967
Views
16
CrossRef citations to date
0
Altmetric
Review

Insight into Tea Flavonoids: Composition and Chemistry

, , &

References

  • Fernandez-Rojas, B.; Gutierrez-Venegas, G. Flavonoids Exert Multiple Periodontic Benefits Including Anti-inflammatory, Periodontal Ligament-supporting, and Alveolar Bone-preserving Effects. Life Sci. 2018, 209, 435–454. DOI: 10.1016/j.lfs.2018.08.029.
  • Kerimi, A.; Williamson, G. Differential Impact of Flavonoids on Redox Modulation, Bioenergetics, and Cell Signaling in Normal and Tumor Cells: A Comprehensive Review. Antioxid. Redox Signal. 2018, 29(16), 1633–1659. DOI: 10.1089/ars.2017.7086.
  • Jung, U. J.; Kim, S. R. Beneficial Effects of Flavonoids against Parkinson’s Disease. J. Med. Food. 2018, 21(5), 421–432. DOI: 10.1089/jmf.2017.4078.
  • Hussain, G.; Zhang, L.; Rasul, A.; Anwar, H.; Sohail, M. U.; Razzaq, A.; Aziz, N.; Shabbir, A.; Ali, M.; Sun, T. Role of Plant-Derived Flavonoids and Their Mechanism in Attenuation of Alzheimer’s and Parkinson’s Diseases: An Update of Recent Data. Molecules. 2018, 23(4), 814. DOI: 10.3390/molecules23040814.
  • Kang, H. W.; Lee, S. G.; Otieno, D.; Ha, K. Flavonoids, Potential Bioactive Compounds, and Non-Shivering Thermogenesis. Nutrients. 2018, 10(9), 1168. DOI: 10.3390/nu10091168.
  • Chen, L.; Teng, H.; Xie, Z.; Cao, H.; Cheang, W. S.; Skalicka-Woniak, K.; Georgiev, M. I.; Xiao, J. Modifications of Dietary Flavonoids Towards Improved Bioactivity: An Update on Structure-activity Relationship. Crit. Rev. Food Sci. Nutr. 2018, 58(4), 513–527. DOI: 10.1080/10408398.2016.1196334.
  • Martinez-Gonzalez, A. I.; Diaz-Sanchez, A. G.; de la Rosa, L. A.; Bustos-Jaimes, I.; Alvarez-Parrilla, E. Inhibition of Alpha-amylase by Flavonoids: Structure Activity Relationship (SAR). Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 206(206), 437–447. DOI: 10.1016/j.saa.2018.08.057.
  • Tang, G.-Y.; Zhao, C.-N.; Xu, X.-Y.; Gan, R.-Y.; Cao, S.-Y.; Liu, Q.; Shang, A.; Mao, -Q.-Q.; Li, H.-B. Phytochemical Composition and Antioxidant Capacity of 30 Chinese Teas. Antioxidant. 2019, 8, 180. DOI: 10.3390/antiox8060180.
  • Khan, N.; Mukhtar, H. Tea Polyphenols in Promotion of Human Health. Nutrients. 2019, 11(1), 39. DOI: 10.3390/nu11010039.
  • Rains, T. M.; Agarwal, S.; Maki, K. C. Antiobesity Effects of Green Tea Catechins: A Mechanistic Review. J. Nutr. Biochem. 2011, 22(1), 1–7. DOI: 10.1016/j.jnutbio.2010.06.006.
  • Sanlier, N.; Gokcen, B. B.; Altuğ, M. Tea Consumption and Disease Correlations. Trends Food Sci. Technol. 2018, 78, 95–106. DOI: 10.1016/j.tifs.2018.05.026.
  • Song, J.; Xu, H.; Liu, F.; Feng, L. Tea and Cognitive Health in Late Life Current Evidence and Future Directions. J. Nutr. Heath Aging. 2012, 16(1), 31–34. DOI: 10.1007/s12603-011-0139-9.
  • Turkozu, D.; Tek, N. A. A Minireview of Effects of Green Tea on Energy Expenditure. Crit. Rev. Food Sci. Nutr. 2017, 57(2), 254–258. DOI: 10.1080/10408398.2014.986672.
