799
Views
6
CrossRef citations to date
0
Altmetric
Review

Phenolic Composition, Quality and Authenticity of Grapes and Wines by Vibrational Spectroscopy

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Jaganath, I. B.; Crozier, A. Dietary Flavonoids and Phenolic Compounds. In Plant Phenolic and Human Health; Fraga, C.G., Ed.; Wiley: Hoboken, NJ, 2009; pp 1–49.
  • Santos-Buelga, C.; Freitas, V. D. Influence of Phenolics on Wine Organoleptic Properties. In: Wine Chemistry and Biochemistry; Moreno-Arribas, M.V., Polo, M.C., Eds.; Springer: New York, 2009; pp 529–570.
  • Alcalde-Eon, C.; Escribano-Bailón, M. T.; Santos-Buelga, C.; Rivas-Gonzalo, J. C. Changes in the Detailed Pigment Composition of Red Wine during Maturity and Ageing: A Comprehensive Study. Anal. Chim. Acta. 2006, 563(1), 238–254. DOI: 10.1016/j.aca.2005.11.028.
  • Ferrer-Gallego, R.; Brás, N. F.; García-Estévez, I.; Mateus, N.; Rivas-Gonzalo, J. C.; De Freitas, V.; Escribano-Bailón, M. T. Effect of Flavonols on Wine Astringency and Their Interaction with Human Saliva. Food Chem. 2016, 209, 358–364. DOI: 10.1016/j.foodchem.2016.04.091.
  • García-Estévez, I.; Cruz, L.; Oliveira, J.; Mateus, N.; de Freitas, V.; Soares, S. First Evidences of Interaction between Pyranoanthocyanins and Salivary Proline-rich Proteins. Food Chem. 2017, 228, 574–581. DOI: 10.1016/j.foodchem.2017.02.030.
  • Ferrer-Gallego, R.; Hernández-Hierro, J. M.; Brás, N. F.; Vale, N.; Gomes, P.; Mateus, N.; De Freitas, V.; Heredia, F. J.; Escribano-Bailón, M. T. Interaction between Wine Phenolic Acids and Salivary Proteins by Saturation-Transfer Difference Nuclear Magnetic Resonance Spectroscopy (STD-NMR) and Molecular Dynamics Simulations. J. Agric. Food Chem. 2017, 65(31), 6434–6441. DOI: 10.1021/acs.jafc.6b05414.
  • Singleton, V. L.; Rossi, J. A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16(3), 144–158.
  • Aleixandre-Tudo, J. L.; Buica, A.; Nieuwoudt, H.; Aleixandre, J. L.; Du Toit, W. Spectrophotometric Analysis of Phenolic Compounds in Grapes and Wines. J. Agric. Food Chem. 2017, 65(20), 4009–4026. DOI: 10.1021/acs.jafc.7b01724.
  • Radovanovic, A.; Jovancicevic, B.; Arsic, B.; Radovanovic, B.; Bukarica, L. G. Application of Non-supervised Pattern Recognition Techniques to Classify Cabernet Sauvignon Wines from the Balkan Region Based on Individual Phenolic Compounds. J. Food Compost Anal. 2016, 49, 42–48. DOI: 10.1016/j.jfca.2016.04.001.
  • Waterhouse, A. L. Wine Phenolics. Ann. N.Y. Acad. Sci. 2002, 957(1), 21–36. DOI: 10.1111/j.1749-6632.2002.tb02903.x.
  • Osborne, B. G.; Fearn, T.; Hindle, P. H. Practical NIR Spectroscopy with Applications in Food and Beverage Analysis; Longman Scientific & Technical: Harlow, 1993.
  • Bokobza, L. Near Infrared Spectroscopy. J. Near Infrared Spectrosc. 1998, 6(1), 3–17. DOI: 10.1255/jnirs.116.
  • Goodchild, A. V.; El Haramein, F. J.; El Moneim, A. A.; Makkar, H. P. S.; Williams, P. C. Prediction of Phenolics and Tannins in Forage Legumes by near Infrared Reflectance. J. Near Infrared Spectrosc. 1998, 6(1), 175–181. DOI: 10.1255/jnirs.134.
  • Cozzolino, D.; Cynkar, W. U.; Dambergs, R. G.; Mercurio, M. D.; Smith, P. A. Measurement of Condensed Tannins and Dry Matter in Red Grape Homogenates Using near Infrared Spectroscopy and Partial Least Squares. J. Agric. Food Chem. 2008, 56(17), 7631–7636. DOI: 10.1021/jf801563z.
  • Fragoso, S.; Aceña, L.; Guasch, J.; Busto, O.; Mestres, M. Application of FT-MIR Spectroscopy for Fast Control of Red Grape Phenolic Ripening. J. Agric. Food Chem. 2011, 59(6), 2175–2183. DOI: 10.1021/jf104039g.
  • Ferrer-Gallego, R.; Hernandez-Hierro, J. M.; Rivas-Gonzalo, J. C.; Escribano-Bailon, M. T. A Comparative Study to Distinguish the Vineyard of Origin by NIRS Using Entire Grapes, Skins and Seeds. J. Sci. Food Agric. 2013, 93(4), 967–972. DOI: 10.1002/jsfa.5842.
  • Barnaba, F. E.; Bellincontro, A.; Mencarelli, F. Portable NIR-AOTF Spectroscopy Combined with Winery FTIR Spectroscopy for an Easy, Rapid, In-field Monitoring of Sangiovese Grape Quality. J. Sci. Food Agric. 2014, 94(6), 1071–1077. DOI: 10.1002/jsfa.6391.
  • Giovenzana, V.; Beghi, R.; Mena, A.; Civelli, R.; Guidetti, R.; Best, S.; León Gutiérrez, L. F. Quick Quality Evaluation of Chilean Grapes by a Portable VIS/NIR Device. Acta Hortic. 2013, (978), 93–100. DOI: 10.17660/ActaHortic.2013.978.9.
  • Boido, E.; Fariña, L.; Carrau, F.; Dellacassa, E.; Cozzolino, D. Characterization of Glycosylated Aroma Compounds in Tannat Grapes and Feasibility of the near Infrared Spectroscopy Application for Their Prediction. Food Anal. Methods. 2013, 6(1), 100–111. DOI: 10.1007/s12161-012-9423-5.
  • Rasines-Perea, Z.; Prieto-Perea, N.; Romera-Fernández, M.; Berrueta, L. A.; Gallo, B. Fast Determination of Anthocyanins in Red Grape Musts by Fourier Transform Mid-infrared Spectroscopy and Partial Least Squares Regression. Eur. Food Res. Technol. 2015, 240(5), 897–908. DOI: 10.1007/s00217-014-2394-6.
  • Shah, N.; Cynkar, W.; Smith, P.; Cozzolino, D. Use of Attenuated Total Reflectance Midinfrared for Rapid and Real-Time Analysis of Compositional Parameters in Commercial White Grape Juice. J. Agric. Food Chem. 2010, 58(6), 3279–3283. DOI: 10.1021/jf100420z.
  • Martínez-Sandoval, J. R.; Nogales-Bueno, J.; Rodríguez-Pulido, F. J.; Hernández-Hierro, J. M.; Segovia-Quintero, M. A.; Martínez-Rosas, M. E.; Heredia, F. J. Screening of Anthocyanins in Single Red Grapes Using a Non-destructive Method Based on the near Infrared Hyperspectral Technology and Chemometrics. J. Sci. Food Agric. 2016, 96(5), 1643–1647. DOI: 10.1002/jsfa.7266.
  • Hernández-Hierro, J. M.; Nogales-Bueno, J.; Rodríguez-Pulido, F. J.; Heredia, F. J. Feasibility Study on the Use of Near-infrared Hyperspectral Imaging for the Screening of Anthocyanins in Intact Grapes during Ripening. J. Agric. Food. Chem. 2013, 61(41), 9804–9809. DOI: 10.1021/jf4021637.
  • García-Estévez, I.; Quijada-Morín, N.; Rivas-Gonzalo, J. C.; Martínez-Fernández, J.; Sánchez, N.; Herrero-Jiménez, C. M.; Escribano-Bailón, M. T. Relationship between Hyperspectral Indices, Agronomic Parameters and Phenolic Composition of Vitis Vinifera Cv Tempranillo Grapes. J. Sci. Food Agric. 2017, 97(12), 4066–4074. DOI: 10.1002/jsfa.8366.
  • Ferrer-Gallego, R.; Hernández-Hierro, J. M.; Rivas-Gonzalo, J. C.; Escribano-Bailón, M. T. Determination of Phenolic Compounds of Grape Skins during Ripening by NIR Spectroscopy. LWT - Food Sci. Technol. 2011, 44(4), 847–853. DOI: 10.1016/j.lwt.2010.12.001.
  • Nogales-Bueno, J.; Baca-Bocanegra, B.; Rodríguez-Pulido, F. J.; Heredia, F. J.; Hernández-Hierro, J. M. Use of near Infrared Hyperspectral Tools for the Screening of Extractable Polyphenols in Red Grape Skins. Food Chem. 2015, 172, 559–564. DOI: 10.1016/j.foodchem.2014.09.112.
  • Jara-Palacios, M. J.; Rodríguez-Pulido, F. J.; Hernanz, D.; Escudero-Gilete, M. L.; Heredia, F. J. Determination of Phenolic Substances of Seeds, Skins and Stems from White Grape Marc by Near-infrared Hyperspectral Imaging: Hyperspectral Marc Analysis. Aust. J. Grape Wine Res. 2016, 22(1), 11–15. DOI: 10.1111/ajgw.12165.
  • Nogales-Bueno, J.; Baca-Bocanegra, B.; Rooney, A.; Hernández-Hierro, J. M.; Byrne, H. J.; Heredia, F. J. Study of Phenolic Extractability in Grape Seeds by Means of ATR-FTIR and Raman Spectroscopy. Food Chem. 2017, 232, 602–609. DOI: 10.1016/j.foodchem.2017.04.049.
  • Nogales-Bueno, J.; Baca-Bocanegra, B.; Rooney, A.; Miguel Hernández-Hierro, J.; José Heredia, F.; Byrne, H. J. Linking ATR-FTIR and Raman Features to Phenolic Extractability and Other Attributes in Grape Skin. Talanta. 2017, 167, 44–50. DOI: 10.1016/j.talanta.2017.02.008.
  • Nogales-Bueno, J.; Ayala, F.; Hernández-Hierro, J. M.; Rodríguez-Pulido, F. J.; Echávarri, J. F.; Heredia, F. J. Simplified Method for the Screening of Technological Maturity of Red Grape and Total Phenolic Compounds of Red Grape Skin: Application of the Characteristic Vector Method to Near-Infrared Spectra. J. Agric. Food Chem. 2015, 63(17), 4284–4290. DOI: 10.1021/jf505870s.
  • Ferrer-Gallego, R.; Hernández-Hierro, J. M.; Rivas-Gonzalo, J. C.; Escribano-Bailón, M. T. Feasibility Study on the Use of near Infrared Spectroscopy to Determine Flavanols in Grape Seeds. Talanta. 2010, 82(5), 1778–1783. DOI: 10.1016/j.talanta.2010.07.063.
  • Ferrer-Gallego, R.; Hernández-Hierro, J. M.; Rivas-Gonzalo, J. C.; Escribano-Bailón, M. T. Evaluation of Sensory Parameters of Grapes Using near Infrared Spectroscopy. J. Food Eng. 2013, 118(3), 333–339. DOI: 10.1016/j.jfoodeng.2013.04.019.
  • Rodríguez-Pulido, F. J.; Barbin, D. F.; Sun, D.-W.; Gordillo, B.; González-Miret, M. L.; Heredia, F. J. Grape Seed Characterization by NIR Hyperspectral Imaging. Postharvest. Biol. Technol. 2013, 76, 74–82. DOI: 10.1016/j.postharvbio.2012.09.007.
  • Rodríguez-Pulido, F. J.; Hernández-Hierro, J. M.; Nogales-Bueno, J.; Gordillo, B.; González-Miret, M. L.; Heredia, F. J. A Novel Method for Evaluating Flavanols in Grape Seeds by near Infrared Hyperspectral Imaging. Talanta. 2014, 122, 145–150. DOI: 10.1016/j.talanta.2014.01.044.
  • Cozzolino, D.; Kwiatkowski, M. J.; Parker, M.; Cynkar, W. U.; Dambergs, R. G.; Gishen, M.; Herderich, M. J. Prediction of Phenolic Compounds in Red Wine Fermentations by Visible and near Infrared Spectroscopy. Anal. Chim. Acta. 2004, 513(1), 73–80. DOI: 10.1016/j.aca.2003.08.066.
  • Preserova, J.; Ranc, V.; Milde, D.; Kubistova, V.; Stavek, J. Study of Phenolic Profile and Antioxidant Activity in Selected Moravian Wines during Winemaking Process by FT-IR Spectroscopy. J. Food Sci. Technol. 2015, 52(10), 6405–6414. DOI: 10.1007/s13197-014-1644-8.
  • Jensen, J. S.; Egebo, M.; Meyer, A. S. Identification of Spectral Regions for the Quantification of Red Wine Tannins with Fourier Transform Mid-infrared Spectroscopy. J. Agric. Food Chem. 2008, 56(10), 3493–3499. DOI: 10.1021/jf703573f.
  • Edelmann, A.; Lendl, B. Toward the Optical Tongue: Flow-through Sensing of Tannin-protein Interactions Based on FTIR Spectroscopy. J. Am. Chem. Soc. 2002, 124(49), 14741–14747. DOI: 10.1021/ja026309v.
  • Sen, I.; Ozturk, B.; Tokatli, F.; Ozen, B. Combination of Visible and Mid-infrared Spectra for the Prediction of Chemical Parameters of Wines. Talanta. 2016, 161, 130–137. DOI: 10.1016/j.talanta.2016.08.057.
  • Fragoso, S.; Aceña, L.; Guasch, J.; Mestres, M.; Busto, O. Quantification of Phenolic Compounds during Red Winemaking Using FT-MIR Spectroscopy and PLS-regression. J. Agric. Food Chem. 2011, 59(20), 10795–10802. DOI: 10.1021/jf201973e.
  • Canal, C.; Ozen, B. Monitoring of Wine Process and Prediction of Its Parameters with Mid-Infrared Spectroscopy. J. Food Process Eng. 2017, 40(1), 1. DOI: 10.1111/jfpe.12280.
  • Fernández, K.; Agosin, E. Quantitative Analysis of Red Wine Tannins Using Fourier-transform Mid-infrared Spectrometry. J. Agric. Food Chem. 2007, 55(18), 7294–7300. DOI: 10.1021/jf071193d.
  • Aleixandre-Tudo, J. L.; Nieuwoudt, H.; Aleixandre, J. L.; Du Toit, W. Chemometric Compositional Analysis of Phenolic Compounds in Fermenting Samples and Wines Using Different Infrared Spectroscopy Techniques. Talanta. 2018, 176, 526–536. DOI: 10.1016/j.talanta.2017.08.065.
  • Ristic, R.; Cozzolino, D.; Jeffery, D. W.; Gambetta, J. M.; Bastian, S. E. P. Prediction of Phenolic Composition of Shiraz Wines Using Attenuated Total Reflectance Mid-infrared (ATR-MIR) Spectroscopy. Am. J. Enol. Viticult. 2016, 67(4), 460–465. DOI: 10.5344/ajev.2016.16030.
  • Laghi, L.; Versari, A.; Parpinello, G. P.; Nakaji, D. Y.; Boulton, R. B.; Spectroscopy, F. T. I. R. Direct Orthogonal Signal Correction Preprocessing Applied to Selected Phenolic Compounds in Red Wines. Food Anal. Methods. 2011, 4(4), 619–625. DOI: 10.1007/s12161-011-9240-2.
  • Romera-Fernández, M.; Berrueta, L. A.; Garmón-Lobato, S.; Gallo, B.; Vicente, F.; Moreda, J. M. Feasibility Study of FT-MIR Spectroscopy and PLS-R for the Fast Determination of Anthocyanins in Wine. Talanta. 2012, 88, 303–310. DOI: 10.1016/j.talanta.2011.10.045.
  • Gallego, Á. L.; Guesalaga, A. R.; Bordeu, E.; González, Á. S. Rapid Measurement of Phenolics Compounds in Red Wine Using Raman Spectroscopy. IEEE Trans. Instrum. Meas. 2011, 60(2), 507–512. DOI: 10.1109/TIM.2010.2051611.
  • Martin, C.; Bruneel, J.-L.; Guyon, F.; Médina, B.; Jourdes, M.; Teissedre, P.-L.; Guillaume, F. Raman Spectroscopy of White Wines. Food Chem. 2015, 181(2015), 235–240. DOI: 10.1016/j.foodchem.2015.02.076.
  • Wu, Z.; Xu, E.; Long, J.; