1,508
Views
45
CrossRef citations to date
0
Altmetric
Review

Immunomodulatory; Anti-inflammatory/antioxidant Effects of Polyphenols: A Comparative Review on the Parental Compounds and Their Metabolites

, , &

References

  • da Silva, B. V.; Barreira, J. C.; Oliveira, M. B. P. Natural Phytochemicals and Probiotics as Bioactive Ingredients for Functional Foods: Extraction, Biochemistry and Protected-delivery Technologies. Trends Food Sci. Technol. 2016, 50, 144–158. DOI: 10.1016/j.tifs.2015.12.007.
  • Thangaraj, P. Pharmacological Assays of Plant-based Natural Products; Springer, 2016.
  • Farzamfar, S.; Naseri-Nosar, M.; Samadian, H.; Mahakizadeh, S.; Tajerian, R.; Rahmati, M.; Vaez, A.; Salehi, M. Taurine-loaded Poly (ε-caprolactone)/gelatin Electrospun Mat as a Potential Wound Dressing Material: In Vitro and in Vivo Evaluation. J. Bioact. Compatible Polym. 2018, 33, 282–294. DOI: 10.1177/0883911517737103.
  • Jamshidi-Kia, F.; Lorigooini, Z.; Amini-Khoei, H. Medicinal Plants: Past History and Future Perspective. J. Herbmed Pharmacol. 2018, 7.
  • David, B.; Wolfender, J.-L.; Dias, D. A. The Pharmaceutical Industry and Natural Products: Historical Status and New Trends. Phytochem. Rev. 2015, 14:, 299–315. DOI: 10.1007/s11101-014-9367-z.
  • Amuka, O.; Tarus, P.; Ruttoh, E.; Machocho, A.; Okemo, P. Natural Extractives And The Role They Play In Human Health. Gastroenterol. Liver Clin. Med. 2017, 1, 1–13.
  • Yuan, H.; Ma, Q.; Ye, L.; Piao, G. The Traditional Medicine and Modern Medicine from Natural Products. Molecules 2016, 21, 559. DOI: 10.3390/molecules21050559.
  • Farzamfar, S.; Naseri-Nosar, M.; Vaez, A.; Esmaeilpour, F.; Ehterami, A.; Sahrapeyma, H.; Samadian, H.; Hamidieh, -A.-A.; Ghorbani, S.; Goodarzi, A. Neural Tissue Regeneration by a Gabapentin-loaded Cellulose Acetate/gelatin Wet-electrospun Scaffold. Cellulose 2018, 25, 1229–1238. DOI: 10.1007/s10570-017-1632-z.
  • Parvez, M. K.;. Natural or Plant Products for the Treatment of Neurological Disorders: Current Knowledge. Curr. Drug Metab. 2018, 19, 424–428. DOI: 10.2174/1389200218666170710190249.
  • Ehterami, A.; Salehi, M.; Farzamfar, S.; Samadian, H.; Vaez, A.; Ghorbani, S.; Ai, J.; Sahrapeyma, H. Chitosan/alginate Hydrogels Containing Alpha-tocopherol for Wound Healing in Rat Model. J. Drug Delivery Sci. Technol. 2019, 51, 204–213. DOI: 10.1016/j.jddst.2019.02.032.
  • Khoshnevisan, K.; Maleki, H.; Samadian, H.; Doostan, M.; Khorramizadeh, M. R. Antibacterial and Antioxidant Assessment of Cellulose Acetate/polycaprolactone Nanofibrous Mats Impregnated with Propolis. Int. J. Biol. Macromol. 2019, 140, 1260–1268. DOI: 10.1016/j.ijbiomac.2019.08.207.
  • Ahmed, H. M.;. Ethnopharmacobotanical Study on the Medicinal Plants Used by Herbalists in Sulaymaniyah Province, Kurdistan, Iraq. J. Ethnobiol. Ethnomed. 2016, 12, 8. DOI: 10.1186/s13002-016-0081-3.
  • Bragazzi, N. L.; Khabbache, H.; Vecchio, I.; Martini, M.; Perduca, M.; Zerbetto, R.; Re, T. S. Ancient Shamanism and Modern Psychotherapy: From Athropology to Evidence-Based Psychodelic Medicine. Cosmos Hist. 2018, 14, 142–152.
  • Mushtaq, S.; Abbasi, B. H.; Uzair, B.; Abbasi, R. Natural Products as Reservoirs of Novel Therapeutic Agents. Excli J. 2018, 17, 420.
  • Hendrich, S.; Murphy, P. A. Handbook of Nutraceuticals and Functional Foods. Isoflavones: Source and Metabolism. J Crit. Rev. Biotechnol.Russell, I., Stewart, G., Eds.; CRC Press, 2016; pp 34–65.
  • Saewan, N.; Jimtaisong, A. Natural Products as Photoprotection. J. Cosmet. Dermatol. 2015, 14, 47–63. DOI: 10.1111/jocd.2015.14.issue-1.
  • Duke, J. A.; Cseke, L. J.; Warber, S.; Kirakosyan, A.; Brielmann, H. L.; Kaufman, P. B. Natural Products from Plants; CRC press, 2016.
  • Soares, S.; Brandão, E.; Mateus, N.; de Freitas, V. Sensorial Properties of Red Wine Polyphenols: Astringency and Bitterness. Crit. Rev. Food Sci. Nutr. 2017, 57, 937–948. DOI: 10.1080/10408398.2014.946468.
  • Singh, J. P.; Kaur, A.; Singh, N.; Nim, L.; Shevkani, K.; Kaur, H.; Arora, D. S. In Vitro Antioxidant and Antimicrobial Properties of Jambolan (Syzygium Cumini) Fruit Polyphenols. LWT Food Sci. Technol. 2016, 65, 1025–1030. DOI: 10.1016/j.lwt.2015.09.038.
  • Liu, Y.; Ma, S.-S.; Ibrahim, S. A.; Li, E.-H.; Yang, H.; Huang, W. Identification and Antioxidant Properties of Polyphenols in Lotus Seed Epicarp at Different Ripening Stages. Food Chem. 2015, 185, 159–164. DOI: 10.1016/j.foodchem.2015.03.117.
  • Rich, R. R.; Fleisher, T. A.; Shearer, W. T.; Schroeder, J. H. W.; Frew, A. J.; Weyand, C. M. Clinical Immunology E-Book: Principles and Practice; Elsevier Health Sciences, 2012.
  • Parham, P. The Immune System; Garland Science Publishers, 2014.
  • Caturegli, P.; Lupi, I.; Gutenberg, A. The Autoimmune Diseases. In Autoimmune Hypophysitis; Drucker, D. J., Ed.; Elsevier, 2014; pp 633–646.
  • Kunavue, N.; Lien, T. Effects of Fulvic Acid and Probiotic on Growth Performance, Nutrient Digestibility, Blood Parameters and Immunity of Pigs. J. Anim. Sci. Adv. 2012, 2, 711–721.
  • Rahimi, S.; Teymouri, Z. Z.; Karimi, T. M.; Omidbaigi, R.; Rokni, H. Effect of the Three Herbal Extracts on Growth Performance, Immune System, Blood Factors and Intestinal Selected Bacterial Population in Broiler Chickens; J Agric. Sci. Technol, 2011.
  • Hanhineva, K.; Törrönen, R.; Bondia-Pons, I.; Pekkinen, J.; Kolehmainen, M.; Mykkänen, H.; Poutanen, K. Impact of Dietary Polyphenols on Carbohydrate Metabolism. Int. J. Mol. Sci. 2010, 11, 1365–1402. DOI: 10.3390/ijms11041365.
  • Zhao, D.; Simon, J. E.; Wu, Q. A Critical Review on Grape Polyphenols for Neuroprotection: Strategies to Enhance Bioefficacy. Crit. Rev. Food Sci. Nutr. 2019, 60, 1–29.
  • Tangney, C. C.; Rasmussen, H. E. Polyphenols, Inflammation, and Cardiovascular Disease. Curr. Atherosclerosis Rep. 2013, 15, 324. DOI: 10.1007/s11883-013-0324-x.
  • Luca, S. V.; Macovei, I.; Bujor, A.; Miron, A.; Skalicka-Woźniak, K.; Aprotosoaie, A. C.; Trifan, A. Bioactivity of Dietary Polyphenols: The Role of Metabolites. Crit. Rev. Food Sci. Nutr. 2019, 60, 1–34.
  • Van Acker, S. A.; Tromp, M. N.; Griffioen, D. H.; Van Bennekom, W. P.; Van Der Vijgh, W. J.; Bast, A. Structural Aspects of Antioxidant Activity of Flavonoids. Free Radical Biol. Med. 1996, 20, 331–342. DOI: 10.1016/0891-5849(95)02047-0.
  • Magrone, T.; Jirillo, E. Polyphenols from Red Wine are Potent Modulators of Innate and Adaptive Immune Responsiveness. Proc. Nutr. Soc. 2010, 69:, 279–285. DOI: 10.1017/S0029665110000121.
  • Cuevas, A.; Saavedra, N.; Salazar, L.; Abdalla, D. Modulation of Immune Function by Polyphenols: Possible Contribution of Epigenetic Factors. Nutrients 2013, 5, 2314–2332. DOI: 10.3390/nu5072314.
  • Valdés, L.; Cuervo, A.; Salazar, N.; Ruas-Madiedo, P.; Gueimonde, M.; González, S. The Relationship between Phenolic Compounds from Diet and Microbiota: Impact on Human Health. Food Funct. 2015, 6, 2424–2439. DOI: 10.1039/C5FO00322A.
  • García-Villalba, R.; Carrasco-Pancorbo, A.; Nevedomskaya, E.; Mayboroda, O. A.; Deelder, A. M.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Exploratory Analysis of Human Urine by LC–ESI-TOF MS after High Intake of Olive Oil: Understanding the Metabolism of Polyphenols. Anal. Bioanal. Chem. 2010, 398, 463–475. DOI: 10.1007/s00216-010-3899-x.
  • Marina Lecci, R.; Logrieco, A.; Leone, A. Pro-oxidative Action of Polyphenols as Action Mechanism for Their Pro-apoptotic Activity. Anti-Cancer Agents Med. Chem. (Formerly Current Medicinal Chemistry-Anti-Cancer Agents) 2014, 14, 1363–1375.
  • Heleno, S. A.; Martins, A.; Queiroz, M. J. R.; Ferreira, I. C. Bioactivity of Phenolic Acids: Metabolites versus Parent Compounds: A Review. Food Chem. 2015, 173, 501–513. DOI: 10.1016/j.foodchem.2014.10.057.
  • Yahfoufi, N.; Alsadi, N.; Jambi, M.; Matar, C. The Immunomodulatory and Anti-inflammatory Role of Polyphenols. Nutrients 2018, 10, 1618. DOI: 10.3390/nu10111618.
  • Rasouli, H.; Farzaei, M. H.; Khodarahmi, R. Polyphenols and Their Benefits: A Review. Int. J. Food Prop. 2017, 20, 1700–1741.
  • Malireddy, S.; Kotha, S. R.; Secor, J. D.; Gurney, T. O.; Abbott, J. L.; Maulik, G.; Maddipati, K. R.; Parinandi, N. L. Phytochemical Antioxidants Modulate Mammalian Cellular Epigenome: Implications in Health and Disease. Antioxid. Redox Signaling 2012, 17, 327–339. DOI: 10.1089/ars.2012.4600.
