1,015
Views
23
CrossRef citations to date
0
Altmetric
Review

Technological Advancement in the Processing of Lycopene: A Review

, , , , , , , & show all

References

  • Khalid, M.; Saeed, R.; Bilal, M.; Iqbal, H. M. N.; Huang, D. Biosynthesis and Biomedical Perspectives of Carotenoids with Special Reference to Human Health-related Applications. Biocatal. Agric. Biotechnol. 2019, 17, 99–407. DOI: 10.1016/j.bcab.2018.11.027.
  • Martínez-Hernández, G. B.; Castillejo, N.; Artés-Hernández, F. Effect of Fresh–cut Apples Fortification with Lycopene Microspheres, Revalorized from Tomato By-products, during Shelf Life. Postharvest Biol. Technol. 2019, 156, 110925. DOI: 10.1016/j.postharvbio.2019.05.026.
  • Stajčić, S.; Ćetković, G.; Čanadanović-Brunet, J.; Djilas, S.; Mandić, A.; Četojević-Simin, D. Tomato Waste: Carotenoids Content, Antioxidant and Cell Growth Activities. Food Chem. 2015, 172, 225–232. DOI: 10.1016/j.foodchem.2014.09.069.
  • Papaioannou, E. H.; Liakopoulou-Kyriakides, M.; Karabelas, A. J. Natural Origin Lycopene and Its “Green” Downstream Processing. Crit. Rev. Food Sci. Nutr. 2016, 56(4), 686–709. DOI: 10.1080/10408398.2013.817381.
  • Durante, M.; Lenucci, M. S.; Marrese, P. P.; Rizzi, V.; De Caroli, M.; Piro, G.; Fini, P.; Russo, G. L.; Mita, G. α-Cyclodextrin Encapsulation of Supercritical CO2 Extracted Oleoresins from Different Plant Matrices: A Stability Study. Food Chem. 2016, 199, 684–693. DOI: 10.1016/j.foodchem.2015.12.073.
  • Murakami, K.; Honda, M.; Wahyudiono; Kanda, H.; Goto, M. Thermal Isomerization of (All-e)-lycopene and Separation of the Z-isomers by Using a Low Boiling Solvent: Dimethyl Ether. Sep. Sci. Technol. 2017, 52(16), 2573–2582. DOI: 10.1080/01496395.2017.1374412.
  • Kehili, M.; Kammlott, M.; Choura, S.; Zammel, A.; Zetzl, C.; Smirnova, I.; Allouche, N.; Sayadi, S. Supercritical CO2 Extraction and Antioxidant Activity of Lycopene and β-carotene-enriched Oleoresin from Tomato (Lycopersicum Esculentum L.) Peels By-product of a Tunisian Industry. Food Bioprod. Process. 2017, 102, 340–349. DOI: 10.1016/j.fbp.2017.02.002.
  • Strati, I. F.; Gogou, E.; Oreopoulou, V. Enzyme and High Pressure Assisted Extraction of Carotenoids from Tomato Waste. Food Bioprod. Process. 2015, 94, 668–674. DOI: 10.1016/j.fbp.2014.09.012.
  • Silva, Y. P. A.; Ferreira, T. A. P. C.; Celli, G. B.; Brooks, M. S. Optimization of Lycopene Extraction from Tomato Processing Waste Using an Eco-Friendly Ethyl Lactate–Ethyl Acetate Solvent: A Green Valorization Approach. Waste Biomass Valorization. 2019, 10(10), 2851–2861. DOI: 10.1007/s12649-018-0317-7.
  • Honda, M.; Kageyama, H.; Hibino, T.; Zhang, Y.; Ichihashi, K.; Fukaya, T.; Goto, M. Impact of Global Traditional Seasonings on Thermal Z-isomerization of (All-e)-lycopene in Tomato Puree. LWT- Food Sci. Technol. 2019, 116, 108565. DOI: 10.1016/j.lwt.2019.108565.
  • Ciriminna, R.; Fidalgo, A.; Meneguzzo, F.; Ilharco, L. M.; Pagliaro, M. Lycopene: Emerging Production Methods and Applications of a Valued Carotenoid. ACS Sustain. Chem. Eng. 2016, 4(3), 643–650. DOI: 10.1021/acssuschemeng.5b01516.
  • Yu, J.; Gleize, B.; Zhang, L.; Caris-Veyrat, C.; Renard, C. M. G. C. A. D-optimal Mixture Design of Tomato-based Sauce Formulations: Effects of Onion and EVOO on Lycopene Isomerization and Bioaccessibility. Food Funct. 2019, 10(6), 3589–3602. DOI: 10.1039/C9FO00208A.
  • Arathi, B. P.; Raghavendra-Rao Sowmya, P.; Kuriakose, G. C.; Shilpa, S.; Shwetha, H. J.; Kumar, S.; Raju, M.; Baskaran, V.; Lakshminarayana, R. Fractionation and Characterization of Lycopene-Oxidation Products by LC-MS/MS (ESI)+: Elucidation of the Chemopreventative Potency of Oxidized Lycopene in Breast-Cancer Cell Lines. J. Agric. Food Chem. 2018, 66(43), 11362–11371. DOI: 10.1021/acs.jafc.8b04850.
  • Gu, M.; Fang, H.; Gao, Y.; Su, T.; Niu, Y.; Yu, L. Characterization of Enzymatic Modified Soluble Dietary Fiber from Tomato Peels with High Release of Lycopene. Food Hydrocoll. 2020, 99, 105321. DOI: 10.1016/j.foodhyd.2019.105321.
  • Hussein, M. M. A.; Elsadaawy, H. A.; El-Murr, A.; Ahmed, M. M.; Bedawy, A. M.; Tukur, H. A.; Swelum, -A.-A.-A.; Saadeldin, I. M. Endosulfan Toxicity in Nile Tilapia (Oreochromis Niloticus) and the Use of Lycopene as an Ameliorative Agent. Comp. Biochem. Physiol. C: Toxicol. Pharmacol. 2019, 224, 108573. DOI: 10.1016/j.cbpc.2019.108573.
  • Rinaldi de Alvarenga, J. F.; Tran, C.; Hurtado-Barroso, S.; Martinez-Huélamo, M.; Illan, M.; Lamuela-Raventos, R. M. Home Cooking and Ingredient Synergism Improve Lycopene Isomer Production in Sofrito. Food Res. Int. 2017, 99, 851–861. DOI: 10.1016/j.foodres.2017.01.009.
  • Svelander, C. A.; Tibäck, E. A.; Ahrné, L. M.; Langton, M. I.; Svanberg, U. S.; Alminger, M. A. Processing of Tomato: Impact on in Vitro Bioaccessibility of Lycopene and Textural Properties. J. Sci. Food Agric. 2010, 90(10), 1665–1672. DOI: 10.1002/jsfa.4000.
  • Shi, J.; Xue, S. J.; Wang, B.; Wang, W.; Ye, X.; Quek, S. Y. Optimization of Formulation and Influence of Environmental Stresses on Stability of Lycopene-microemulsion. LWT- Food Sci. Technol. 2015, 60(2, Part 1), 999–1008. DOI: 10.1016/j.lwt.2014.10.066.
  • Rehman, A.; Tong, Q.; Jafari, S. M.; Assadpour, E.; Shehzad, Q.; Aadil, R. M.; Iqbal, M. W.; Rashed, M. M. A.; Mushtaq, B. S.; Ashraf, W. Carotenoid-loaded Nanocarriers: A Comprehensive Review. Adv. Colloid Interfac. Sci. 2019, 2019, 102048. DOI: 10.1016/j.cis.2019.102048.
  • Aguirre Calvo, T. R.; Santagapita, P. R. Freezing and Drying of Pink Grapefruit-lycopene Encapsulated in Ca(II)-alginate Beads Containing Galactomannans. J. Food Sci. Technol. 2019, 56(7), 3264–3271. DOI: 10.1007/s13197-019-03783-w.
  • Li, W.; Yalcin, M.; Lin, Q.; Ardawi, M. S. M.; Mousa, S. A. Self-assembly of Green Tea Catechin Derivatives in Nanoparticles for Oral Lycopene Delivery. J. Controll. Release. 2017, 248, 117–124. DOI: 10.1016/j.jconrel.2017.01.009.
  • Akhoond Zardini, A.; Mohebbi, M.; Farhoosh, R.; Bolurian, S. Production and Characterization of Nanostructured Lipid Carriers and Solid Lipid Nanoparticles Containing Lycopene for Food Fortification. J. Food Sci. Technol. 2018, 55(1), 287–298. DOI: 10.1007/s13197-017-2937-5.
  • Schunck, C. The Xanthophyll Group of Yellow Colouring Matters. Proc. Roy. Soc. Lond. 1904, 72(477–486), 165–176.
  • Willstatter, R.; Escher, H. T. Uber den farbstoff der tomate. Hoppe-Seyler’s Z Physiol. Chem. 1910, 64, 47–61. DOI: 10.1515/bchm2.1910.64.1.47.
  • Rao, A.; Ray, M.; Rao, L. Lycopene. Adv. Food Nutr. Res. 2006, 51, 99–164.
  • Schweiggert, R. M.; Mezger, D.; Schimpf, F.; Steingass, C. B.; Carle, R. Influence of Chromoplast Morphology on Carotenoid Bioaccessibility of Carrot, Mango, Papaya, and Tomato. Food Chem. 2012, 135(4), 2736–2742. DOI: 10.1016/j.foodchem.2012.07.035.
  • Müller, L.; Caris-Veyrat, C.; Lowe, G.; Böhm, V. Lycopene and Its Antioxidant Role in the Prevention of Cardiovascular Diseases-A Critical Review. Critic. Rev. Food Sci. Nutr. 2016, 56(11), 1868–1879. DOI: 10.1080/10408398.2013.801827.
  • Chanforan, C.; Loonis, M.; Mora, N.; Caris-Veyrat, C.; Dufour, C. The Impact of Industrial Processing on Health-beneficial Tomato Microconstituents. Food Chem. 2012, 134(4), 1786–1795. DOI: 10.1016/j.foodchem.2012.03.077.
  • Yu, J.; Gleize, B.; Zhang, L.; Caris-Veyrat, C.; Renard, C. M. G. C. Microwave Heating of Tomato Puree in the Presence of Onion and EVOO: The Effect on Lycopene Isomerization and Transfer into Oil. LWT- Food Sci. Technol. 2019, 113, 108284. DOI: 10.1016/j.lwt.2019.108284.
  • Zhang, L.; Zhang, H.; Ndeurumi, K. H.; Parkin, K. L.; Venuste, M. Thermally-induced Geometrical Isomerisation of Lycopene and Its Potential Influence on Functional Activity. Food Chem. 2012, 132(4), 2112–2117. DOI: 10.1016/j.foodchem.2011.12.068.
  • Allison, B. J.; Simmons, C. W. Valorization of Tomato Pomace by Sequential Lycopene Extraction and Anaerobic Digestion. Biomass Bioenergy. 2017, 105, 331–341. DOI: 10.1016/j.biombioe.2017.07.019.
  • Durante, M.; Lenucci, M. S.; Mita, G. Supercritical Carbon Dioxide Extraction of Carotenoids from Pumpkin (Cucurbita Spp.): A Review. Int. J. Mol. Sci. 2014, 15(4), 6725–6740. DOI: 10.3390/ijms15046725.
  • Lenucci, M. S.; De Caroli, M.; Marrese, P. P.; Iurlaro, A.; Rescio, L.; Böhm, V.; Dalessandro, G.; Piro, G. Enzyme-aided Extraction of Lycopene from High-pigment Tomato Cultivars by Supercritical Carbon Dioxide. Food Chem. 2015, 170, 193–202. DOI: 10.1016/j.foodchem.2014.08.081.
  • Vallecilla, Y. L. Increasing Cis-lycopene Content of the Oleoresin from Tomato Processing Byproducts Using Supercritical Carbon Dioxide and Assessment of Its Bioaccessibility; M.Sc. Dissertation, University of Nebraska – Lincoln, USA, 2017.
  • Poojary, M. M.; Passamonti, P. Optimization of Extraction of High Purity All-trans-lycopene from Tomato Pulp Waste. Food Chem. 2015, 188, 84–91. DOI: 10.1016/j.foodchem.2015.04.133.
  • Poojary, M. M.; Passamonti, P. Extraction of Lycopene from Tomato Processing Waste: Kinetics and Modelling. Food Chem. 2015, 173, 943–950. DOI: 10.1016/j.foodchem.2014.10.127.
  • Oberoi, D. P. S.; Sogi, D. S. Utilization of Watermelon Pulp for Lycopene Extraction by Response Surface Methodology. Food Chem. 2017, 232, 316–321. DOI: 10.1016/j.foodchem.2017.04.038.
  • Nagarajan, J.; Krishnamurthy, N. P.; Nagasundara, R. R.; Raghunandan, M. E.; Galanakis, C. M.; Ooi, C. W. A Facile Water-induced Complexation of Lycopene and Pectin from Pink Guava Byproduct: Extraction, Characterization and Kinetic Studies. Food Chem. 2019, 296, 47–55. DOI: 10.1016/j.foodchem.2019.05.135.
  • Kehili, M.; Sayadi, S.; Frikha, F.; Zammel, A.; Allouche, N. Optimization of Lycopene Extraction from Tomato Peels Industrial By-product Using Maceration in Refined Olive Oil. Food Bioprod. Process. 2019, 117, 321–328. DOI: 10.1016/j.fbp.2019.08.004.
  • Azabou, S.; Abid, Y.; Sebii, H.; Felfoul, I.; Gargouri, A.; Attia, H. Potential of the Solid-state Fermentation of Tomato by Products by Fusarium Solani Pisi for Enzymatic Extraction of Lycopene. LWT- Food Sci. Technol. 2016, 68, 80–287. DOI: 10.1016/j.lwt.2015.11.064.
  • Munde, P. J.; Muley, A. B.; Ladole, M. R.; Pawar, A. V.; Talib, M. I.; Parate, V. R. Optimization of Pectinase-assisted and Tri-solvent-mediated Extraction and Recovery of Lycopene from Waste Tomato Peels. Biotech. 2017, 3, 206. DOI: 10.1007/s13205-017-0825-3.
  • Catalkaya, G.; Kahveci, D. Optimization of Enzyme Assisted Extraction of Lycopene from Industrial Tomato Waste. Sep. Purif. Technol. 2019, 219, 55–63. DOI: 10.1016/j.seppur.2019.03.006.
  • Wei, Y.; Jia, L.; Yu-hua, L.; Li-qin, H.; San-hu, Z.; Er-lao, Z. Study on the Microwave-assisted Extraction of Lycopene from Watermelon and Its Antioxidant Activities. Storage Process. 2017, 17(6), 56–60. DOI: 10.3969/j.1009-6221.2017.06.010.
  • Ladole, M. R.; Nair, R. R.; Bhutada, Y. D.; Amritkar, V. D.; Pandit, A. B. Synergistic Effect of Ultrasonication and Co-immobilized Enzymes on Tomato Peels for Lycopene Extraction. Ultrason. Sonochem. 2018, 48, 453–462. DOI: 10.1016/j.ultsonch.2018.06.013.
  • Rahimi, S.; Mikani, M. Lycopene Green Ultrasound-assisted Extraction Using Edible Oil Accompany with Response Surface Methodology (RSM) Optimization Performance: Application in Tomato Processing Wastes. Microchem. J. 2019, 146, 1033–1042. DOI: 10.1016/j.microc.2019.02.039.
  • Lima, A. R.; Cristofoli, N. L.; Veneral, J. G.; Fritz, A. R. M.; Vieira, M. C. Optimization Conditions of UV-C Radiation Combined with Ultrasound-assisted Extraction of Cherry Tomato (Lycopersicon Esculentum) Lycopene Extract. Int. J. Food Stud. 2019, 8(2), 65–80. DOI: 10.7455/ijfs/8.2.2019.a7.
  • Bruno, A.; Durante, M.; Marrese, P. P.; Migoni, D.; Laus, M. N.; Pace, E.; Pastore, D.; Mita, G.; Piro, G.; Lenucci, M. S. Shades of Red: Comparative Study on Supercritical CO2 Extraction of Lycopene-rich Oleoresins from Gac, Tomato and Watermelon Fruits and Effect of the α-cyclodextrin Clathrated Extracts on Cultured Lung Adenocarcinoma Cells’ Viability. J. Food Compos. Anal. 2018, 65, 23–32. DOI: 10.1016/j.jfca.2017.08.007.
  • Hatami, T.; Meireles, M. A. A.; Ciftci, O. N. Supercritical Carbon Dioxide Extraction of Lycopene from Tomato Processing By-products: Mathematical Modeling and Optimization. J. Food Eng. 2019, 241, 18–25. DOI: 10.1016/j.jfoodeng.2018.07.036.
  • Scaglia, B.; D’Incecco, P.; Squillace, P.; Dell’Orto, M.; De Nisi, P.; Pellegrino, L.; Botto, A.; Cavicchi, C.; Adani, F. Development of a Tomato Pomace Biorefinery Based on a CO2-supercritical Extraction Process for the Production of a High Value Lycopene Product, Bioenergy and Digestate. J. Clean Prod. 2020, 243, 118650. DOI: 10.1016/j.jclepro.2019.118650.
  • Saini, R. K.; Keum, Y. S. Carotenoid Extraction Methods: A Review of Recent Developments. Food Chem. 2018, 240, 90–103. DOI: 10.1016/j.foodchem.2017.07.099.
  • Honda, M.; Watanabe, Y.; Murakami, K.; Hoang, N. N.; Diono, W.; Kanda, H.; Goto, M. Enhanced Lycopene Extraction from Gac (Momordica Cochinchinensis Spreng.) By the Z‐Isomerization Induced with Microwave Irradiation Pre‐Treatment. Eur. J. Lipid Sci. Tech. 2018, 120(2), 1700293. DOI: 10.1002/ejlt.201700293.
  • Gadhave, A. D.; Waghmare, J. T. A Short Review on Microemulsion and Its Application in Extraction of Vegetable Oil. Int. J. Res. Eng. Tech. 2014, 3(9), 147–158. DOI: 10.15623/ijret.2014.0309022.
  • Abbasi, S.; Radi, M. Food Grade Microemulsion Systems: Canola Oil/lecithin: N-propanol/water. Food Chem. 2016, 194, 972–979. DOI: 10.1016/j.foodchem.2015.08.078.
  • Amiri-Rigi, A.; Abbasi, S. Extraction of Lycopene Using a Lecithin-based Olive Oil Microemulsion. Food Chem. 2019, 272, 568–573. DOI: 10.1016/j.foodchem.2018.08.080.
  • Cardenas-Toro, F. P.; Alcázar-Alay, S. C.; Coutinho, J. P.; Godoy, H. T.; Forster-Carneiro, T.; Meireles, M. A. A. Pressurized Liquid Extraction and Low-pressure Solvent Extraction of Carotenoids from Pressed Palm Fiber: Experimental and Economical Evaluation. Food Bioprod. Process. 2015, 94, 90–100. DOI: 10.1016/j.fbp.2015.01.006.
  • Bakhshabadi, H.; Mirzaei, H.; Ghodsvali, A.; Jafari, S. M.; Ziaiifar, A. M.; Farzaneh, V. The Effect of Microwave Pretreatment on Some Physico-chemical Properties and Bioactivity of Black Cumin Seeds’ Oil. Ind. Crop. Prod. 2017, 97, 1–9. DOI: 10.1016/j.indcrop.2016.12.005.
  • Ranveer, R. C.; Patil, S. N.; Sahoo, A. K. Effect of Different Parameters on Enzyme-assisted Extraction of Lycopene from Tomato Processing Waste. Food Bioprod. Process. 2013, 91(4), 370–375. DOI: 10.1016/j.fbp.2013.01.006.
  • Rahimpour, S.; Taghian Dinani, S. Lycopene Extraction from Tomato Processing Waste Using Ultrasound and Cell-wall Degrading Enzymes. J. Food Meas. Charact. 2018, 12(4), 2394–2403. DOI: 10.1007/s11694-018-9856-7.
  • Lianfu, Z.; Zelong, L. Optimization and Comparison of Ultrasound/microwave Assisted Extraction (UMAE) and Ultrasonic Assisted Extraction (UAE) of Lycopene from Tomatoes. Ultrason. Sonochem. 2008, 15(5), 731–737. DOI: 10.1016/j.ultsonch.2007.12.001.
  • Ho, K. K. H. Y.; Ferruzzi, M. G.; Liceaga, A. M.; San Martín-González, M. F. Microwave-assisted Extraction of Lycopene in Tomato Peels: Effect of Extraction Conditions on All-trans and Cis-isomer Yields. LWT- Food Sci. Technol. 2015, 62, 160–168. DOI: 10.1016/j.lwt.2014.12.061.
  • Subhedar, P. B.; Gogate, P. R. Enhancing the Activity of Cellulase Enzyme Using Ultrasonic Irradiations. J. Mol. Catal. B-Enzym. 2014, 101, 108–114. DOI: 10.1016/j.molcatb.2014.01.002.
  • Amiri-Rigi, A.; Abbasi, S.; Scanlon, M. G. Enhanced Lycopene Extraction from Tomato Industrial Waste Using Microemulsion Technique: Optimization of Enzymatic and Ultrasound Pre-treatments. Innov. Food Sci. Emerg. Technol. 2016, 35, 160–167. DOI: 10.1016/j.ifset.2016.05.004.
  • Machmudah, S.; Zakaria; Winardi, S.; Sasaki, M.; Goto, M.; Kusumoto, N.; Hayakawa, K. Lycopene Extraction from Tomato Peel By-product Containing Tomato Seed Using Supercritical Carbon Dioxide. J. Food Eng. 2012, 108(2), 290–296. DOI: 10.1016/j.jfoodeng.2011.08.012.
  • Uquiche, E.; Antilaf, I.; Millao, S. Enhancement of Pigment Extraction from B. Braunii Pretreated Using CO2 Rapid Depressurization. Braz. J. Microbiol. 2016, 47(2), 497–505. DOI: 10.1016/j.bjm.2016.01.020.
  • Vallecilla-Yepez, L.; Ciftci, O. N. Increasing Cis-lycopene Content of the Oleoresin from Tomato Processing Byproducts Using Supercritical Carbon Dioxide. LWT- Food Sci. Technol. 2018, 95, 354–360. DOI: 10.1016/j.lwt.2018.04.065.
  • Yara-Varon, E.; Fabiano-Tixier, A.-S.; Balcells, M.; Canela-Garayoa, R.; Bily, A.; Chemat, F. Is It Possible to Substitute Hexane with Green Solvents for Extraction of Carotenoids? A Theoretical versus Experimental Solubility Study. RSC Adv. 2016, 6(33), 27750–27759. DOI: 10.1039/C6RA03016E.
  • Cheng, S.-H.; Khoo, H. E.; Kong, K. W.; Prasad, K. N.; Galanakis, C. M. Extraction of Carotenoids and Applications. In Carotenoids: Properties, Processing and Applications, 1st ed.; Galanakis, C. M., Ed. Academic Press: Amsterdam, Netherlands, 2020; pp 259–288.
  • Martins, P. L.; Rosso, V. Carotenoids Achieving from Tomatoes Discarded Using Ionic Liquids as Extracting for Application in Food Industry. Presented at XIV Safety, Health and Environment World Congress; Cubatão, Brazil, July 20–23, 2014; Paper 8.
  • Honda, M.; Igami, H.; Kawana, T.; Hayashi, K.; Takehara, M.; Inoue, Y.; Kitamura, C. Photosensitized E/ Z Isomerization of (All-e)-lycopene Aiming at Practical Applications. J. Agric. Food. Chem. 2014, 62(47), 11353–11356. DOI: 10.1021/jf504502t.
  • Murakami, K.; Honda, M.; Takemura, R.; Fukaya, T.; Wahyudiono, K. H.; Goto, M. Effect of Thermal Treatment and Light Irradiation on the Stability of Lycopene with High Z-isomers Content. Food Chem. 2018, 250, 253–258. DOI: 10.1016/j.foodchem.2018.01.062.
  • Gao, G.; Wei, C. C.; Jeevarajan, A. S.; Kispert, L. D. Geometrical Isomerization of Carotenoids Mediated by Cation Radical/Dication Formation. J. Phy. Chem. 1996, 100(13), 5362–5366. DOI: 10.1021/jp9529230.
  • Wei, C. C.; Gao, G.; Kispert, L. D. Selected Cis/trans Isomers of Carotenoids Formed by Bulk Electrolysis and Iron (III) Chloride Oxidation. J. Chem. Society, Perkin Transact. 1997, 2(4), 783–786. DOI: 10.1039/a605027a.
  • Takehara, M.; Kuwa, T.; Inoue, Y.; Kitamura, C.; Honda, M. Isolation and Characterization of (15z)-lycopene Thermally Generated from a Natural Source. Biochem. Biophys. Res. Commun. 2015, 467(1), 58–62. DOI: 10.1016/j.bbrc.2015.09.122.
  • Honda, M.; Watanabe, Y.; Murakami, K.; Takemura, R.; Fukaya, T.; Wahyudiono; Kanda, H.; Goto, M. Thermal Isomerization Pre-treatment to Improve Lycopene Extraction from Tomato Pulp. LWT- Food Sci. Technol. 2017, 86, 69–75. DOI: 10.1016/j.lwt.2017.07.046.
  • Kodama, T.; Honda, M.; Takemura, R.; Fukaya, T.; Uemori, C.; Wahyudiono; Kanda, H.; Goto, M. Effect of the Z-isomer Content on Nanoparticle Production of Lycopene Using Solution-enhanced Dispersion by Supercritical Fluids (SEDS). J. Supercrit. Fluid. 2018, 133, 291–296. DOI: 10.1016/j.supflu.2017.10.028.
  • Honda, M.; Kudo, T.; Kuwa, T.; Higashiura, T.; Fukaya, T.; Inoue, Y.; Kitamura, C.; Takehara, M. Isolation and Spectral Characterization of Thermally Generated multi-Z-isomers of Lycopene and the Theoretically Preferred Pathway to di-Z-isomers. Biosci. Biotechnol. Biochem. 2017, 81(2), 365–371. DOI: 10.1080/09168451.2016.1249454.
  • Yu, J.; Gleize, B.; Zhang, L.; Caris-Veyrat, C.; Renard, C. M. G. C. Heating Tomato Puree in the Presence of Lipids and Onion: The Impact of Onion on Lycopene Isomerization. Food Chem. 2019, 296, 9–16. DOI: 10.1016/j.foodchem.2019.05.188.
  • Heredia, A.; Peinado, I.; Rosa, E.; Andrés, A. Effect of Osmotic Pre-treatment and Microwave Heating on Lycopene Degradation and Isomerization in Cherry Tomato. Food Chem. 2010, 123(1), 92–98. DOI: 10.1016/j.foodchem.2010.04.005.
  • Honda, M.; Sato, H.; Takehara, M.; Inoue, Y.; Kitamura, C.; Takemura, R.; Fukaya, T.; Wahyudiono; Kanda, H.; Goto, M. Microwave-Accelerated Z-Isomerization of (All-e)-lycopene in Tomato Oleoresin and Enhancement of the Conversion by Vegetable Oils Containing Disulfide Compounds. Eur. J. Lipid Sci. Technol. 2018, 120(7), 1800060. DOI: 10.1002/ejlt.201800060.
  • Honda, M.; Kawana, T.; Takehara, M.; Inoue, Y. Enhanced E/ Z Isomerization of (All-e)-lycopene by Employing Iron(III) Chloride as a Catalyst. J. Food Sci. 2015, 80(7), 1453–1459. DOI: 10.1111/1750-3841.12916.
  • Honda, M.; Kageyama, H.; Hibino, T.; Sowa, T.; Kawashima, Y. Efficient and Environmentally Friendly Method for Carotenoid Extraction from Paracoccus Carotinifaciens Utilizing Naturally Occurring Z-isomerization-accelerating Catalysts. Process Biochem. 2020, 89, 146–154. DOI: 10.1016/j.procbio.2019.10.005.
  • Honda, M.; Kageyama, H.; Hibino, T.; Takemura, R.; Goto, M.; Fukaya, T. Enhanced Z-isomerization of Tomato Lycopene through the Optimal Combination of Food Ingredients. Sci. Rep. 2019, 9(1), 7979. DOI: 10.1038/s41598-019-44177-4.
  • Honda, M.; Kageyama, H.; Hibino, T.; Ichihashi, K.; Takada, W.; Goto, M. Isomerization of Commercially Important Carotenoids (Lycopene, β-Carotene, and Astaxanthin) by Natural Catalysts: Isothiocyanates and Polysulfides. J. Agric. Food Chem. 2020, 68(10), 3228–3237. DOI: 10.1021/acs.jafc.0c00316.
  • Sun, Q.; Yang, C.; Li, J.; Aboshora, W.; Raza, H.; Zhang, L. Highly Efficient Trans–cis Isomerization of Lycopene Catalyzed by Iodine-doped TiO2 Nanoparticles. RSC Adv. 2016, 6(3), 1885–1893. DOI: 10.1039/C5RA24074C.
  • Sun, Q.; Yang, C.; Li, J.; Raza, H.; Zhang, L. Lycopene: Heterogeneous Catalytic E/Z Isomerization and in Vitro Bioaccessibility Assessment Using a Diffusion Model. J. Food Sci. 2016, 81(10), 2381–2389. DOI: 10.1111/1750-3841.13419.
  • Qiu, W.; Jiang, H.; Wang, H.; Gao, Y. Effect of High Hydrostatic Pressure on Lycopene Stability. Food Chem. 2006, 97(3), 516–523. DOI: 10.1016/j.foodchem.2005.05.032.
  • İnanç Horuz, T.; Belibağlı, K. B. Nanoencapsulation by Electrospinning to Improve Stability and Water Solubility of Carotenoids Extracted from Tomato Peels. Food Chem. 2018, 268, 86–93. DOI: 10.1016/j.foodchem.2018.06.017.
  • Martínez-Hernández, G. B.; Boluda-Aguilar, M.; Taboada-Rodríguez, A.; Soto-Jover, S.; Marín-Iniesta, F.; López-Gómez, A. Processing, Packaging, and Storage of Tomato Products: Influence on the Lycopene Content. Food Eng. Rev. 2016, 8(1), 52–75. DOI: 10.1007/s12393-015-9113-3.
  • Rajchl, A.; Voldřich, M.; Čížková, H.; Hronová, M.; Ševčík, R.; Dobiáš, J.; Pivoňka, J. Stability of Nutritionally Important Compounds and Shelf Life Prediction of Tomato Ketchup. J. Food Eng. 2010, 99(4), 465–470. DOI: 10.1016/j.jfoodeng.2010.01.035.
  • Desmarchelier, C.; Borel, P. Overview of Carotenoid Bioavailability Determinants: From Dietary Factors to Host Genetic Variations. Trends Food Sci. Tech. 2017, 69, 270–280. DOI: 10.1016/j.tifs.2017.03.002.
  • Hempel, J.; Schädle, C. N.; Leptihn, S.; Carle, R.; Schweiggert, R. M. Structure Related Aggregation Behavior of Carotenoids and Carotenoid Esters. J. Photochem. Photobiol. A. 2016, 317, 161–174. DOI: 10.1016/j.jphotochem.2015.10.024.
  • Lambelet, P.; Richelle, M.; Bortlik, K.; Franceschi, F.; Giori, A. M. Improving the Stability of Lycopene Z-isomers in Isomerised Tomato Extracts. Food Chem. 2009, 112(1), 156–161. DOI: 10.1016/j.foodchem.2008.05.053.
  • Lavelli, V.; Torresani, M. C. Modelling the Stability of Lycopene-rich By-products of Tomato Processing. Food Chem. 2011, 125(2), 529–535. DOI: 10.1016/j.foodchem.2010.09.044.
  • Dias, M. G.; Camões, M. F. G. F. C.; Oliveira, L. Carotenoid Stability in Fruits, Vegetables and Working Standards – Effect of Storage Temperature and Time. Food Chem. 2014, 156, 37–41. DOI: 10.1016/j.foodchem.2014.01.050.
  • Jayathunge, K. G. L. R.; Stratakos, A. C.; Cregenzán-Albertia, O.; Grant, I. R.; Lyng, J.; Koidis, A. Enhancing the Lycopene in Vitro Bioaccessibility of Tomato Juice Synergistically Applying Thermal and Non-thermal Processing Technologies. Food Chem. 2017, 221, 698–705. DOI: 10.1016/j.foodchem.2016.11.117.
  • Soukoulis, C.; Bohn, T. A Comprehensive Overview on the Micro- and Nano-technological Encapsulation Advances for Enhancing the Chemical Stability and Bioavailability of Carotenoids. Crit. Rev. Food Sci. Nutr. 2018, 58(1), 1–36. DOI: 10.1080/10408398.2014.971353.
  • Assadpour, E.; Mahdi Jafari, S. A Systematic Review on Nanoencapsulation of Food Bioactive Ingredients and Nutraceuticals by Various Nanocarriers. Crit. Rev. Food Sci. Nutr. 2019, 59(19), 3129–3151. DOI: 10.1080/10408398.2018.1484687.
  • Jafari, S. M. An Introduction to Nanoencapsulation Techniques for the Food Bioactive Ingredients. In Nanoencapsulation of Food Bioactive Ingredients, Jafari, S.M., Ed.; Academic Press: Amsterdam, Netherlands, 2017; pp 1–62. DOI:10.1016/B978-0-12-809740-3.00001-5.
  • McClements, D. J.; Gumus, C. E. Natural Emulsifiers — Biosurfactants, Phospholipids, Biopolymers, and Colloidal Particles: Molecular and Physicochemical Basis of Functional Performance. Adv. Colloid Interfac. Sci. 2016, 234, 3–26. DOI: 10.1016/j.cis.2016.03.002.
  • Saberi, A. H.; Zeeb, B.; Weiss, J.; McClements, D. J. Tuneable Stability of Nanoemulsions Fabricated Using Spontaneous Emulsification by Biopolymer Electrostatic Deposition. J. Colloid Interfac Sci. 2015, 455, 172–178. DOI: 10.1016/j.jcis.2015.05.037.
  • Gharehbeglou, P.; Jafari, S. M.; Hamishekar, H.; Homayouni, A.; Mirzaei, H. Pectin-whey Protein Complexes Vs. Small Molecule Surfactants for Stabilization of Double Nano-emulsions as Novel Bioactive Delivery Systems. J. Food Eng. 2019, 245, 139–148. DOI: 10.1016/j.jfoodeng.2018.10.016.
  • Fu, D.; Deng, S.; McClements, D. J.; Zhou, L.; Zou, L.; Yi, J.; Liu, C.; Liu, W. Encapsulation of β-carotene in Wheat Gluten Nanoparticle-xanthan Gum-stabilized Pickering Emulsions: Enhancement of Carotenoid Stability and Bioaccessibility. Food Hydrocoll. 2019, 89, 80–89. DOI: 10.1016/j.foodhyd.2018.10.032.
  • Ha, T. V. A.; Kim, S.; Choi, Y.; Kwak, H. S.; Lee, S. J.; Wen, J.; Oey, I.; Ko, S. Antioxidant Activity and Bioaccessibility of Size-different Nanoemulsions for Lycopene-enriched Tomato Extract. Food Chem. 2015, 178, 115–121. DOI: 10.1016/j.foodchem.2015.01.048.
  • Kim, S. O.; Ha, T. V. A.; Choi, Y. J.; Ko, S. Optimization of Homogenization–Evaporation Process for Lycopene Nanoemulsion Production and Its Beverage Applications. J. Food Sci. 2014, 79(8), 1604–1610. DOI: 10.1111/1750-3841.12472.
  • Shariffa, Y. N.; Tan, T. B.; Uthumporn, U.; Abas, F.; Mirhosseini, H.; Nehdi, I. A.; Wang, Y. H.; Tan, C. P. Producing a Lycopene Nanodispersion: Formulation Development and the Effects of High Pressure Homogenization. Food Res. Int. 2017, 101, 165–172. DOI: 10.1016/j.foodres.2017.09.005.
  • Anarjan, N.; Jouyban, A. Preparation of Lycopene Nanodispersions from Tomato Processing Waste: Effects of Organic Phase Composition. Food Bioprod. Process. 2017, 103, 104–113. DOI: 10.1016/j.fbp.2017.03.003.
  • Nazemiyeh, E.; Eskandani, M.; Sheikhloie, H.; Nazemiyeh, H. Formulation and Physicochemical Characterization of Lycopene-Loaded Solid Lipid Nanoparticles. Adv. Pharma. Bull. 2016, 6(2), 235–241. DOI: 10.15171/apb.2016.032.
  • Okonogi, S.; Riangjanapatee, P. Physicochemical Characterization of Lycopene-loaded Nanostructured Lipid Carrier Formulations for Topical Administration. Int. J. Pharm. 2015, 478(2), 726–735. DOI: 10.1016/j.ijpharm.2014.12.002.
  • Singh, A.; Neupane, Y. R.; Panda, B. P.; Kohli, K. Lipid Based Nanoformulation of Lycopene Improves Oral Delivery: Formulation Optimization, Ex Vivo Assessment and Its Efficacy against Breast Cancer. J. Microencap. 2017, 34(4), 416–429. DOI: 10.1080/02652048.2017.1340355.
  • Yang, C.; Liu, H.; Sun, Q.; Xiong, W.; Yu, J.; Zhang, L. Enriched Z-isomers of Lycopene-loaded Nanostructured Lipid Carriers: Physicochemical Characterization and in Vitro Bioaccessibility Assessment Using a Diffusion Model. LWT- Food Sci. Technol. 2019, 111, 767–773. DOI: 10.1016/j.lwt.2019.05.106.
  • Jain, A.; Sharma, G.; Ghoshal, G.; Kesharwani, P.; Singh, B.; Shivhare, U. S.; Katare, O. P. Lycopene Loaded Whey Protein Isolate Nanoparticles: An Innovative Endeavor for Enhanced Bioavailability of Lycopene and Anti-cancer Activity. Int. J. Pharm. 2018, 546(1), 97–105. DOI: 10.1016/j.ijpharm.2018.04.061.
  • Dhakane, J. P.; Kar, A.; Patel, A. S.; Khan, I. Effect of Soy Proteins and Emulsification Evaporation Process on Physical Stability of Lycopene Emulsions. Int. J. Chem. Studies. 2017, 5(5), 1354–1358.
  • Horuz, T. I.; Belibaglı, K. B. Nanoencapsulation of Carotenoids Extracted from Tomato Peels into Zein Fibers by Electrospinning. J. Sci. Food Agric. 2019, 99(2), 759–766. DOI: 10.1002/jsfa.9244.
  • Aredo, V.; Passalacqua, E. S.; Pratavieira, S.; de Oliveira, A. L. Formation of Lycopene-loaded Hydrolysed Collagen Particles by Supercritical Impregnation. LWT- Food Sci. Technol. 2019, 110, 158–167. DOI: 10.1016/j.lwt.2019.04.055.
  • Esposito, E.; Drechsler, M.; Mariani, P.; Panico, A. M.; Cardile, V.; Crascì, L.; Carducci, F.; Graziano, A. C. E.; Cortesi, R.; Puglia, C. Nanostructured Lipid Dispersions for Topical Administration of Crocin, a Potent Antioxidant from Saffron (Crocus Sativus L.). Mater. Sci. Eng. C. 2017, 71, 669–677. DOI: 10.1016/j.msec.2016.10.045.
  • Akhavan, S.; Assadpour, E.; Katouzian, I.; Jafari, S. M. Lipid Nano Scale Cargos for the Protection and Delivery of Food Bioactive Ingredients and Nutraceuticals. Trends Food Sci. Technol. 2018, 74, 132–146. DOI: 10.1016/j.tifs.2018.02.001.
  • Đorđević, V.; Paraskevopoulou, A.; Mantzouridou, F.; Lalou, S.; Pantić, M.; Bugarski, B.; Nedović, V. Encapsulation Technologies for Food Industry. In Emerging and Traditional Technologies for Safe, Healthy and Quality Food; Nedović, V., Raspor, P., Lević, J., Tumbas Šaponjac, V., Barbosa-Cánovas, G.V., Eds.; Springer International Publishing: Cham, 2016; pp 329–382. DOI: 10.1007/978-3-319-24040-4_18.
  • Fathi, M.; Varshosaz, J.; Mohebbi, M.; Shahidi, F. Hesperetin-Loaded Solid Lipid Nanoparticles and Nanostructure Lipid Carriers for Food Fortification: Preparation, Characterization, and Modeling. Food Bioprocess Technol. 2013, 6(6), 1464–1475. DOI: 10.1007/s11947-012-0845-2.
  • Rehman, A.; Ahmad, T.; Aadil, R. M.; Spotti, M. J.; Bakry, A. M.; Khan, I. M.; Zhao, L.; Riaz, T.; Tong, Q. Pectin Polymers as Wall Materials for the Nano-encapsulation of Bioactive Compounds. Trends Food Sci. Technol. 2019, 90, 35–46. DOI: 10.1016/j.tifs.2019.05.015.
  • Gumus, C. E.; Decker, E. A.; McClements, D. J. Gastrointestinal Fate of Emulsion-based ω-3 Oil Delivery Systems Stabilized by Plant Proteins: Lentil, Pea, and Faba Bean Proteins. J. Food Eng. 2017, 207, 90–98. DOI: 10.1016/j.jfoodeng.2017.03.019.
  • Li, D.; Li, L.; Xiao, N.; Li, M.; Xie, X. Physical Properties of Oil-in-water Nanoemulsions Stabilized by OSA-modified Starch for the Encapsulation of Lycopene. Colloids Surf. A. 2018, 552, 59–66. DOI: 10.1016/j.colsurfa.2018.04.055.
  • Rizvi, S. Z. H.; Shah, F. A.; Khan, N.; Muhammad, I.; Ali, K. H.; Ansari, M. M.; Din, F.; Qureshi, O. S.; Kim, K.-W.; Choe, Y.-H.; et al. Simvastatin-loaded Solid Lipid Nanoparticles for Enhanced Anti-hyperlipidemic Activity in Hyperlipidemia Animal Model. Int. J. Pharm. 2019, 560, 136–143. DOI: 10.1016/j.ijpharm.2019.02.002.
  • Le, N. D. T.; Tran, P. H. L.; Lee, B.-J.; Tran, T. T. D. Solid Lipid Particle-based Tablets for Buccal Delivery: The Role of Solid Lipid Particles in Drug Release. J. Drug Deliv. Sci. Technol. 2019, 52, 96–102. DOI: 10.1016/j.jddst.2019.04.037.
  • Jain, A.; Sharma, G.; Kushwah, V.; Thakur, K.; Ghoshal, G.; Singh, B.; Jain, S.; Shivhare, U. S.; Katare, O. P. Fabrication and Functional Attributes of Lipidic Nanoconstructs of Lycopene: An Innovative Endeavour for Enhanced Cytotoxicity in MCF-7 Breast Cancer Cells. Colloids Surf. B. 2017, 152, 482–491. DOI: 10.1016/j.colsurfb.2017.01.050.
  • Yun, J.; Zhang, S.; Shen, S.; Chen, Z.; Yao, K.; Chen, J. Continuous Production of Solid Lipid Nanoparticles by Liquid Flow-focusing and Gas Displacing Method in Microchannels. Chem. Eng. Sci. 2009, 64(19), 4115–4122. DOI: 10.1016/j.ces.2009.06.047.
  • Katouzian, I.; Faridi Esfanjani, A.; Jafari, S. M.; Akhavan, S. Formulation and Application of a New Generation of Lipid Nano-carriers for the Food Bioactive Ingredients. Trends Food Sci. Technol. 2017, 68, 14–25. DOI: 10.1016/j.tifs.2017.07.017.
  • Helgason, T.; Awad, T. S.; Kristbergsson, K.; Decker, E. A.; McClements, D. J.; Weiss, J. Impact of Surfactant Properties on Oxidative Stability of β-Carotene Encapsulated within Solid Lipid Nanoparticles. J. Agric. Food Chem. 2009, 57(17), 8033–8040. DOI: 10.1021/jf901682m.
  • Fathi, M.; Martín, Á.; McClements, D. J. Nanoencapsulation of Food Ingredients Using Carbohydrate Based Delivery Systems. Trends Food Sci. Technol. 2014, 39(1), 18–39. DOI: 10.1016/j.tifs.2014.06.007.
  • Aguirre Calvo, T. R.; Busch, V. M.; Santagapita, P. R. Stability and Release of an Encapsulated Solvent-free Lycopene Extract in Alginate-based Beads. LWT- Food Sci. Technol. 2017, 77, 406–412. DOI: 10.1016/j.lwt.2016.11.074.
  • Lee, K. Y.; Mooney, D. J. Alginate: Properties and Biomedical Applications. Prog. Polym. Sci. 2012, 37(1), 106–126. DOI: 10.1016/j.progpolymsci.2011.06.003.
  • Peteiro, C. Alginate Production from Marine Macroalgae, with Emphasis on Kelp Farming. In Alginates and Their Biomedical Applications; Rehm, B.H.A., Moradali, M.F., Eds.; Springer Singapore: Singapore, 2018; pp 27–66. DOI: 10.1007/978-981-10-6910-9_2.
  • Wang, D.; Mao, L.; Dai, L.; Yuan, F.; Gao, Y. Characterization of Chitosan-ferulic Acid Conjugates and Their Application in the Design of β-carotene Bilayer Emulsions with Propylene Glycol Alginate. Food Hydrocoll. 2018, 80, 281–291. DOI: 10.1016/j.foodhyd.2017.11.031.