  • Vuong, Q. V.;. Epidemiological Evidence Linking Tea Consumption to Human Health: A Review. Crit. Rev. Food Sci. Nutr. 2014, 54(4), 523–536. DOI: 10.1080/10408398.2011.594184.
  • Yao, Z.; Gu, Y.; Zhang, Q.; Liu, L.; Meng, G.; Wu, H.; Xia, Y.; Bao, X.; Shi, H.; Sun, S.;; et al. Estimated Daily Quercetin Intake and Association with the Prevalence of Type 2 Diabetes Mellitus in Chinese Adults. Eur. J. Nutr. 2019, 58, 819–830. DOI: 10.1007/s00394-018-1713-2.
  • Santangelo, R.; Silvestrini, A.; Mancuso, C. Ginsenosides, Catechins, Quercetin and Gut Microbiota: Current Evidence of Challenging Interactions. Food Chem. Toxicol. 2019, 123, 42–49. DOI: 10.1016/j.fct.2018.10.042.
  • Moon, Y. J.; Wang, X.; Morris, M. E. Dietary Flavonoids: Effects on Xenobiotic and Carcinogen Metabolism. Toxicol. In Vitro. 2006, 20, 187–210. DOI: 10.1016/j.tiv.2005.06.048.
  • Carrasco-Pozo, C.; Cires, M. J.; Quercetin, G. M. Epigallocatechin Gallate in the Prevention and Treatment of Obesity: From Molecular to Clinical Studies. J. Med. Food. 2019, 22(8), 753–770. DOI: 10.1089/jmf.2018.0193.
  • Balentine, D. A.; Wiseman, S. A.; Bouwens, L. C. The Chemistry of Tea Flavonoids. Crit. Rev. Food Sci. Nutr. 1997, 37(8), 693–704. DOI: 10.1080/10408399709527797.
  • Aron, P. M.; Kennedy, J. A. Flavan-3-ols: Nature, Occurrence and Biological Activity. Mol. Nutr. Food Res. 2008, 52(1), 79–104. DOI: 10.1002/(ISSN)1613-4133.
  • Fraga, C. G.; Croft, K. D.; Kennedy, D. O.; Tomás-Barberán, F. A. The Effects of Polyphenols and Other Bioactives on Human Health. Food Funct. 2019, 10, 514–528. DOI: 10.1039/C8FO01997E.
  • Higdon, J. V.; Frei, B. Tea Catechins and Polyphenols: Health Effects, Metabolism, and Antioxidant Functions. Crit. Rev. Food Sci. Nutr. 2003, 43(1), 89–143. DOI: 10.1080/10408690390826464.
  • Grzesik, M.; Naparlo, K.; Bartosz, G.; Bartose, G.; Sadowska-Bartosz, I. Antioxidant Properties of Catechins: Comparison with Other Antioxidants. Food Chem. 2018, 241, 480–492. DOI: 10.1016/j.foodchem.2017.08.117.
  • Ishizu, T.; Tsutsumi, H.; Sato, T. Mechanism of Creaming down Based on Chemical Characterization of a Complex of Caffeine and Tea Catechins. Chem. Pharm. Bull. 2016, 64, 676–686. DOI: 10.1248/cpb.c16-00131.
  • Camfield, D. A.; Stough, C.; Farrimond, J.; Scholey, A. B Acute Effects of Tea Constituents L-theanine, Caffeine, and Epigallocatechin Gallate on Cognitive Function and Mood: A Systematic Review and Meta-analysis. Nutr. Rev. 2014, 72(8), 507–522. DOI: 10.1111/nure.2014.72.issue-8.
  • Janssens, P. L.; Hursel, R.; Westerterp-Plantenga, M. S. Nutraceuticals for Body-weight Management: The Role of Green Tea Catechins. Physiol. Behav. 2016, 162, 83–87. DOI: 10.1016/j.physbeh.2016.01.044.
  • Chen, X.-Q.; Wang, X.-B.; Guan, R.-F.; Tu, J.; Gong, Z.-H.; Zheng, N.; Yang, J.-H.; Zhang, -Y.-Y.; Ying, -M.-M. Blood Anticoagulation and Antiplatelet Activity of Green Tea (-)-epigallocatechin (EGC) in Mice. Food Funct. 2013, 4(10), 1521–1525. DOI: 10.1039/c3fo60088b.