  • Santangelo, C.; Varì, R.; Scazzocchio, B.; Di Benedetto, R.; Filesi, C.; Masella, R. Polyphenols, Intracellular Signalling and Inflammation. Ann. Ist Super Sanita. 2007, 43, 394.
  • Karasawa, K.; Uzuhashi, Y.; Hirota, M.; Otani, H. A Matured Fruit Extract of Date Palm Tree (Phoenix Dactylifera L.) Stimulates the Cellular Immune System in Mice. J. Agric. Food Chem. 2011, 59, 11287–11293. DOI: 10.1021/jf2029225.
  • John, C. M.; Sandrasaigaran, P.; Tong, C. K.; Adam, A.; Ramasamy, R. Immunomodulatory Activity of Polyphenols Derived from Cassia Auriculata Flowers in Aged Rats. Cell. Immunol. 2011, 271, 474–479. DOI: 10.1016/j.cellimm.2011.08.017.
  • Landete, J.;. Ellagitannins, Ellagic Acid and Their Derived Metabolites: A Review about Source, Metabolism, Functions and Health. Food Res. Int. 2011, 44, 1150–1160. DOI: 10.1016/j.foodres.2011.04.027.
  • Karakaya, S.;. Bioavailability of Phenolic Compounds. Crit. Rev. Food Sci. Nutr. 2004, 44, 453–464. DOI: 10.1080/10408690490886683.
  • Appeldoorn, M. M.; Vincken, J.-P.; Gruppen, H.; Hollman, P. C. Procyanidin Dimers A1, A2, and B2 are Absorbed without Conjugation or Methylation from the Small Intestine of Rats. J. Nutr. 2009, 139, 1469–1473. DOI: 10.3945/jn.109.106765.
  • Bosscher, D.; Breynaert, A.; Pieters, L.; Hermans, N. Food-based Strategies to Modulate the Composition of the Microbiota and Their Associated Health Effects. J. Physiol. pharmacol./Pol. Physiol. Soc. -Kraków, 1991, Currens. 2009, 60:, 5–11.
  • Manach, C.; Williamson, G.; Morand, C.; Scalbert, A.; Rémésy, C. Bioavailability and Bioefficacy of Polyphenols in Humans. I. Review of 97 Bioavailability Studies. Am. J. Clin. Nutr. 2005, 81, 230S–242S. DOI: 10.1093/ajcn/81.1.230S.
  • Hollman, P. C.; de Vries, J. H.; van Leeuwen, S. D.; Mengelers, M. J.; Katan, M. B. Absorption of Dietary Quercetin Glycosides and Quercetin in Healthy Ileostomy Volunteers. Am. J. Clin. Nutr. 1995, 62, 1276–1282. DOI: 10.1093/ajcn/62.6.1276.
  • Erlund, I.; Kosonen, T.; Alfthan, G.; Mäenpää, J.; Perttunen, K.; Kenraali, J.; Parantainen, J.; Aro, A. Pharmacokinetics of Quercetin from Quercetin Aglycone and Rutin in Healthy Volunteers. Eur. J. Clin. Pharmacol. 2000, 56, 545–553. DOI: 10.1007/s002280000197.
  • Shimoi, K.; Okada, H.; Furugori, M.; Goda, T.; Takase, S.; Suzuki, M.; Hara, Y.; Yamamoto, H.; Kinae, N. Intestinal Absorption of Luteolin and Luteolin 7‐O‐β‐glucoside in Rats and Humans. FEBS Lett. 1998, 438, 220–224. DOI: 10.1016/S0014-5793(98)01304-0.
  • Day, A. J.; Bao, Y.; Morgan, M. R.; Williamson, G. Conjugation Position of Quercetin Glucuronides and Effect on Biological Activity. Free Radical Biol. Med. 2000, 29, 1234–1243. DOI: 10.1016/S0891-5849(00)00416-0.
  • Écile Cren-Olivé, C.; Teissier, E.; Duriez, P.; Rolando, C. Effect of Catechin O-methylated Metabolites and Analogues on Human LDL Oxidation. Free Radical Biol. Med. 2003, 34, 850–855. DOI: 10.1016/S0891-5849(02)01433-8.
  • Plaza, M.; Pozzo, T.; Liu, J.; Gulshan Ara, K. Z.; Turner, C.; Nordberg Karlsson, E. Substituent Effects on in Vitro Antioxidizing Properties, Stability, and Solubility in Flavonoids. J. Agric. Food Chem. 2014, 62, 3321–3333. DOI: 10.1021/jf405570u.
  • Xu, L.; Qi, T.; Xu, L.; Lu, L.; Xiao, M. Recent Progress in the Enzymatic Glycosylation of Phenolic Compounds. J. Carbohydr. Chem. 2016, 35, 1–23. DOI: 10.1080/07328303.2015.1137580.
  • Xiao, J.; Hoögger, P. Stability of Dietary Polyphenols under the Cell Culture Conditions: Avoiding Erroneous Conclusions. J. Agric. Food Chem. 2015, 63, 1547–1557. DOI: 10.1021/jf505514d.
  • Rawat, P.; Kumar, M.; Sharan, K.; Chattopadhyay, N.; Maurya, R. Ulmosides A and B: Flavonoid 6-C-glycosides from Ulmuswallichiana, Stimulating Osteoblast Differentiation Assessed by Alkaline Phosphatase. Bioorg. Med. Chem. Lett. 2009, 19, 4684–4687. DOI: 10.1016/j.bmcl.2009.06.074.
  • Tsao, R.; Li, H. Antioxidant Properties in Vitro and in Vivo: Realistic Assessments of Efficacy of Plant Extracts. Plant Sci. Rev. 2012, 7, 11–13.
  • Wolfe, K. L.; Liu, R. H. Cellular Antioxidant Activity (CAA) Assay for Assessing Antioxidants, Foods, and Dietary Supplements. J. Agric. Food Chem. 2007, 55, 8896–8907. DOI: 10.1021/jf0715166.
  • Bouayed, J.; Bohn, T. Exogenous Antioxidants—double-edged Swords in Cellular Redox State: Health Beneficial Effects at Physiologic Doses versus Deleterious Effects at High Doses. Oxid. Med. Cell. Longev. 2010, 3, 228–237. DOI: 10.4161/oxim.3.4.12858.
  • Halliwell, B.;. Free Radicals and Antioxidants: Updating a Personal View. Nutr. Rev. 2012, 70, 257–265. DOI: 10.1111/j.1753-4887.2012.00476.x.
  • Barbehenn, R.; Dodick, T.; Poopat, U.; Spencer, B. Fenton‐type Reactions and Iron Concentrations in the Midgut Fluids of Tree‐feeding Caterpillars. Arch. Insect Biochem. Physiol. 2005, 60, 32–43. DOI: 10.1002/(ISSN)1520-6327.
  • De Martino, L.; Mencherini, T.; Mancini, E.; Aquino, R. P.; De Almeida, L. F. R.; De Feo, V. In Vitro Phytotoxicity and Antioxidant Activity of Selected Flavonoids. Int. J. Mol. Sci. 2012, 13, 5406–5419. DOI: 10.3390/ijms13055406.
  • Gupta, P.; Sharma, U.; Gupta, P.; Siripurapu, K. B.; Maurya, R. Evolvosides C–E, flavonol-4-O-triglycosides from Evolvulus Alsinoides and Their Anti-stress Activity. Bioorg. Med. Chem. 2013, 21, 1116–1122. DOI: 10.1016/j.bmc.2012.12.040.
  • Yahagi, T.; Daikonya, A.; Kitanaka, S. Flavonol Acylglycosides from Flower of Albizia Julibrissin and Their Inhibitory Effects on Lipid Accumulation in 3T3-L1 Cells. Chem. Pharm. Bull. 2012, 60, 129–136. DOI: 10.1248/cpb.60.129.
  • Yu, Y.-B.; Miyashiro, H.; Nakamura, N.; Hattori, M.; Park, J. C. Effects of Triterpenoids and Flavonoids Isolated from Alnus Firma on HIV-1 Viral Enzymes. Arch. Pharmacal Res. 2007, 30, 820. DOI: 10.1007/BF02978831.
  • Bae, E.-A.; Han, M. J.; Lee, M.; KIM, D.-H. In Vitro Inhibitory Effect of Some Flavonoids on Rotavirus Infectivity. Biol. Pharm. Bull. 2000, 23, 1122–1124. DOI: 10.1248/bpb.23.1122.
  • Kong, C.-S.; Im Lee, J.; Kim, Y. A.; Kim, J.-A.; Bak, S. S.; Hong, J. W.; Park, H. Y.; Yea, S. S.; Seo, Y. Evaluation on Anti-adipogenic Activity of Flavonoid Glucopyranosides from Salicornia Herbacea. Process Biochem. 2012, 47, 1073–1078. DOI: 10.1016/j.procbio.2012.03.011.
  • Cai, Y.-Z.; Sun, M.; Xing, J.; Luo, Q.; Corke, H. Structure–radical Scavenging Activity Relationships of Phenolic Compounds from Traditional Chinese Medicinal Plants. Life Sci. 2006, 78, 2872–2888. DOI: 10.1016/j.lfs.2005.11.004.
  • Xiao, J.;. Dietary Flavonoid Aglycones and Their Glycosides: Which Show Better Biological Significance? Crit. Rev. Food Sci. Nutr. 2017, 57, 1874–1905. DOI: 10.1080/10408398.2015.1032400.
  • Lairson, L.; Henrissat, B.; Davies, G.; Withers, S. Glycosyltransferases: Structures, Functions, and Mechanisms. Annu. Rev. Biochem. 2008, 77.
  • Paulke, A.; Eckert, G. P.; Schubert-Zsilavecz, M.; Wurglics, M. Isoquercitrin Provides Better Bioavailability than Quercetin: Comparison of Quercetin Metabolites in Body Tissue and Brain Sections after Six Days Administration of Isoquercitrin and Quercetin. Die Pharmazie. 2012, 67, 991–996.
  • Zhang, L.; Lin, G.; Chang, Q.; Zuo, Z. Role of Intestinal First-pass Metabolism of Baicalein in Its Absorption Process. Pharm. Res. 2005, 22, 1050–1058. DOI: 10.1007/s11095-005-5303-7.
  • Dai, J.-Y.; Yang, J.-L.; Li, C. Transport and Metabolism of Flavonoids from Chinese Herbal Remedy Xiaochaihu-tang across Human Intestinal Caco-2 Cell Monolayers. Acta Pharmacol. Sin. 2008, 29:, 1086. DOI: 10.1111/j.1745-7254.2008.00850.x.
  • Liu, T.; Jiang, X. Studies on the Absorption Kinetics of Baicalin and Baicalein in Rats’ Stomachs and Intestines. Zhongguo Zhong Yao Za Zhi 2006, 31, 999–1001.
  • Kottra, G.; Daniel, H. Flavonoid Glycosides are Not Transported by the Human Na+/glucose Transporter When Expressed in Xenopus Laevis Oocytes, but Effectively Inhibit Electrogenic Glucose Uptake. J. Pharmacol. Exp. Ther. 2007, 322, 829–835. DOI: 10.1124/jpet.107.124040.
  • Chen, Y.; Wang, J.; Jia, X.; Tan, X.; Hu, M. Role of Intestinal Hydrolase in the Absorption of Prenylated Flavonoids Present in Yinyanghuo. Molecules 2011, 16, 1336–1348. DOI: 10.3390/molecules16021336.