  • Sampaio, G. L. A.; Pacheco, S.; Ribeiro, A. P. O.; Galdeano, M. C.; Gomes, F. S.; Tonon, R. V. Encapsulation of a Lycopene-rich Watermelon Concentrate in Alginate and Pectin Beads: Characterization and Stability. LWT- Food Sci. Technol. 2019, 116, 108589. DOI: 10.1016/j.lwt.2019.108589.
  • Roy, M. C.; Alam, M.; Saeid, A.; Das, B. C.; Mia, M. B.; Rahman, M. A.; Eun, J. B.; Ahmed, M. Extraction and Characterization of Pectin from Pomelo Peel and Its Impact on Nutritional Properties of Carrot Jam during Storage. J. Food Process. Preserv. 2018, 42(1), 13411. DOI: 10.1111/jfpp.13411.
  • Marić, M.; Grassino, A. N.; Zhu, Z.; Barba, F. J.; Brnčić, M.; Rimac Brnčić, S. An Overview of the Traditional and Innovative Approaches for Pectin Extraction from Plant Food Wastes and By-products: Ultrasound-, Microwaves-, and Enzyme-assisted Extraction. Trends Food Sci. Technol. 2018, 76, 28–37. DOI: 10.1016/j.tifs.2018.03.022.
  • Li, H.; Qi, Y.; Zhao, Y.; Chi, J.; Cheng, S. Starch and Its Derivatives for Paper Coatings: A Review. Prog. Org. Coat. 2019, 135, 213–227. DOI: 10.1016/j.porgcoat.2019.05.015.
  • Cai, C.; Wei, B.; Tian, Y.; Ma, R.; Chen, L.; Qiu, L.; Jin, Z. Structural Changes of Chemically Modified Rice Starch by One-step Reactive Extrusion. Food Chem. 2019, 288, 354–360. DOI: 10.1016/j.foodchem.2019.03.017.
  • Bravo-Núñez, Á.; Pando, V.; Gómez, M. Physically and Chemically Modified Starches as Texturisers of Low-fat Milk Gels. Int. Dairy J. 2019, 92, 21–27. DOI: 10.1016/j.idairyj.2019.01.007.
  • Leyva-López, R.; Palma-Rodríguez, H. M.; López-Torres, A.; Capataz-Tafur, J.; Bello-Pérez, L. A.; Vargas-Torres, A. Use of Enzymatically Modified Starch in the Microencapsulation of Ascorbic Acid: Microcapsule Characterization, Release Behavior and in Vitro Digestion. Food Hydrocoll. 2019, 96, 259–266. DOI: 10.1016/j.foodhyd.2019.04.056.
  • Wu, C. N.; Lai, H. M. Novel pH-responsive Granules with Tunable Volumes from Oxidized Corn Starches. Carbohyd. Polym. 2019, 208, 201–212. DOI: 10.1016/j.carbpol.2018.12.058.
  • Balakrishnan, P.; Sreekala, M. S.; Geethamma, V. G.; Kalarikkal, N.; Kokol, V.; Volova, T.; Thomas, S. Physicochemical, Mechanical, Barrier and Antibacterial Properties of Starch Nanocomposites Crosslinked with Pre-oxidised Sucrose. Ind. Crop. Prod. 2019, 130, 398–408. DOI: 10.1016/j.indcrop.2019.01.007.
  • Chang, R.; Xiong, L.; Li, M.; Chen, H.; Xiao, J.; Wang, S.; Qiu, L.; Bian, X.; Sun, C.; Sun, Q. Preparation of Octenyl Succinic Anhydride-modified Debranched Starch Vesicles for Loading of Hydrophilic Functional Ingredients. Food Hydrocoll. 2019, 94, 546–552. DOI: 10.1016/j.foodhyd.2019.04.006.
  • Pathakoti, K.; Manubolu, M.; Hwang, H. M. Nanostructures: Current Uses and Future Applications in Food Science. J. Food Drug Anal. 2017, 25(2), 245–253. DOI: 10.1016/j.jfda.2017.02.004.
  • Wei, J. N.; Zeng, X. A.; Tang, T.; Jiang, Z.; Liu, Y. Y. Unfolding and Nanotube Formation of Ovalbumin Induced by Pulsed Electric Field. Innov. Food Sci. Emerg. Technol. 2018, 45, 249–254. DOI: 10.1016/j.ifset.2017.10.011.
  • Tarhini, M.; Greige-Gerges, H.; Elaissari, A. Protein-based Nanoparticles: From Preparation to Encapsulation of Active Molecules. Int. J. Pharm. 2017, 522(1), 172–197. DOI: 10.1016/j.ijpharm.2017.01.067.
  • Bhat, M. Y.; Dar, T. A.; Singh, L. R. Casein proteins: Structural and functional aspects. Milk proteins–from structure to biological properties and health aspects. InTech: Rijeka, 2016; pp 1–17.
  • Jain, A.; Thakur, D.; Ghoshal, G.; Katare, O. P.; Singh, B.; Shivhare, U. S. Formation and Functional Attributes of Electrostatic Complexes Involving Casein and Anionic Polysaccharides: An Approach to Enhance Oral Absorption of Lycopene in Rats in Vivo. Int. J. Biol. Macromol. 2016, 93, 746–756. DOI: 10.1016/j.ijbiomac.2016.08.071.
  • Mohammadi, A.; Jafari, S. M.; Assadpour, E.; Faridi, E. A. Nano-encapsulation of Olive Leaf Phenolic Compounds through WPC–pectin Complexes and Evaluating Their Release Rate. Int. J. Biol. Macromol. 2016, 82, 816–822. DOI: 10.1016/j.ijbiomac.2015.10.025.
  • Lohcharoenkal, W.; Wang, L.; Chen, Y. C.; Rojanasakul, Y. Protein Nanoparticles as Drug Delivery Carriers for Cancer Therapy. Biomed. Res. Int. 2014, 180549. DOI: 10.1155/2014/180549.
  • Elzoghby, A. O.;. Gelatin-based Nanoparticles as Drug and Gene Delivery Systems: Reviewing Three Decades of Research. J. Controlled Release. 2013, 172(3), 1075–1091. DOI: 10.1016/j.jconrel.2013.09.019.
  • Pal, A.; Bajpai, J.; Bajpai, A. K. Poly (Acrylic Acid) Grafted Gelatin Nanocarriers as Swelling Controlled Drug Delivery System for Optimized Release of Paclitaxel from Modified Gelatin. J. Drug Deliv. Sci. Technol. 2018, 45, 323–333. DOI: 10.1016/j.jddst.2018.03.025.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.