  • Mangels, D. R.; Mohler, E. R., III. Catechins as Potential Mediators of Cardiovascular Health. Arterioscler Thromb. Vasc. Biol. 2017, 37(5), 757–763. DOI: 10.1161/ATVBAHA.117.309048.
  • Naponelli, V.; Ramazzina, I.; Lenzi, C.; Bettuzzi, S.; Rizzi, F. Green Tea Catechins for Prostate Cancer Prevention: Present Achievements and Future Challenges. Antioxidants. 2017, 6(2), 26. DOI: 10.3390/antiox6020026.
  • Ide, K.; Matsuoka, N.; Yamada, H.; Furushima, D.; Kawakami, K. Effects of Tea Catechins on Alzheimer’s Disease: Recent Updates and Perspectives. Molecules. 2018, 23(9), 2357. DOI: 10.3390/molecules23092357.
  • Renaud, J.; Nabavi, S. F.; Daglia, M.; Nabavi, S. M.; Martinoli, M.-G. Epigallocatechin-3-Gallate, a Promising Molecule for Parkinson’s Disease? Rejuvenation Res. 2015, 18(3), 257–269. DOI: 10.1089/rej.2014.1639.
  • Fukuda, I.; Nishiumi, S.; Mukai, R.; Yoshida, K.-I.; Ashida, H. Catechins in Tea Suppress the Activity of Cytochrome P450 1A1 through the Aryl Hydrocarbon Receptor Activation Pathway in Rat Livers. Int. J. Food Sci. Nutr. 2015, 66(3), 300–307. DOI: 10.3109/09637486.2014.992007.
  • Matsumoto, K.; Yamada, H.; Takuma, N.; Niino, H.; Sagesaka, Y. M. Effects of Green Tea Catechins and Theanine on Preventing Influenza Infection among Healthcare Workers: A Randomized Controlled Trial. BMC Complement. Altern. Med. 2011, 11, 15. DOI: 10.1186/1472-6882-11-15.
  • Younes, M.; Aggett, P.; Aguilar, F.; Crebelli, R.; Dusemund, B.; Filipic, M.; Frutos, M. J.; Galtier, P.; Gott, D.; Gundert-Remy, U.;; et al. Scientific Opinion on the Safety of Green Tea Catechins. Efsa J. 2018, 16(4), 5239.
  • He, H.-F.;. Research Progress on Theaflavins: Efficacy, Formation, and Preparation. Food Nutr. Res. 2017, 61(1), 1344521. DOI: 10.1080/16546628.2017.1344521.
  • Ko, H.-J.; Lo, C.-Y.; Wang, B.-J.; Chiou, R.-Y.-Y.; Lin, S.-M. Theaflavin-3,3′-digallate, a Black Tea Polyphenol, Stimulates Lipolysis Associated with the Induction of Mitochondrial Uncoupling Proteins and AMPK–FoxO3A–MnSOD Pathway in 3T3-L1 Adipocytes. J. Funct. Foods. 2015, 17, 271–282. DOI: 10.1016/j.jff.2015.05.033.
  • Kita, M.; Uchida, S.; Yamada, K.; Ano, Y. Anxiolytic Effects of Theaflavins via Dopaminergic Activation in the Frontal Cortex. Biosci. Biotechnol. Biochem. 2019, 83(6), 1157–1162. DOI: 10.1080/09168451.2019.1584523.
  • Park, P. J.; Rha, C.-S.; Kim, S. T. Theaflavin-Enriched Fraction Stimulates Adipogenesis in Human Subcutaneous Fat Cells. Int. J. Mol. Sci. 2019, 20(8), 2034. DOI: 10.3390/ijms20082034.
  • Mirani, A.; Kundaikar, H.; Velhal, S.; Patel, V.; Bandivdekar, A.; Degani, M.; Patravale, V. Evaluation of Phytopolyphenols for Their gp120-CD4 Binding Inhibitory Properties by in Silico Molecular Modelling & in Vitro Cell Line Studies. Curr. HIV Res. 2019, 17, 1. DOI: 10.2174/1570162X17666190611121627.