  • Monagas, M.; Urpi-Sarda, M.; Sánchez-Patán, F.; Llorach, R.; Garrido, I.; Gómez-Cordovés, C.; Andres-Lacueva, C.; Bartolomé, B. Insights into the Metabolism and Microbial Biotransformation of Dietary Flavan-3-ols and the Bioactivity of Their Metabolites. Food Funct. 2010, 1, 233–253. DOI: 10.1039/c0fo00132e.
  • Rein, M. J.; Renouf, M.; Cruz‐Hernandez, C.; Actis‐Goretta, L.; Thakkar, S. K.; Da Silva Pinto, M. Bioavailability of Bioactive Food Compounds: A Challenging Journey to Bioefficacy. Br. J. Clin. Pharmacol. 2013, 75, 588–602. DOI: 10.1111/j.1365-2125.2012.04425.x.
  • Manach, C.; Donovan, J. L. Pharmacokinetics and Metabolism of Dietary Flavonoids in Humans. Free Radical Res. 2004, 38, 771–786. DOI: 10.1080/10715760410001727858.
  • Del Rio, D.; Borges, G.; Crozier, A. Berry Flavonoids and Phenolics: Bioavailability and Evidence of Protective Effects. Br. J. Nutr. 2010, 104, S67–S90. DOI: 10.1017/S0007114510003958.
  • Coussens, L. M.; Werb, Z. Inflammation and Cancer. Nature. 2002, 420, 860. DOI: 10.1038/nature01322.
  • Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food Sources and Bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. DOI: 10.1093/ajcn/79.5.727.
  • Archivio.M, D.; Filesi, C; Di Benedetto, R; Gargiulo R; Giovannini, C; Masella, R. Polyphenols, Dietary Sources and Bioavailability. Ann Ist Super Sanita. 2007, 43, 348.
  • Jacobs, D. M.; Gaudier, E.; Duynhoven, J.; Vaughan, E. E. Non-digestible Food Ingredients, Colonic Microbiota and the Impact on Gut Health and Immunity: A Role for Metabolomics. Curr. Drug Metab. 2009, 10, 41–54. DOI: 10.2174/138920009787048383.
  • Kutschera, M.; Engst, W.; Blaut, M.; Braune, A. Isolation of Catechin‐converting Human Intestinal Bacteria. J. Appl. Microbiol. 2011, 111, 165–175. DOI: 10.1111/jam.2011.111.issue-1.
  • Cardona, F.; Andrés-Lacueva, C.; Tulipani, S.; Tinahones, F. J.; Queipo-Ortuño, M. I. Benefits of Polyphenols on Gut Microbiota and Implications in Human Health. J. Nutr. Biochem. 2013, 24, 1415–1422. DOI: 10.1016/j.jnutbio.2013.05.001.
  • Cerdá, B.; Tomás-Barberán, F. A.; Espín, J. C. Metabolism of Antioxidant and Chemopreventive Ellagitannins from Strawberries, Raspberries, Walnuts, and Oak-aged Wine in Humans: Identification of Biomarkers and Individual Variability. J. Agric. Food Chem. 2005, 53, 227–235. DOI: 10.1021/jf049144d.
  • Gross, G.; Jacobs, D. M.; Peters, S.; Possemiers, S.; van Duynhoven, J.; Vaughan, E. E. Van De Wiele T. In Vitro Bioconversion of Polyphenols from Black Tea and Red Wine/grape Juice by Human Intestinal Microbiota Displays Strong Interindividual Variability. J. Agric. Food Chem. 2010, 58, 10236–10246. DOI: 10.1021/jf101475m.
  • Bokkenheuser, V. D.; Shackleton, C.; Winter, J. Hydrolysis of Dietary Flavonoid Glycosides by Strains of Intestinal Bacteroides from Humans. Biochem. J. 1987, 248, 953–956. DOI: 10.1042/bj2480953.
  • Espín, J. C.; González-Barrio, R.; Cerdá, B.; López-Bote, C.; Rey, A. I.; Tomás-Barberán, F. A. Iberian Pig as a Model to Clarify Obscure Points in the Bioavailability and Metabolism of Ellagitannins in Humans. J. Agric. Food Chem. 2007, 55, 10476–10485. DOI: 10.1021/jf0723864.
  • Crespy, V.; Morand, C.; Besson, C.; Manach, C.; Deémigneé, C.; Remesy, C. Comparison of the Intestinal Absorption of Quercetin, Phloretin and Their Glucosides in Rats. J. Nutr. 2001, 131, 2109–2114. DOI: 10.1093/jn/131.8.2109.
  • Sesink, A. L.; O’Leary, K. A.; Hollman, P. C. Quercetin Glucuronides but Not Glucosides are Present in Human Plasma after Consumption of Quercetin-3-glucoside or Quercetin-4′-glucoside. J. Nutr. 2001, 131, 1938–1941. DOI: 10.1093/jn/131.7.1938.
  • Heinonen, S.-M.; Wähälä, K.; Liukkonen, K.-H.; Aura, A.-M.; Poutanen, K.; Adlercreutz, H. Studies of the in Vitro Intestinal Metabolism of Isoflavones Aid in the Identification of Their Urinary Metabolites. J. Agric. Food Chem. 2004, 52, 2640–2646. DOI: 10.1021/jf030681s.
  • Hosseinzade, A.; Sadeghi, O.; Biregani, A. N.; Soukhtehzari, S.; Brandt, G. S.; Esmaillzadeh, A. Immunomodulatory Effects of Flavonoids: Possible Induction of T CD4+ Regulatory Cells through Suppression of mTOR Pathway Signaling Activity. Front. Immunol. 2019, 10.
  • Zhu, J.; Yamane, H.; Paul, W. E. Differentiation of Effector CD4 T Cell Populations. Annu. Rev. Immunol. 2009, 28, 445–489. DOI: 10.1146/annurev-immunol-030409-101212.
  • Shi, L. Z.; Wang, R.; Huang, G.; Vogel, P.; Neale, G.; Green, D. R.; Chi, H. HIF1α–dependent Glycolytic Pathway Orchestrates a Metabolic Checkpoint for the Differentiation of TH17 and Treg Cells. J. Exp. Med. 2011, 208, 1367–1376. DOI: 10.1084/jem.20110278.
  • Wong, C. P.; Nguyen, L. P.; Noh, S. K.; Bray, T. M.; Bruno, R. S.; Ho, E. Induction of Regulatory T Cells by Green Tea Polyphenol EGCG. Immunol. Lett. 2011, 139, 7–13. DOI: 10.1016/j.imlet.2011.04.009.
  • Wang, J.; Pae, M.; Meydani, S. N.; Wu, D. Green Tea Epigallocatechin-3-gallate Modulates Differentiation of Naïve CD4+ T Cells into Specific Lineage Effector Cells. J. Mol. Med. 2013, 91, 485–495. DOI: 10.1007/s00109-012-0964-2.
  • Yang, J.; Yang, X.; Li, M. Baicalin, a Natural Compound, Promotes Regulatory T Cell Differentiation. BMC Complementary Altern. Med. 2012, 12, 64. DOI: 10.1186/1472-6882-12-64.
  • Yang, J.; Yang, X.; Chu, Y.; Li, M.; Bobé, P. Identification of Baicalin as an Immunoregulatory Compound by Controlling TH17 Cell Differentiation. PLoS One 2011, 6, e17164. DOI: 10.1371/journal.pone.0017164.
  • Wang, H.-K.; Yeh, C.-H.; Iwamoto, T.; Satsu, H.; Shimizu, M.; Totsuka, M. Dietary Flavonoid Naringenin Induces Regulatory T Cells via an Aryl Hydrocarbon Receptor Mediated Pathway. J. Agric. Food Chem. 2012, 60, 2171–2178. DOI: 10.1021/jf204625y.
  • Zunino, S. J.; Storms, D. H. Resveratrol Alters Proliferative Responses and Apoptosis in Human Activated B Lymphocytes in Vitro. J. Nutr. 2009, 139, 1603–1608. DOI: 10.3945/jn.109.105064.
  • Sanbongi, C.; Suzuki, N.; Sakane, T. Polyphenols in Chocolate, Which Have Antioxidant Activity, Modulate Immune Functions in Humansin Vitro. Cell. Immunol. 1997, 177, 129–136. DOI: 10.1006/cimm.1997.1109.
  • Hassanain, E.; Silverberg, J. I.; Norowitz, K. B.; Chice, S.; Bluth, M. H.; Brody, N.; Joks, R.; Durkin, H. G.; Smith-Norowitz, T. A. Green Tea (Camelia Sinensis) Suppresses B Cell Production of IgE without Inducing Apoptosis. Ann. Clin. Lab. Sci. 2010, 40, 135–143.
  • Wang, K.; Ping, S.; Huang, S.; Hu, L.; Xuan, H.; Zhang, C.; Hu, F. Molecular Mechanisms Underlying the in Vitro Anti-inflammatory Effects of a Flavonoid-rich Ethanol Extract from Chinese Propolis (Poplar Type). Evid. Based Complement. Altern. Med. 2013, 2013.
  • Lai, Z.-R.; Ho, Y.-L.; Huang, S.-C.; Huang, T.-H.; Lai, S.-C.; Tsai, J.-C.; Wang, C.-Y.; Huang, G.-J.; Chang, Y.-S. Antioxidant, Anti-inflammatory and Antiproliferative Activities of Kalanchoe Gracilis (L.) DC Stem. Am. J. Chin. Med. 2011, 39, 1275–1290. DOI: 10.1142/S0192415X1100955X.
  • Park, K.-I.; Kang, S.-R.; Park, H.-S.; Lee, D. H.; Nagappan, A.; Kim, J. A.; Shin, S. C.; Kim, E. H.; Lee, W. S.; Chung, H.-J. Regulation of Proinflammatory Mediators via NF-κB and P38 MAPK-dependent Mechanisms in RAW 264.7 Macrophages by Polyphenol Components Isolated from Korea Lonicera Japonica Thunb. Evid. Based Complement. Altern. Med. 2012, 2012.
  • Xie, C.; Kang, J.; Ferguson, M. E.; Nagarajan, S.; Badger, T. M.; Wu, X. Blueberries Reduce Pro‐inflammatory Cytokine TNF‐α and IL‐6 Production in Mouse Macrophages by Inhibiting NF‐κB Activation and the MAPK Pathway. Mol. Nutr. Food Res. 2011, 55, 1587–1591. DOI: 10.1002/mnfr.201100344.
  • Kolehmainen, M.; Mykkänen, O.; Kirjavainen, P. V.; Leppänen, T.; Moilanen, E.; Adriaens, M.; Laaksonen, D. E.; Hallikainen, M.; Puupponen‐Pimiä, R.; Pulkkinen, L. Bilberries Reduce Low‐grade Inflammation in Individuals with Features of Metabolic Syndrome. Mol. Nutr. Food Res. 2012, 56, 1501–1510. DOI: 10.1002/mnfr.v56.10.
  • Chiva-Blanch, G.; Urpi-Sarda, M.; Llorach, R.; Rotches-Ribalta, M.; Guillen, M.; Casas, R.; Arranz, S.; Valderas-Martinez, P.; Portoles, O.; Corella, D. Differential Effects of Polyphenols and Alcohol of Red Wine on the Expression of Adhesion Molecules and Inflammatory Cytokines Related to Atherosclerosis: A Randomized Clinical Trial. Am. J. Clin. Nutr. 2011, 95, 326–334. DOI: 10.3945/ajcn.111.022889.
  • Ghanadian, S. M.; Ayatollahi, A. M.; Afsharypour, S.; Hareem, S.; Abdalla, O. M.; Bankeu, J. J. K. Flavonol Glycosides from Euphorbia Microsciadia Bioss. With Their Immunomodulatory Activities. Iran. J. Pharm. Res. 2012, 11, 925.
  • Valentová, K.; Šíma, P.; Rybková, Z.; Křížan, J.; Malachová, K.; Křen, V. (Anti) Mutagenic and Immunomodulatory Properties of Quercetin Glycosides. J. Sci. Food Agric. 2016, 96, 1492–1499. DOI: 10.1002/jsfa.2016.96.issue-5.
  • López-Posadas, R.; Ballester, I.; Abadía-Molina, A. C.; Suárez, M. D.; Zarzuelo, A.; Martínez-Augustin, O.; de Medina, F. S. Effect of Flavonoids on Rat Splenocytes, a Structure–activity Relationship Study. Biochem. Pharmacol. 2008, 76, 495–506. DOI: 10.1016/j.bcp.2008.06.001.
  • Libby, P.; Ridker, P. M.; Maseri, A. Inflammation and Atherosclerosis. Circulation 2002, 105, 1135–1143. DOI: 10.1161/hc0902.104353.
  • Huang, S. M.; Wu, C. H.; Yen, G. C. Effects of Flavonoids on the Expression of the Pro‐inflammatory Response in Human Monocytes Induced by Ligation of the Receptor for AGEs. Mol. Nutr. Food Res. 2006, 50, 1129–1139. DOI: 10.1002/mnfr.200600075.
  • Zhang, H.; Tsao, R. Dietary Polyphenols, Oxidative Stress and Antioxidant and Anti-inflammatory Effects. Curr. Opin. Food Sci. 2016, 8, 33–42. DOI: 10.1016/j.cofs.2016.02.002.
  • Bai, N.; He, K.; Roller, M.; Lai, C.-S.; Shao, X.; Pan, M.-H.; Bily, A.; Ho, C.-T. Flavonoid Glycosides from Microtea Debilis and Their Cytotoxic and Anti-inflammatory Effects. Fitoterapia 2011, 82, 168–172. DOI: 10.1016/j.fitote.2010.08.014.
  • Wang, J.; Mazza, G. Effects of Anthocyanins and Other Phenolic Compounds on the Production of Tumor Necrosis Factor α in LPS/IFN-γ-activated RAW 264.7 Macrophages. J. Agric. Food Chem. 2002, 50, 4183–4189. DOI: 10.1021/jf011613d.
  • Lu, H.; Meng, X.; Li, C.; Sang, S.; Patten, C.; Sheng, S.; Hong, J.; Bai, N.; Winnik, B.; Ho, C.-T. Glucuronides of Tea Catechins: Enzymology of Biosynthesis and Biological Activities. Drug Metab. Dispos. 2003, 31, 452–461. DOI: 10.1124/dmd.31.4.452.
  • Kwon, Y. S.; Kim, -S.-S.; Sohn, S. J.; Kong, P.-J.; Cheong, I.-Y.; Kim, C. M.; Chun, W. Modulation of Suppressive Activity of Lipopolysaccharide-induced Nitric Oxide Production by Glycosidation of Flavonoids. Arch. Pharmacal Res. 2004, 27, 751. DOI: 10.1007/BF02980144.
  • Comalada, M.; Camuesco, D.; Sierra, S.; Ballester, I.; Xaus, J.; Gálvez, J.; Zarzuelo, A. In Vivo Quercitrin Anti‐inflammatory Effect Involves Release of Quercetin, Which Inhibits Inflammation through Down‐regulation of the NF‐κB Pathway. Eur. J. Immunol. 2005, 35, 584–592. DOI: 10.1002/eji.200425778.
  • Hämäläinen, M.; Nieminen, R.; Vuorela, P.; Heinonen, M.; Moilanen, E. Mediators of Inflammation. In Anti-inflammatory Effects of Flavonoids: Genistein, Kaempferol, Quercetin, and Daidzein Inhibit STAT-1 and NF-κB Activations, Whereas Flavone, Isorhamnetin, Naringenin, and Pelargonidin Inhibit Only NF-κB Activation along with Their Inhibitory Effect on iNOS Expression and NO Production in Activated Macrophages; Aggarwal, B. B., Surh, Y. J., Shishodia, S., Eds.; Springer Science, Business Media, 2007; pp 2007.
  • Park, J.-S.; Woo, M.-S.; Kim, D.-H.; Hyun, J.-W.; Kim, W.-K.; Lee, J.-C.; Kim, H.-S. Anti-inflammatory Mechanisms of Isoflavone Metabolites in Lipopolysaccharide-stimulated Microglial Cells. J. Pharmacol. Exp. Ther. 2007, 320, 1237–1245. DOI: 10.1124/jpet.106.114322.
  • Kim, S. K.; Kim, H. J.; Choi, S. E.; Park, K. H.; Choi, H. K.; Lee, M. W. Anti-oxidative and Inhibitory Activities on Nitric Oxide (NO) and Prostaglandin E 2 (COX-2) Production of Flavonoids from Seeds of Prunus Tomentosa Thunberg. Arch. Pharmacal Res. 2008, 31, 424. DOI: 10.1007/s12272-001-1174-9.
  • Winterbone, M. S.; Tribolo, S.; Needs, P. W.; Kroon, P. A.; Hughes, D. A. Physiologically Relevant Metabolites of Quercetin Have No Effect on Adhesion Molecule or Chemokine Expression in Human Vascular Smooth Muscle Cells. Atherosclerosis 2009, 202, 431–438. DOI: 10.1016/j.atherosclerosis.2008.04.040.
  • Amaro, M. I.; Rocha, J.; Vila-Real, H.; Eduardo-Figueira, M.; Mota-Filipe, H.; Sepodes, B.; Ribeiro, M. H. Anti-inflammatory Activity of Naringin and the Biosynthesised Naringenin by Naringinase Immobilized in Microstructured Materials in a Model of DSS-induced Colitis in Mice. Food Res. Int. 2009, 42, 1010–1017. DOI: 10.1016/j.foodres.2009.04.016.
  • Boesch-Saadatmandi, C.; Loboda, A.; Wagner, A. E.; Stachurska, A.; Jozkowicz, A.; Dulak, J.; Döring, F.; Wolffram, S.; Rimbach, G. Effect of Quercetin and Its Metabolites Isorhamnetin and Quercetin-3-glucuronide on Inflammatory Gene Expression: Role of miR-155. J. Nutr. Biochem. 2011, 22, 293–299. DOI: 10.1016/j.jnutbio.2010.02.008.
  • Mao, Y.-W.; Tseng, H.-W.; Liang, W.-L.; Chen, I.-S.; Chen, S.-T.; Lee, M.-H. Anti-inflammatory and Free Radial Scavenging Activities of the Constituents Isolated from Machilus Zuihoensis. Molecules 2011, 16, 9451–9466. DOI: 10.3390/molecules16119451.
  • Giménez‐Bastida, J. A.; González‐Sarrías, A.; Larrosa, M.; Tomás‐Barberán, F.; Espín, J. C.; García‐Conesa, M. T. Ellagitannin Metabolites, Urolithin A Glucuronide and Its Aglycone Urolithin A, Ameliorate TNF‐α‐induced Inflammation and Associated Molecular Markers in Human Aortic Endothelial Cells. Mol. Nutr. Food Res. 2012, 56, 784–796. DOI: 10.1002/mnfr.201100677.
  • Dall’Asta, M.; Derlindati, E.; Curella, V.; Mena, P.; Calani, L.; Ray, S.; Zavaroni, I.; Brighenti, F.; Del Rio, D. Effects of Naringenin and Its Phase II Metabolites on in Vitro Human Macrophage Gene Expression. Int. J. Food Sci. Nutr. 2013, 64, 843–849. DOI: 10.3109/09637486.2013.804039.
  • Kim, H. H.; Kim, D. H.; Kim, M. H.; Oh, M. H.; Kim, S. R.; Park, K. J.; Lee, M. W. Flavonoid Constituents in the Leaves of Myrica Rubra Sieb. Et Zucc. With Anti-inflammatory Activity. Arch. Pharmacal Res. 2013, 36, 1533–1540. DOI: 10.1007/s12272-013-0147-x.
  • Walker, J.; Schueller, K.; Schaefer, L.-M.; Pignitter, M.; Esefelder, L.; Somoza, V. Resveratrol and Its Metabolites Inhibit Pro-inflammatory Effects of Lipopolysaccharides in U-937 Macrophages in Plasma-representative Concentrations. Food Funct. 2014, 5, 74–84. DOI: 10.1039/C3FO60236B.
  • Lesjak, M.; Beara, I.; Simin, N.; Pintać, D.; Majkić, T.; Bekvalac, K.; Orčić, D.; Mimica-Dukić, N. Antioxidant and Anti-inflammatory Activities of Quercetin and Its Derivatives. J. Funct. Foods 2018, 40, 68–75. DOI: 10.1016/j.jff.2017.10.047.
  • Lee, S. J.; Son, K. H.; Chang, H. W.; Do, J. C.; Jung, K. Y.; Kang, S. S.; Kim, H. P. Antiinflammatory Activity of Naturally Occurring Flavone and Flavonol Glycosides. Arch. Pharmacal Res. 1993, 16, 25. DOI: 10.1007/BF02974123.
  • Hostetler, G.; Riedl, K.; Cardenas, H.; Diosa‐Toro, M.; Arango, D.; Schwartz, S.; Doseff, A. I. Flavone Deglycosylation Increases Their Anti‐inflammatory Activity and Absorption. Mol. Nutr. Food Res. 2012, 56, 558–569. DOI: 10.1002/mnfr.201100596.
  • Tayyem, R. F.; Heath, D. D.; Al-Delaimy, W. K.; Rock, C. L. Curcumin Content of Turmeric and Curry Powders. Nutr. Cancer 2006, 55, 126–131. DOI: 10.1207/s15327914nc5502_2.
  • Aggarwal, B. B.; Sundaram, C.; Malani, N.; Ichikawa, H. The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease. In Curcumin: The Indian Solid Gold; Finglas, P., Ed.; Trends in Food Science & Technology, Elsevier, 2007; pp 1–75.
  • Esatbeyoglu, T.; Huebbe, P.; Ernst, I. M.; Chin, D.; Wagner, A. E.; Rimbach, G. Curcumin—from Molecule to Biological Function. Angew. Chem. Int. Ed. 2012, 51, 5308–5332. DOI: 10.1002/anie.201107724.
  • Creţu, E.; Trifan, A.; Vasincu, A.; Miron, A. Plant-derived Anticancer Agents-curcumin in Cancer Prevention and Treatment. Rev. Med. Chir. Soc. Med. Nat. Iasi. 2012, 116, 1223–1229.
  • Prasad, S.; Tyagi, A. K.; Aggarwal, B. B. Recent Developments in Delivery, Bioavailability, Absorption and Metabolism of Curcumin: The Golden Pigment from Golden Spice. Cancer Res. Treat. 2014, 46, 2. DOI: 10.4143/crt.2014.46.1.2.
  • Hewlings, S.; Kalman, D. Curcumin: A Review of Its’ Effects on Human Health. Foods. 2017, 6, 92. DOI: 10.3390/foods6100092.
