717. DOI: 10.1080/14786419.2014.940942.
  • Schmidberger, P. C.; Schieberle, P. Characterization of the Key Aroma Compounds in White Alba Truffle (Tuber Magnatum Pico) and Burgundy Truffle (Tuber Uncinatum) by Means of the Sensomics Approach. J. Agric. Food Chem. 2017, 65, 9287–9296. DOI: 10.1021/acs.jafc.7b04073.
  • Talou, T.; Delmas, M.; Gaset, A. Principal Constituents of Black Truffle (Tuber Melanosporum) Aroma. J. Agric. Food Chem. 1987, 35, 774–777. DOI: 10.1021/jf00077a031.
  • Tang, Y.; Li, H.-M.; Tang, Y.-J. Comparison of Sterol Composition between Tuber Fermentation Mycelia and Natural Fruiting Bodies. Food Chem. 2012, 132, 1207–1213. DOI: 10.1016/j.foodchem.2011.11.077.
  • Pacioni, G.; Cerretani, L.; Procida, G.; Cichelli, A. Composition of Commercial Truffle Flavored Oils with GC–MS Analysis and Discrimination with an Electronic Nose. Food Chem. 2014, 146, 30–35. DOI: 10.1016/j.foodchem.2013.09.016.
  • Torregiani, E.; Lorier, S.; Sagratini, G.; Maggi, F.; Vittori, S.; Caprioli, G. Comparative Analysis of the Volatile Profile of 20 Commercial Samples of Truffles, Truffle Sauces, and Truffle-Flavored Oils by Using HS-SPME-GC-MS. Food Anal. Methods 2017, 10, 1857–1869. DOI: 10.1007/s12161-016-0749-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.