  • Amina, A. A.; Hoda, G. M. A.; Noha, E. R. E. Phytochemical Screening, Anthocyanins and Antimicrobial Activities in Some Berries Fruits. J. Food Meas. Charact. 2019, 13(2), 911–920. DOI: 10.1007/s11694-018-0005-0.
  • Wei, K.; Wang, L.; Zhang, Y.; Ruan, L.; Li, H.; Wu, L.; Xu, L.; Zhang, C.; Zhou, X.; Cheng, H.; et al. A Coupled Role for CsMYB75 and CsGSTF1 in Anthocyanin Hyperaccumulation in Purple Tea. Plant J. 2019, 97, 825–840. DOI: 10.1111/tpj.14161.
  • Solopova, A.; van Tilburg, A. Y.; Foito, A.; Allwood, J. W.; Stewart, D.; Kulakauskas, S.; Kuipers, O. P. Engineering Lactococcus Lactis for the Production of Unusual Anthocyanins Using Tea as Substrate. Metab. Eng. 2019, 54, 160–169. DOI: 10.1016/j.ymben.2019.04.002.
  • Liu, Y.; Qin, Y.; Bai, R.; Zhang, X.; Yuan, L.; Liu, J. Preparation of pH-sensitive and Antioxidant Packaging Films Based on κ-carrageenan and Mulberry Polyphenolic Extract. Int. J. Biol. Macromol. 2019, 134, 993–1001. DOI: 10.1016/j.ijbiomac.2019.05.175.
  • Zhang, J.; Giampieri, F.; Afrin, S.; Battino, M.; Zheng, X.; Reboredo-Rodriguez, P. Structure-stability Relationship of Anthocyanins under Cell Culture Condition. Int. J. Food Sci. Nutr. 2019, 70(3), 285–293. DOI: 10.1080/09637486.2018.1506753.
  • Zhang, J.-R.; Trossat-Magnin, C.; Bathany, K.; Delrot, S.; Chaudiere, J. Oxidative Transformation of Leucocyanidin by Anthocyanidin Synthase from Vitis Vinifera Leads Only to Quercetin. J. Agric. Food Chem. 2019, 67, 3595–3604. DOI: 10.1021/acs.jafc.8b06968.
  • Wang, P.; Zhang, L.; Jiang, X.; Dai, X.; Xu, L.; Li, T.; Xing, D.; Li, Y.; Li, M.; Gao, L.; et al. Evolutionary and Functional Characterization of Leucoanthocyanidin Reductases from Camellia Sinensis. Planta. 2018, 247, 139–154. DOI: 10.1007/s00425-017-2771-z.
  • Franklin, R.; Bispo, R. F. M.; Sousa-Rodrigues, C. F.; Pires, L. A. S.; Fonseca, J. A., Jr.; Babinski, M. A. Grape Leucoanthocyanidin Protects Liver Tissue in Albino Rabbits with Nonalcoholic Hepatic Steatosis. Cells Tissues Organs. 2018, 205, 129–136. DOI: 10.1159/000489166.
  • Dai, W.; Xie, D.; Lv, M.; Tan, J.; Li, P.; Lv, H.; Lin, Z. Relationship of Flavonol Glycoside and Processing Suitability of Tea Varieties. Food Sci. 2017, 38(16), 104–109.
  • Zaplatic, E.; Bule, M.; Shah, S. Z. A.; Uddin, M. S.; Niaz, K. Molecular Mechanisms Underlying Protective Role of Quercetin in Attenuating Alzheimer’s Disease. Life Sci. 2019, 224, 109–119. DOI: 10.1016/j.lfs.2019.03.055.
  • Rha, C.-S.; Jeong, H. W.; Park, S.; Lee, S.; Jung, Y. S.; Kim, D.-O. Antioxidative, Anti-Inflammatory, and Anticancer Effects of Purified Flavonol Glycosides and Aglycones in Green Tea. Antioxidants. 2019, 8, 278. DOI: 10.3390/antiox8080278.
  • Golonko, A.; Pienknowski, T.; Swislocka, R.; Lazny, R.; Roszko, M.; Lewandowski, W. Another Look at Phenolic Compounds in Cancer Therapy the Effect of Polyphenols on Ubiquitin-proteasome System. Eur. J. Med. Chem. 2019, 167, 291–311. DOI: 10.1016/j.ejmech.2019.01.044.
  • Silvester, A. J.; Aseer, K. R.; Yun, J. W. Dietary Polyphenols and Their Roles in Fat Browning. J. Nutr. Biochem. 2019, 64, 1–12. DOI: 10.1016/j.jnutbio.2018.09.028.
  • Lesjak, M.; Balesaria, S.; Skinner, V.; Debnam, E. S.; Srai, S. K. S. Quercetin Inhibits Intestinal Non-haem Iron Absorption by Regulating Iron Metabolism Genes in the Tissues. Eur. J. Nutr. 2019, 58, 743–753. DOI: 10.1007/s00394-018-1680-7.
  • Chen, W.; Zou, M.; Ma, X.; Lv, R.; Ding, T.; Liu, D. Co-Encapsulation of EGCG and Quercetin in Liposomes for Optimum Antioxidant Activity. J. Food Sci. 2019, 84(1), 111–120. DOI: 10.1111/1750-3841.14405.
  • Torres-Villarreal, D.; Camacho, A.; Castro, H.; Ortiz-Lopez, R.; de la Garza, A. L. Anti-obesity Effects of Kaempferol by Inhibiting Adipogenesis and Increasing Lipolysis in 3T3-L1 Cells. J. Physiol. Biochem. 2019, 75, 83–88. DOI: 10.1007/s13105-018-0659-4.
  • Mahobiya, A.; Singh, T. U.; Rungsung, S.; Kumar, T.; Chandrasekaran, G.; Parida, S.; Kumar, D. Kaempferol-induces Vasorelaxation via Endothelium-independent Pathways in Rat Isolated Pulmonary Artery. Pharmacol. Rep. 2018, 70, 863–874. DOI: 10.1016/j.pharep.2018.03.006.
  • Xu, B.; Jiang, H.; Zhang, J.; Yang, L.; Liu, Q. Formation Mechanism of TSs and Competitive Formation between TSs and TFs under Various pH. J. Tea Sci. 2015, 35(3), 281–289.
  • Fu, J.; Jiang, H.; Zhang, J.; Shi, L.; Wang, W. Recent Progress in Synthesis of Oxidized Dimeric Catechin Catalyzed by Exogenous Polyphenol Oxidase. Food Sci. 2019, 40(7), 274–280.
  • Hung, W.-L.; Yang, G.; Wang, Y.-C.; Chiou, Y.-S.; Tung, Y.-C.; Yang, M.-J.; Wang, B.-N.; Ho, C.-T.; Wang, Y.; Pan, M.-H. Protective Effects of Theasinensin A against Carbon Tetrachloride-induced Liver Injury in Mice. Food Funct. 2017, 8, 3276–3287. DOI: 10.1039/C7FO00700K.
  • Kumar, S.; Pandey, A. K. Chemistry and Biological Activities of Flavonoids: An Overview. Sci. World J. 2013, 162750.
  • Cai, Z.-Y.; Li, X.-M.; Liang, J.-P.; Xiang, L.-P.; Wang, K.-R.; Shi, Y.-L.; Yang, R.; Shi, M.; Ye, J.-H.; Lu, -J.-J.; et al. Bioavailability of Tea Catechins and Its Improvement. Molecules. 2018, 23(9), 2346.
  • Liu, J.; Wang, X.; Yong, H.; Kan, J.; Jin, C. Recent Advances in Flavonoid-grafted Polysaccharides: Synthesis, Structural Characterization, Bioactivities and Potential Applications. Int. J. Biol. Macromol. 2018, 116, 1011–1025. DOI: 10.1016/j.ijbiomac.2018.05.149.
  • You, J.; Luo, Y.; Wu, J. Conjugation of Ovotransferrin with Catechin Shows Improved Antioxidant Activity. J. Agric. Food Chem. 2014, 62(12), 2581–2587. DOI: 10.1021/jf405635q.
  • Wang, W.; Zhang, L.; Wang, S.; Shi, S.; Jiang, Y.; Li, N.; Tu, P. 8-C N-ethyl-2-pyrrolidinone Substituted Flavan-3-ols as the Marker Compounds of Chinese Dark Teas Formed in the Post-fermentation Process Provide Significant Antioxidative Activity. Food Chem. 2014, 152, 539–545. DOI: 10.1016/j.foodchem.2013.10.117.
  • Cheng, J.; Wu, F.-H.; Wang, P.; Ke, J.-P.; Wan, X.-C.; Qiu, M.-H.; Bao, G.-H. Flavoalkaloids with a Pyrrolidinone Ring from Chinese Ancient Cultivated Tea Xi-Gui. J. Agric. Food Chem. 2018, 66(30), 7948–7957. DOI: 10.1021/acs.jafc.8b02266.
  • Guo, W.; Zhang, R.; Li, X.; Wang, N. Flavonoids from Pu-erh Raw Tea. Chem. Nat. Compd. 2018, 54(3), 570–571. DOI: 10.1007/s10600-018-2410-3.
  • Li, X.; Liu, G.-J.; Zhang, W.; Zhou, Y.-L.; Ling, T.-J.; Wan, X.-C.; Bao, G.-H. Novel Flavoalkaloids from White Tea with Inhibitory Activity against the Formation of Advanced Glycation End Products. J. Agric. Food Chem. 2018, 66(18), 4621–4629. DOI: 10.1021/acs.jafc.8b00650.
  • Lu, Y.; He, Y.; Zhu, S.; Zhong, X.; Chen, D.; Liu, Z. New Acylglycosides Flavones from Fuzhuan Brick Tea and Simulation Analysis of Their Bioactive Effects. Int. J. Mol. Sci. 2019, 20, 494. DOI: 10.3390/ijms20030494.
  • Masumoto, S.; Aoki, S.; Miura, T.; Shoji, T. Flavan-3-ol/Procyanidin Metabolomics in Rat Urine Using HPLC-Quadrupole TOF/MS. Mol. Nutr. Food Res. 2018, 62(19), e1700867. DOI: 10.1002/mnfr.201700867.
  • Oteiza, P. I.; Fraga, C. G.; Mills, D. A.; Taft, D. H. Flavonoids and the Gastrointestinal Tract: Local and Systemic Effects. Mol. Aspects Med. 2018, 61, 41–49. DOI: 10.1016/j.mam.2018.01.001.
  • Kc, S.; Liu, M.; Zhang, Q.; Fan, K.; Shi, Y.; Ruan, J. Metabolic Changes of Amino Acids and Flavonoids in Tea Plants in Response to Inorganic Phosphate Limitation. Int. J. Mol. Sci. 2018, 19(11), 3683. DOI: 10.3390/ijms19113683.
  • Huang, H.; Yao, Q.; Xia, E.; Gao, L. Metabolomics and Transcriptomics Analyses Reveal Nitrogen Influences on the Accumulation of Flavonoids and Amino Acids in Young Shoots of Tea Plant (Camellia Sinensis L.) Associated with Tea Flavor. J. Agric. Food Chem. 2018, 66(37), 9828–9838. DOI: 10.1021/acs.jafc.8b01995.
  • Zhu, J.; Wang, X.; Xu, Q.; Zhao, S.; Tai, Y.; Wei, C. Global Dissection of Alternative Splicing Uncovers Transcriptional Diversity in Tissues and Associates with the Flavonoid Pathway in Tea Plant (Camellia Sinensis). BMC Plant Biol. 2018, 18(1), 266. DOI: 10.1186/s12870-018-1497-9.
  • Wang, W.-L.; Wang, Y.-X.; Li, H.; Liu, Z.-W.; Cui, X.; Zhuang, J. Two MYB Transcription Factors (Csmyb2 and CsMYB26) are Involved in Flavonoid Biosynthesis in Tea Plant [Camellia Sinensis (L.) O. Kuntze]. BMC Plant Biol. 2018, 18(1), 288. DOI: 10.1186/s12870-018-1502-3.
  • Zheng, C.; Ma, J.-Q.; Ma, C.-L.; Shen, S.-Y.; Liu, Y.-F.; Chen, L. Regulation of Growth and Flavonoid Formation of Tea Plants (Camellia Sinensis) by Blue and Green Light. J. Agric. Food Chem. 2019, 67, 2408–2419. DOI: 10.1021/acs.jafc.8b07050.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.