  • Kocaadam, B.; Şanlier, N. Curcumin, an Active Component of Turmeric (Curcuma Longa), and Its Effects on Health. Crit. Rev. Food Sci. Nutr. 2017, 57, 2889–2895. DOI: 10.1080/10408398.2015.1077195.
  • Pan, M.-H.; Huang, T.-M.; Lin, J.-K. Biotransformation of Curcumin through Reduction and Glucuronidation in Mice. Drug Metab. Dispos. 1999, 27, 486–494.
  • Ireson, C. R.; Jones, D. J.; Orr, S.; Coughtrie, M. W.; Boocock, D. J.; Williams, M. L.; Farmer, P. B.; Steward, W. P.; Gescher, A. J. Metabolism of the Cancer Chemopreventive Agent Curcumin in Human and Rat Intestine. Cancer Epidemiol. Prev. Biomarkers. 2002, 11, 105–111.
  • Mukhopadhyay, A.; Basu, N.; Ghatak, N.; Gujral, P. Anti-inflammatory and Irritant Activities of Curcumin Analogues in Rats. Agents Actions 1982, 12, 508–515. DOI: 10.1007/BF01965935.
  • Ireson, C.; Orr, S.; Jones, D. J.; Verschoyle, R.; Lim, C.-K.; Luo, J.-L.; Howells, L.; Plummer, S.; Jukes, R.; Williams, M. Characterization of Metabolites of the Chemopreventive Agent Curcumin in Human and Rat Hepatocytes and in the Rat in Vivo, and Evaluation of Their Ability to Inhibit Phorbol Ester-induced Prostaglandin E2 Production. Cancer Res. 2001, 61, 1058–1064.
  • Dileep, K.; Tintu, I.; Sadasivan, C. Molecular Docking Studies of Curcumin Analogs with Phospholipase A2. Interdiscip. Sci. 2011, 3, 189.
  • Hong, J.; Bose, M.; Ju, J.; Ryu, J.-H.; Chen, X.; Sang, S.; Lee, M.-J.; Yang, C. S. Modulation of Arachidonic Acid Metabolism by Curcumin and Related β-diketone Derivatives: Effects on Cytosolic Phospholipase A 2, Cyclooxygenases and 5-lipoxygenase. Carcinogenesis. 2004, 25, 1671–1679. DOI: 10.1093/carcin/bgh165.
  • Pan, M.-H.; Lin-Shiau, S.-Y.; Lin, J.-K. Comparative Studies on the Suppression of Nitric Oxide Synthase by Curcumin and Its Hydrogenated Metabolites through Down-regulation of IκB Kinase and NFκB Activation in Macrophages. Biochem. Pharmacol. 2000, 60, 1665–1676. DOI: 10.1016/S0006-2952(00)00489-5.
  • Guo, Y.; Bruno, R. S. Endogenous and Exogenous Mediators of Quercetin Bioavailability. J. Nutr. Biochem. 2015, 26, 201–210. DOI: 10.1016/j.jnutbio.2014.10.008.
  • Luca, V. S.; Miron, A.; Aprotosoaie, A. C. The Antigenotoxic Potential of Dietary Flavonoids. Phytochem. Rev. 2016, 15, 591–625. DOI: 10.1007/s11101-016-9457-1.
  • Wang, W.; Sun, C.; Mao, L.; Ma, P.; Liu, F.; Yang, J.; Gao, Y. The Biological Activities, Chemical Stability, Metabolism and Delivery Systems of Quercetin: A Review. Trends Food Sci. Technol. 2016, 56, 21–38. DOI: 10.1016/j.tifs.2016.07.004.
  • Chen, L.; Teng, H.; Jia, Z.; Battino, M.; Miron, A.; Yu, Z.; Cao, H.; Xiao, J. Intracellular Signaling Pathways of Inflammation Modulated by Dietary Flavonoids: The Most Recent Evidence. Crit. Rev. Food Sci. Nutr. 2018, 58, 2908–2924. DOI: 10.1080/10408398.2017.1345853.
  • Gullon, B.; Lú-Chau, T. A.; Moreira, M. T.; Lema, J. M.; Eibes, G. Rutin: A Review on Extraction, Identification and Purification Methods, Biological Activities and Approaches to Enhance Its Bioavailability. Trends Food Sci. Technol. 2017, 67, 220–235. DOI: 10.1016/j.tifs.2017.07.008.
  • Hrelia, S.; Angeloni, C.; Watson, R.; Preedy, V. Quercetin and Its Metabolites in Heart Health. In Bioactive Food as Dietary Interventions for Cardiovascular Disease, Schwab, M., Ed.; Cancer Letters,  Elsevier, 2012; pp 217–228.
  • Li, Y.; Yao, J.; Han, C.; Yang, J.; Chaudhry, M.; Wang, S.; Liu, H.; Yin, Y. Quercetin, Inflammation and Immunity. Nutrients. 2016, 8, 167. DOI: 10.3390/nu8030167.
  • Choi, S.-J.; Tai, B. H.; Cuong, N. M.; Kim, Y.-H.; Jang, H.-D. Antioxidative and Anti-inflammatory Effect of Quercetin and Its Glycosides Isolated from Mampat (Cratoxylum Formosum). Food Sci. Biotechnol. 2012, 21, 587–595. DOI: 10.1007/s10068-012-0075-4.
  • Funk, J. M. O.; Carroll, R. T.; Thompson, J. F.; Sands, R. H.; Dunham, W. R. Role of Iron in Lipoxygenase Catalysis. J. Am. Chem. Soc. 1990, 112, 5375–5376. DOI: 10.1021/ja00169a069.
  • O’Leary, K. A.; de Pascual-tereasa, S.; Needs, P. W.; Bao, Y.-P.; O’Brien, N. M.; Williamson, G. Effect of Flavonoids and Vitamin E on Cyclooxygenase-2 (COX-2) Transcription. Mutat. Res. 2004, 551, 245–254. DOI: 10.1016/j.mrfmmm.2004.01.015.
  • Okoko, T.; Oruambo, I. F. Inhibitory Activity of Quercetin and Its Metabolite on Lipopolysaccharide-induced Activation of Macrophage U937 Cells. Food Chem. Toxicol. 2009, 47, 809–812. DOI: 10.1016/j.fct.2009.01.013.
  • Szeja, W.; Grynkiewicz, G.; Rusin, A. Isoflavones, Their Glycosides and Glycoconjugates. Synthesis and Biological Activity. Curr. Org. Chem. 2017, 21, 218–235. DOI: 10.2174/1385272820666160928120822.
  • Shimazu, T.; Inoue, M.; Sasazuki, S.; Iwasaki, M.; Sawada, N.; Yamaji, T.; Tsugane, S. Group JPHCbPS: Isoflavone Intake and Risk of Lung Cancer: A Prospective Cohort Study in Japan. Am. J. Clin. Nutr. 2010, 91, 722–728. DOI: 10.3945/ajcn.2009.28161.
  • Setchell, K. D.; Brown, N. M.; Desai, P.; Zimmer-Nechemias, L.; Wolfe, B. E.; Brashear, W. T.; Kirschner, A. S.; Cassidy, A.; Heubi, J. E. Bioavailability of Pure Isoflavones in Healthy Humans and Analysis of Commercial Soy Isoflavone Supplements. J. Nutr. 2001, 131, 1362S–1375S. DOI: 10.1093/jn/131.4.1362S.
  • Richelle, M.; Pridmore-Merten, S.; Bodenstab, S.; Enslen, M.; Offord, E. A. Hydrolysis of Isoflavone Glycosides to Aglycones by β-glycosidase Does Not Alter Plasma and Urine Isoflavone Pharmacokinetics in Postmenopausal Women. J. Nutr. 2002, 132, 2587–2592. DOI: 10.1093/jn/132.9.2587.
  • Setchell, K. D.; Brown, N. M.; Lydeking-Olsen, E. The Clinical Importance of the Metabolite Equol—a Clue to the Effectiveness of Soy and Its Isoflavones. J. Nutr. 2002, 132, 3577–3584. DOI: 10.1093/jn/132.12.3577.
  • Gaya, P.; Peirotén, Á.; Landete, J. M. Transformation of Plant Isoflavones into Bioactive Isoflavones by Lactic Acid Bacteria and Bifidobacteria. J. Funct. Foods. 2017, 39, 198–205. DOI: 10.1016/j.jff.2017.10.029.
  • Wang, X. L.; Kim, K.-T.; Hur, H.; Kim, S.; Lee, J. C-ring Cleavage of Isoflavones Daidzein and Genistein by a Newly-isolated Human Intestinal Bacterium Eubacterium Ramulus Julong 601. J. Microbiol. Biotechnol. 2004, 2004, 306–313.
  • Paradkar, P. N.; Blum, P. S.; Berhow, M. A.; Baumann, H.; Kuo, S.-M. Dietary Isoflavones Suppress Endotoxin-induced Inflammatory Reaction in Liver and Intestine. Cancer Lett. 2004, 215, 21–28. DOI: 10.1016/j.canlet.2004.05.019.
  • Blay, M.; Espinel, A.; Delgado, M.; Baiges, I.; Blade, C.; Arola, L.; Salvado, J. Isoflavone Effect on Gene Expression Profile and Biomarkers of Inflammation. J. Pharm. Biomed. Anal. 2010, 51, 382–390. DOI: 10.1016/j.jpba.2009.03.028.
  • Lin, I.-C.; Yamashita, S.; Murata, M.; Kumazoe, M.; Tachibana, H. Equol Suppresses Inflammatory Response and Bone Erosion Due to Rheumatoid Arthritis in Mice. J. Nutr. Biochem. 2016, 32, 101–106. DOI: 10.1016/j.jnutbio.2016.02.012.
  • Peng, Y.; Shi, Y.; Zhang, H.; Mine, Y.; Tsao, R. Anti-inflammatory and Anti-oxidative Activities of Daidzein and Its Sulfonic Acid Ester Derivatives. J. Funct. Foods. 2017, 35, 635–640. DOI: 10.1016/j.jff.2017.06.027.
  • Gu, L.; Kelm, M. A.; Hammerstone, J. F.; Beecher, G.; Holden, J.; Haytowitz, D.; Gebhardt, S.; Prior, R. L. Concentrations of Proanthocyanidins in Common Foods and Estimations of Normal Consumption. J. Nutr. 2004, 134:, 613–617. DOI: 10.1093/jn/134.3.613.
  • Saura-Calixto, F.; Serrano, J.; Goni, I. Intake and Bioaccessibility of Total Polyphenols in a Whole Diet. Food Chem. 2007, 101, 492–501. DOI: 10.1016/j.foodchem.2006.02.006.
  • Aura, A.-M.;. Microbial Metabolism of Dietary Phenolic Compounds in the Colon. Phytochem. Rev. 2008, 7, 407–429. DOI: 10.1007/s11101-008-9095-3.
  • Grimm, T.; Schäfer, A.; Högger, P. Antioxidant Activity and Inhibition of Matrix Metalloproteinases by Metabolites of Maritime Pine Bark Extract (Pycnogenol). Free Radical Biol. Med. 2004, 36, 811–822. DOI: 10.1016/j.freeradbiomed.2003.12.017.
  • Lambert, J. D.; Rice, J. E.; Hong, J.; Hou, Z.; Yang, C. S. Synthesis and Biological Activity of the Tea Catechin Metabolites, M4 and M6 and Their Methoxy-derivatives. Bioorg. Med. Chem. Lett. 2005, 15, 873–876. DOI: 10.1016/j.bmcl.2004.12.070.
  • Lila, M. A.;. Anthocyanins and Human Health: An in Vitro Investigative Approach. Biomed Res. Int. 2004, 2004, 306–313.
  • Naseri, R.; Farzaei, F.; Haratipour, P.; Nabavi, S. F.; Habtemariam, S.; Farzaei, M. H.; Khodarahmi, R.; Tewari, D.; Momtaz, S. Anthocyanins in the Management of Metabolic Syndrome: A Pharmacological and Biopharmaceutical Review. Front. Pharmacol. 2018, 64.
  • Francis, F. J.; Markakis, P. C. Food Colorants: Anthocyanins. Crit. Rev. Food Sci. Nutr. 1989, 28, 273–314. DOI: 10.1080/10408398909527503.
  • Faria, A.; Fernandes, I.; Norberto, S.; Mateus, N.; Calhau, C. Interplay between Anthocyanins and Gut Microbiota. J. Agric. Food Chem. 2014, 62, 6898–6902. DOI: 10.1021/jf501808a.
  • Aura, A.-M.; Martin-Lopez, P.; O’Leary, K. A.; Williamson, G.; Oksman-Caldentey, K.-M.; Poutanen, K.; Santos-Buelga, C. In Vitro Metabolism of Anthocyanins by Human Gut Microflora. Eur. J. Nutr. 2005, 44, 133–142. DOI: 10.1007/s00394-004-0502-2.
  • Keppler, K.; Humpf, H.-U. Metabolism of Anthocyanins and Their Phenolic Degradation Products by the Intestinal Microflora. Bioorg. Med. Chem. 2005, 13, 5195–5205. DOI: 10.1016/j.bmc.2005.05.003.
  • Riaz, M.; Zia-Ul-Haq, M.; Saad, B. Anthocyanins and Human Health: Biomolecular and Therapeutic Aspects; Elsevier, 2016.
  • Lin, B. W.; Gong, C. C.; Song, H. F.; Cui, Y. Y. Effects of Anthocyanins on the Prevention and Treatment of Cancer. Br. J. Pharmacol. 2017, 174, 1226–1243. DOI: 10.1111/bph.13627.
  • Min, S.-W.; Ryu, S.-N.; Kim, D.-H. Anti-inflammatory Effects of Black Rice, cyanidin-3-O-β-D-glycoside, and Its Metabolites, Cyanidin and Protocatechuic Acid. Int. Immunopharmacol. 2010, 10, 959–966. DOI: 10.1016/j.intimp.2010.05.009.
  • Amin, H. P.; Czank, C.; Raheem, S.; Zhang, Q.; Botting, N. P.; Cassidy, A.; Kay, C. D. Anthocyanins and Their Physiologically Relevant Metabolites Alter the Expression of IL‐6 and VCAM‐1 in CD40L and Oxidized LDL Challenged Vascular Endothelial Cells. Mol. Nutr. Food Res. 2015, 59, 1095–1106. DOI: 10.1002/mnfr.v59.6.
  • Heilman, J.; Andreux, P.; Tran, N.; Rinsch, C.; Blanco-Bose, W. Safety Assessment of Urolithin A, a Metabolite Produced by the Human Gut Microbiota upon Dietary Intake of Plant Derived Ellagitannins and Ellagic Acid. Food Chem. Toxicol. 2017, 108, 289–297. DOI: 10.1016/j.fct.2017.07.050.
  • Siah, M.; Farzaei, M. H.; Ashrafi-Kooshk, M. R.; Adibi, H.; Arab, S. S.; Rashidi, M. R.; Khodarahmi, R. Inhibition of Guinea Pig Aldehyde Oxidase Activity by Different Flavonoid Compounds: An in Vitro Study. Bioorg. Chem. 2016, 64, 74–84. DOI: 10.1016/j.bioorg.2015.12.004.
  • Sepúlveda, L.; Ascacio, A.; Rodríguez-Herrera, R.; Aguilera-Carbó, A.; Aguilar, C. N. Ellagic Acid: Biological Properties and Biotechnological Development for Production Processes. Afr. J. Biotechnol. 2011, 10, 4518–4523.
  • Cerdá, B.; Espín, J. C.; Parra, S.; Martínez, P.; Tomás-Barberán, F. A. The Potent in Vitro Antioxidant Ellagitannins from Pomegranate Juice are Metabolised into Bioavailable but Poor Antioxidant hydroxy–6H–dibenzopyran–6–one Derivatives by the Colonic Microflora of Healthy Humans. Eur. J. Nutr. 2004, 43, 205–220. DOI: 10.1007/s00394-004-0461-7.
  • Selma, M. V.; Espin, J. C.; Tomas-Barberan, F. A. Interaction between Phenolics and Gut Microbiota: Role in Human Health. J. Agric. Food Chem. 2009, 57, 6485–6501. DOI: 10.1021/jf902107d.
  • Komatsu, W.; Kishi, H.; Yagasaki, K.; Ohhira, S. Urolithin A Attenuates Pro-inflammatory Mediator Production by Suppressing PI3-K/Akt/NF-κB and JNK/AP-1 Signaling Pathways in Lipopolysaccharide-stimulated RAW264 Macrophages: Possible Involvement of NADPH Oxidase-derived Reactive Oxygen Species. Eur. J. Pharmacol. 2018, 833, 411–424. DOI: 10.1016/j.ejphar.2018.06.023.
  • Lee, G.; Park, J.-S.; Lee, E.-J.; Ahn, J.-H.; Kim, H.-S. Anti-inflammatory and Antioxidant Mechanisms of Urolithin B in Activated Microglia. Phytomedicine. 2019, 55, 50–57. DOI: 10.1016/j.phymed.2018.06.032.
  • Gimeénez-Bastida, J. A.; Larrosa, M.; Gonzaélez-Sarrías, A.; Tomaés-Barberaén, F.; Espín, J. C.; García-Conesa, M.-T. Intestinal Ellagitannin Metabolites Ameliorate Cytokine-induced Inflammation and Associated Molecular Markers in Human Colon Fibroblasts. J. Agric. Food Chem. 2012, 60, 8866–8876. DOI: 10.1021/jf300290f.
  • Orhan, E.; Nabavi, S.; Daglia, M.; Tenore, G.; Mansouri, K.; Nabavi, S. Naringenin and AtherosclerosiS: A Review of Literature. Curr. Pharm. Biotechnol. 2015, 16, 245–251. DOI: 10.2174/1389201015666141202110216.
  • Samadian, H.; Vaez, A.; Ehterami, A.; Salehi, M.; Farzamfar, S.; Sahrapeyma, H.; Norouzi, P. Sciatic Nerve Regeneration by Using Collagen Type I Hydrogel Containing Naringin. J. Mater. Sci.: Mater. Med. 2019, 30, 107.
  • Yu, J.; Wang, L.; Walzem, R. L.; Miller, E. G.; Pike, L. M.; Patil, B. S. Antioxidant Activity of Citrus Limonoids, Flavonoids, and Coumarins. J. Agric. Food Chem. 2005, 53, 2009–2014. DOI: 10.1021/jf0484632.
  • Natsume, M.; Osakabe, N.; Yasuda, A.; Baba, S.; Tokunaga, T.; Kondo, K.; Osawa, T.; Terao, J. In Vitro Antioxidative Activity of (−)-epicatechin Glucuronide Metabolites Present in Human and Rat Plasma. Free Radical Res. 2004, 38, 1341–1348. DOI: 10.1080/10715760400022087.
  • Pollard, S. E.; Kuhnle, G. G.; Vauzour, D.; Vafeiadou, K.; Tzounis, X.; Whiteman, M.; Rice-Evans, C.; Spencer, J. P. The Reaction of Flavonoid Metabolites with Peroxynitrite. Biochem. Biophys. Res. Commun. 2006, 350, 960–968. DOI: 10.1016/j.bbrc.2006.09.131.
  • Piazzon, A.; Vrhovsek, U.; Masuero, D.; Mattivi, F.; Mandoj, F.; Nardini, M. Antioxidant Activity of Phenolic Acids and Their Metabolites: Synthesis and Antioxidant Properties of the Sulfate Derivatives of Ferulic and Caffeic Acids and of the Acyl Glucuronide of Ferulic Acid. J. Agric. Food Chem. 2012, 60, 12312–12323. DOI: 10.1021/jf304076z.
  • Wang, J.; Lou, J.; Luo, C.; Zhou, L.; Wang, M.; Wang, L. Phenolic Compounds from Halimodendron Halodendron (Pall.) Voss and Their Antimicrobial and Antioxidant Activities. Int. J. Mol. Sci. 2012, 13, 11349–11364. DOI: 10.3390/ijms130911349.
  • Shafek, R.; Shafik, N.; Michael, H. Glycosides Isolated from Solenostemma Argel Stem Extract. Asian J. Plant Sci. 2012, 11, 143–147. DOI: 10.3923/ajps.2012.143.147.
  • Okoth, D. A.; Chenia, H. Y.; Koorbanally, N. A. Antibacterial and Antioxidant Activities of Flavonoids from Lannea Alata (Engl.) Engl. (Anacardiaceae). Phytochem. Lett. 2013, 6, 476–481. DOI: 10.1016/j.phytol.2013.06.003.
  • Spencer, J. P.; Schroeter, H.; Crossthwaithe, A. J.; Kuhnle, G.; Williams, R. J.; Rice-Evans, C. Contrasting Influences of Glucuronidation and O-methylation of Epicatechin on Hydrogen Peroxide-induced Cell Death in Neurons and Fibroblasts. Free Radical Biol. Med. 2001, 31, 1139–1146. DOI: 10.1016/S0891-5849(01)00704-3.
  • Hassaninasab, A.; Hashimoto, Y.; Tomita-Yokotani, K.; Kobayashi, M. Discovery of the Curcumin Metabolic Pathway Involving a Unique Enzyme in an Intestinal Microorganism. Proc. National Academy Sci. 2011, 108, 6615–6620. DOI: 10.1073/pnas.1016217108.
  • Morales, N. P.; Sirijaroonwong, S.; Yamanont, P.; Phisalaphong, C. Electron Paramagnetic Resonance Study of the Free Radical Scavenging Capacity of Curcumin and Its Demethoxy and Hydrogenated Derivatives. Biol. Pharm. Bull. 2015, 38, 1478–1483. DOI: 10.1248/bpb.b15-00209.
  • Somparn, P.; Phisalaphong, C.; Nakornchai, S.; Unchern, S.; Morales, N. P. Comparative Antioxidant Activities of Curcumin and Its Demethoxy and Hydrogenated Derivatives. Biol. Pharm. Bull. 2007, 30, 74–78. DOI: 10.1248/bpb.30.74.
  • Deters, M.; Knochenwefel, H.; Lindhorst, D.; Koal, T.; Meyer, H. H.; Hänsel, W.; Resch, K.; Kaever, V. Different Curcuminoids Inhibit T-lymphocyte Proliferation Independently of Their Radical Scavenging Activities. Pharm. Res. 2008, 25, 1822. DOI: 10.1007/s11095-008-9579-2.
  • Okada, K.; Wangpoengtrakul, C.; Tanaka, T.; Toyokuni, S.; Uchida, K.; Osawa, T. Curcumin and Especially Tetrahydrocurcumin Ameliorate Oxidative Stress-induced Renal Injury in Mice. J. Nutr. 2001, 131, 2090–2095. DOI: 10.1093/jn/131.8.2090.
  • Khopde, S. M.; Priyadarsini, K. I.; Guha, S. N.; Satav, J. G.; Venkatesan, P.; RAO, M. N. A. Inhibition of Radiation-induced Lipid Peroxidation by Tetrahydrocurcumin: Possible Mechanisms by Pulse Radiolysis. Biosci. Biotechnol. Biochem. 2000, 64:, 503–509. DOI: 10.1271/bbb.64.503.
  • Anand, P.; Kunnumakkara, A. B.; Newman, R. A.; Aggarwal, B. B. Bioavailability of Curcumin: Problems and Promises. Mol. Pharmaceutics. 2007, 4, 807–818. DOI: 10.1021/mp700113r.
  • Huang, Y.; Cao, S.; Zhang, Q.; Zhang, H.; Fan, Y.; Qiu, F.; Kang, N. Biological and Pharmacological Effects of Hexahydrocurcumin, a Metabolite of Curcumin. Arch. Biochem. Biophys. 2018, 646, 31–37. DOI: 10.1016/j.abb.2018.03.030.
  • Dueñas, M.; González-Manzano, S.; González-Paramás, A.; Santos-Buelga, C. Antioxidant Evaluation of O-methylated Metabolites of Catechin, Epicatechin and Quercetin. J. Pharm. Biomed. Anal. 2010, 51, 443–449. DOI: 10.1016/j.jpba.2009.04.007.
  • Tang, Y.; Nakashima, S.; Saiki, S.; Myoi, Y.; Abe, N.; Kuwazuru, S.; Zhu, B.; Ashida, H.; Murata, Y.; Nakamura, Y. 3, 4-Dihydroxyphenylacetic Acid Is a Predominant Biologically-active Catabolite of Quercetin Glycosides. Food Res. Int. 2016, 89, 716–723. DOI: 10.1016/j.foodres.2016.09.034.
  • Foti, P.; Erba, D.; Riso, P.; Spadafranca, A.; Criscuoli, F.; Testolin, G. Comparison between Daidzein and Genistein Antioxidant Activity in Primary and Cancer Lymphocytes. Arch. Biochem. Biophys. 2005, 433, 421–427. DOI: 10.1016/j.abb.2004.10.008.
  • Liu, X.; Suzuki, N.; Laxmi, Y. S.; Okamoto, Y.; Shibutani, S. Anti-breast Cancer Potential of Daidzein in Rodents. Life Sci. 2012, 91, 415–419. DOI: 10.1016/j.lfs.2012.08.022.
  • Liang, X.-L.; Wang, X.-L.; Li, Z.; Hao, Q.-H.; Wang, S.-Y. Improved in Vitro Assays of Superoxide Anion and 1, 1-diphenyl-2-picrylhydrazyl (DPPH) Radical-scavenging Activity of Isoflavones and Isoflavone Metabolites. J. Agric. Food Chem. 2010, 58, 11548–11552. DOI: 10.1021/jf102372t.
  • Rüfer, C. E.; Kulling, S. E. Antioxidant Activity of Isoflavones and Their Major Metabolites Using Different in Vitro Assays. J. Agric. Food Chem. 2006, 54, 2926–2931. DOI: 10.1021/jf053112o.
  • Mitchell, J. H.; Gardner, P. T.; McPhail, D. B.; Morrice, P. C.; Collins, A. R.; Duthie, G. G. Antioxidant Efficacy of Phytoestrogens in Chemical and Biological Model Systems. Arch. Biochem. Biophys. 1998, 360, 142–148. DOI: 10.1006/abbi.1998.0951.
  • Rimbach, G.; De Pascual-Teresa, S.; Ewins, B.; Matsugo, S.; Uchida, Y.; Minihane, A.-M.; Turner, R.; Vafei Adou, K.; Weinberg, P. Antioxidant and Free Radical Scavenging Activity of Isoflavone Metabolites. Xenobiotica 2003, 33, 913–925. DOI: 10.1080/0049825031000150444.
  • Bors, W.; Heller, W.; Michael, M. Flavonoids as Antioxidants: Determination of Radical Scavenging Efficiencies; Rice, C.A., Vans, E., Packer, L. Edited by; Marcel Dekker: New York, 1998.
  • Su, Y. L.; Xu, J. Z.; Ng, C. H.; Leung, L. K.; Huang, Y.; Chen, Z. Y. Antioxidant Activity of Tea Theaflavins and Methylated Catechins in Canola Oil. J. Am. Oil Chem. Soc. 2004, 81, 269–274. DOI: 10.1007/s11746-004-0894-7.
  • Shirai, M.; Moon, J.-H.; Tsushida, T.; Terao, J. Inhibitory Effect of a Quercetin Metabolite, Quercetin 3-O-β-D-glucuronide, on Lipid Peroxidation in Liposomal Membranes. J. Agric. Food Chem. 2001, 49, 5602–5608. DOI: 10.1021/jf010713g.
  • Lotito, S. B.; Fraga, C. G. (+)-catechin Prevents Human Plasma Oxidation. Free Radical Biol. Med. 1998, 24, 435–441. DOI: 10.1016/S0891-5849(97)00276-1.
  • Lotito, S. B.; Fraga, C. G. Catechins Delay Lipid Oxidation and α‐Tocopherol and β‐Carotene Depletion following Ascorbate Depletion in Human Plasma. Proc. Soc. Exp. Biol. Med. 2000, 225, 32–38. DOI: 10.1046/j.1525-1373.2000.22504.x.
  • Ohara, A.; Matsuhisa, T. Effects of Diet Composition on Mutagenic Activity in Urine. BioFactors 2004, 22, 115–118. DOI: 10.1002/biof.v22:1/4.
  • Singletary, K. W.; Jung, K.-J.; Giusti, M. Anthocyanin-rich Grape Extract Blocks Breast Cell DNA Damage. J. Med. Food. 2007, 10, 244–251. DOI: 10.1089/jmf.2006.258.
  • Shih, P.-H.; Yen, G.-C. Differential Expressions of Antioxidant Status in Aging Rats: The Role of Transcriptional Factor Nrf2 and MAPK Signaling Pathway. Biogerontology 2007, 8, 71–80. DOI: 10.1007/s10522-006-9033-y.
  • Seeram, N. P.; Momin, R. A.; Nair, M. G.; Bourquin, L. D. Cyclooxygenase Inhibitory and Antioxidant Cyanidin Glycosides in Cherries and Berries. Phytomedicine 2001, 8, 362–369. DOI: 10.1078/0944-7113-00053.
  • Nagase, T.; Ishikawa, K.-I.; Suyama, M.; Kikuno, R.; Hirosawa, M.; Miyajima, N.; Tanaka, A.; Kotani, H.; Nomura, N.; Ohara, O. Prediction of the Coding Sequences of Unidentified Human Genes. XII. The Complete Sequences of 100 New cDNA Clones from Brain Which Code for Large Proteins in Vitro. DNA Res. 1998, 5, 355–364. DOI: 10.1093/dnares/5.6.355.
  • Garcia‐Alonso, M.; Rimbach, G.; Sasai, M.; Nakahara, M.; Matsugo, S.; Uchida, Y.; Rivas‐Gonzalo, J. C.; De Pascual‐Teresa, S. Electron Spin Resonance Spectroscopy Studies on the Free Radical Scavenging Activity of Wine Anthocyanins and Pyranoanthocyanins. Mol. Nutr. Food Res. 2005, 49, 1112–1119. DOI: 10.1002/mnfr.200500100.
  • Kähkönen, M. P.; Heinonen, M. Antioxidant Activity of Anthocyanins and Their Aglycons. J. Agric. Food Chem. 2003, 51, 628–633. DOI: 10.1021/jf025551i.
  • Miguel, M. G.;. Anthocyanins: Antioxidant And/or Anti-inflammatory Activities. J. Appl. Pharm. Sci. 2011, 1, 7–15.
  • Nicoli, M.; Anese, M.; Parpinel, M. Influence of Processing on the Antioxidant Properties of Fruit and Vegetables. Trends Food Sci. Technol. 1999, 10, 94–100. DOI: 10.1016/S0924-2244(99)00023-0.
  • Gil, M. I.; Tomás-Barberán, F. A.; Hess-Pierce, B.; Holcroft, D. M.; Kader, A. A. Antioxidant Activity of Pomegranate Juice and Its Relationship with Phenolic Composition and Processing. J. Agric. Food Chem. 2000, 48, 4581–4589. DOI: 10.1021/jf000404a.
  • Mullen, W.; McGinn, J.; Lean, M. E.; MacLean, M. R.; Gardner, P.; Duthie, G. G.; Yokota, T.; Crozier, A. Ellagitannins, Flavonoids, and Other Phenolics in Red Raspberries and Their Contribution to Antioxidant Capacity and Vasorelaxation Properties. J. Agric. Food Chem. 2002, 50, 5191–5196. DOI: 10.1021/jf020140n.
  • Zafrilla, P.; Ferreres, F.; Tomás-Barberán, F. A. Effect of Processing and Storage on the Antioxidant Ellagic Acid Derivatives and Flavonoids of Red Raspberry (Rubus Idaeus) Jams. J. Agric. Food Chem. 2001, 49, 3651–3655. DOI: 10.1021/jf010192x.
  • Cerdá, B.; Soto, C.; Albaladejo, M.; Martinez, P.; Sanchez-Gascon, F.; Tomás-Barberán, F.; Espin, J. Pomegranate Juice Supplementation in Chronic Obstructive Pulmonary Disease: A 5-week Randomized, Double-blind, Placebo-controlled Trial. Eur. J. Clin. Nutr. 2006, 60, 245. DOI: 10.1038/sj.ejcn.1602309.
  • Cavia‐Saiz, M.; Busto, M. D.; Pilar‐Izquierdo, M. C.; Ortega, N.; Perez‐Mateos, M.; Muñiz, P. Antioxidant Properties, Radical Scavenging Activity and Biomolecule Protection Capacity of Flavonoid Naringenin and Its Glycoside Naringin: A Comparative Study. J. Sci. Food Agric. 2010, 90, 1238–1244. DOI: 10.1002/jsfa.3959.
  • Alam, M. A.; Subhan, N.; Rahman, M. M.; Uddin, S. J.; Reza, H. M.; Sarker, S. D. Effect of Citrus Flavonoids, Naringin and Naringenin, on Metabolic Syndrome and Their Mechanisms of Action. Adv. Nutr. 2014, 5, 404–417. DOI: 10.3945/an.113.005603.
  • Madej, A.; Popłoński, J.; Huszcza, E. Improved Oxidation of Naringenin to Carthamidin and Isocarthamidin by Rhodotorula Marina. Appl. Biochem. Biotechnol. 2014, 173, 67–73. DOI: 10.1007/s12010-014-0787-4.
  • Miyake, Y.; Minato, K.; Fukumoto, S.; Yamamoto, K.; Oya-Ito, T.; Kawakishi, S.; Osawa, T. New Potent Antioxidative Hydroxyflavanones Produced with Aspergillus Saitoi from Flavanone Glycoside in Citrus Fruit. Biosci. Biotechnol. Biochem. 2003, 67, 1443–1450. DOI: 10.1271/bbb.67.1443.
  • Takeuchi, O.; Akira, S. Pattern Recognition Receptors and Inflammation. Cell. 2010, 140, 805–820. DOI: 10.1016/j.cell.2010.01.022.
  • Drexler, S. K.; Foxwell, B. M. The Role of Toll-like Receptors in Chronic Inflammation. Int. J. Biochem. Cell Biol. 2010, 42, 506–518. DOI: 10.1016/j.biocel.2009.10.009.
  • Guha, M.; Mackman, N. LPS Induction of Gene Expression in Human Monocytes. Cell. Signalling. 2001, 13, 85–94. DOI: 10.1016/S0898-6568(00)00149-2.
  • Comalada, M.; Ballester, I.; Bailon, E.; Sierra, S.; Xaus, J.; Galvez, J.; de Medina, F. S.; Zarzuelo, A. Inhibition of Pro-inflammatory Markers in Primary Bone Marrow-derived Mouse Macrophages by Naturally Occurring Flavonoids: Analysis of the Structure–activity Relationship. Biochem. Pharmacol. 2006, 72, 1010–1021. DOI: 10.1016/j.bcp.2006.07.016.
  • Mitjavila, M.; Moreno, J. The Effects of Polyphenols on Oxidative Stress and the Arachidonic Acid Cascade. Implications for the Prevention/treatment of High Prevalence Diseases. Biochem. Pharmacol. 2012, 84, 1113–1122. DOI: 10.1016/j.bcp.2012.07.017.
  • Byun, E.-B.; Sung, N.-Y.; Byun, E.-H.; Song, D.-S.; Kim, J.-K.; Park, J.-H.; Song, B.-S.; Park, S.-H.; Lee, J.-W.; Byun, M.-W. The Procyanidin Trimer C1 Inhibits LPS-induced MAPK and NF-κB Signaling through TLR4 in Macrophages. Int. Immunopharmacol. 2013, 15, 450–456. DOI: 10.1016/j.intimp.2012.11.021.
  • Kim, S.; Joo, Y.-E. Theaflavin Inhibits LPS-induced IL-6, MCP-1, and ICAM-1 Expression in Bone Marrow-derived Macrophages through the Blockade of NF-κB and MAPK Signaling Pathways. Chonnam Med. J. 2011, 47, 104–110. DOI: 10.4068/cmj.2011.47.2.104.
  • Soromou, L. W.; Zhang, Z.; Li, R.; Chen, N.; Guo, W.; Huo, M.; Guan, S.; Lu, J.; Deng, X. Regulation of Inflammatory Cytokines in Lipopolysaccharide-stimulated RAW 264.7 Murine Macrophage by 7-O-methyl-naringenin. Molecules. 2012, 17, 3574–3585. DOI: 10.3390/molecules17033574.
  • Kim, S.-Y.; Lee, E.-J.; Woo, M.-S.; Jung, J.-S.; Hyun, J.-W.; Min, S.-W.; Kim, D.-H.; Kim, H.-S. Inhibition of Matrix Metalloproteinase-9 Gene Expression by an Isoflavone Metabolite, Irisolidone in U87MG Human Astroglioma Cells. Biochem. Biophys. Res. Commun. 2008, 366, 493–499. DOI: 10.1016/j.bbrc.2007.11.178.
  • Ferriola, P. C.; Cody, V.; Middleton, E. Protein Kinase C Inhibition by Plant Flavonoids: Kinetic Mechanisms and Structure-activity Relationships. Biochem. Pharmacol. 1989, 38, 1617–1624. DOI: 10.1016/0006-2952(89)90309-2.
  • González, R.; Ballester, I.; López-Posadas, R.; Suárez, M.; Zarzuelo, A.; Martinez-Augustin, O.; Medina, F. S. D. Effects of Flavonoids and Other Polyphenols on Inflammation. Crit. Rev. Food Sci. Nutr. 2011, 51, 331–362. DOI: 10.1080/10408390903584094.
  • Crouvezier, S.; Powell, B.; Keir, D.; Yaqoob, P. The Effects of Phenolic Components of Tea on the Production of Pro-and Anti-inflammatory Cytokines by Human Leukocytes in Vitro. Cytokine. 2001, 13, 280–286. DOI: 10.1006/cyto.2000.0837.
  • Schindler, R.; Mancilla, J.; Endres, S.; Ghorbani, R.; Clark, S.; Dinarello, C. A. Correlations and Interactions in the Production of Interleukin-6 (IL-6), IL-1, and Tumor Necrosis Factor (TNF) in Human Blood Mononuclear Cells: IL-6 Suppresses IL-1 and TNF. Blood. 1990, 75, 40–47. DOI: 10.1182/blood.V75.1.40.40.
  • Comalada, M.; Xaus, J.; Gálvez, J. Bioactive Food as Dietary Interventions for Arthritis and Related Inflammatory Diseases. Flavonoids and Immunomodulation; Ballas, Z. K., Ed.; J Allergy  Clin. Immunol;Elsevier, 2013; pp 555–579.
  • Ogasawara, H.; Fujitani, T.; Drzewiecki, G.; Middleton, E. Jr The Role of Hydrogen Peroxide in Basophil Histamine Release and the Effect of Selected Flavonoids. J. Allergy Clin. Immunol. 1986, 78, 321–328. DOI: 10.1016/S0091-6749(86)80083-5.
  • Tekin, İ. Ö.; Marotta, F. Polyphenols: Prevention and Treatment of Human Disease. Polyphenols and Immune System; Holland, M., Ed.; J. Immunol. Res. Hindawi, 2018; pp 263–276.
  • Amini, A. M.; Spencer, J. P.; Yaqoob, P. Effects of pelargonidin-3-O-glucoside and Its Metabolites on Lipopolysaccharide-stimulated Cytokine Production by THP-1 Monocytes and Macrophages. Cytokine. 2018, 103, 29–33. DOI: 10.1016/j.cyto.2017.12.031.
  • Wang, D.; Wei, X.; Yan, X.; Jin, T.; Ling, W. Protocatechuic Acid, a Metabolite of Anthocyanins, Inhibits Monocyte Adhesion and Reduces Atherosclerosis in Apolipoprotein E-deficient Mice. J. Agric. Food Chem. 2010, 58, 12722–12728. DOI: 10.1021/jf103427j.
  • Singh, A.; Holvoet, S.; Mercenier, A. Dietary Polyphenols in the Prevention and Treatment of Allergic Diseases. Clin. Exp. Allergy. 2011, 41, 1346–1359. DOI: 10.1111/cea.2011.41.issue-10.
  • Kumazawa, Y.; Kawaguchi, K.; Takimoto, H. Immunomodulating Effects of Flavonoids on Acute and Chronic Inflammatory Responses Caused by Tumor Necrosis Factor α. Curr. Pharm. Des. 2006, 12, 4271–4279. DOI: 10.2174/138161206778743565.
  • Del Bo, C.; Marino, M.; Riso, P.; Møller, P.; Porrini, M. Anthocyanins and Metabolites Resolve TNF-α-mediated Production of E-selectin and Adhesion of Monocytes to Endothelial Cells. Chem.-Biol. Interact. 2019, 300, 49–55. DOI: 10.1016/j.cbi.2019.01.002.
  • Nazir, N.; Koul, S.; Qurishi, M. A.; Taneja, S. C.; Ahmad, S. F.; Khan, B.; Bani, S.; Qazi, G. N. Immunomodulatory Activity of Isoflavones Isolated from Iris Germanica (Iridaceae) on T‐lymphocytes and Cytokines. Phytother. Res. 2009, 23, 428–433. DOI: 10.1002/ptr.v23:3.
  • Kawai, M.; Hirano, T.; Higa, S.; Arimitsu, J.; Maruta, M.; Kuwahara, Y.; Ohkawara, T.; Hagihara, K.; Yamadori, T.; Shima, Y. Flavonoids and Related Compounds as Anti-allergic Substances. Allergol. Int. 2007, 56, 113–123. DOI: 10.2332/allergolint.R-06-135.
  • Shamji, M. H.; Durham, S. R. Mechanisms of Allergen Immunotherapy for Inhaled Allergens and Predictive Biomarkers. J. Allergy Clin. Immunol. 2017, 140, 1485–1498. DOI: 10.1016/j.jaci.2017.10.010.
  • Soyer, O.; Akdis, M.; Ring, J.; Behrendt, H.; Crameri, R.; Lauener, R.; Akdis, C. Mechanisms of Peripheral Tolerance to Allergens. Allergy. 2013, 68, 161–170. DOI: 10.1111/all.12085.
  • Calzada, D.; Baos, S.; Cremades-Jimeno, L.; Cárdaba, B. Immunological Mechanisms in Allergic Diseases and Allergen Tolerance: The Role of Treg Cells. J. Immunol. Res. 2018, 59.
  • Mlcek, J.; Jurikova, T.; Skrovankova, S.; Sochor, J. Quercetin and Its Anti-allergic Immune Response. Molecules. 2016, 21, 623. DOI: 10.3390/molecules21050623.
  • Magrone, T.; Jirillo, E. Influence of Polyphenols on Allergic Immune Reactions: Mechanisms of Action. Proc. Nutr. Soc. 2012, 71, 316–321. DOI: 10.1017/S0029665112000109.
  • Chirumbolo, S.;. Dietary Assumption of Plant Polyphenols and Prevention of Allergy. Curr. Pharm. Des. 2014, 20, 811–839. DOI: 10.2174/13816128113199990042.
  • Ding, S.; Jiang, H.; Fang, J. Regulation of Immune Function by Polyphenols. J. Immunol. Res. 2018, 36.
  • Shimoda, K.; Hamada, H. Production of Hesperetin Glycosides by Xanthomonas Campestris and Cyclodextrin Glucanotransferase and Their Anti-allergic Activities. Nutrients. 2010, 2, 171–180. DOI: 10.3390/nu2020171.
  • Makino, T.; Kanemaru, M.; Okuyama, S.; Shimizu, R.; Tanaka, H.; Mizukami, H. Anti-allergic Effects of Enzymatically Modified Isoquercitrin (α-oligoglucosyl Quercetin 3-O-glucoside), Quercetin 3-O-glucoside, α-oligoglucosyl Rutin, and Quercetin, When Administered Orally to Mice. J. Nat. Med. 2013, 67, 881–886. DOI: 10.1007/s11418-013-0760-5.
  • Suzuki, M.; Yoshino, K.; Maeda-Yamamoto, M.; Miyase, T.; Sano, M. Inhibitory Effects of Tea Catechins and O-methylated Derivatives of (−)-epigallocatechin-3-o-gallate on Mouse Type IV Allergy. J. Agric. Food Chem. 2000, 48, 5649–5653. DOI: 10.1021/jf000313d.
  • Fujimura, Y.; Umeda, D.; Yano, S.; Maeda-Yamamoto, M.; Yamada, K.; Tachibana, H. The 67 kDa Laminin Receptor as a Primary Determinant of Anti-allergic Effects of O-methylated EGCG. Biochem. Biophys. Res. Commun. 2007, 364, 79–85. DOI: 10.1016/j.bbrc.2007.09.095.
  • Chen, S. S.; Gong, J.; Liu, F. T.; Mohammed, U. Naturally Occurring Polyphenolic Antioxidants Modulate IgE‐mediated Mast Cell Activation. Immunology. 2000, 100, 471–480. DOI: 10.1046/j.1365-2567.2000.00045.x.
  • Iwamura, C.; Shinoda, K.; Yoshimura, M.; Watanabe, Y.; Obata, A.; Nakayama, T. Naringenin Chalcone Suppresses Allergic Asthma by Inhibiting the Type-2 Function of CD4 T Cells. Allergol. Int. 2010, 59, 67–73. DOI: 10.2332/allergolint.09-OA-0118.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.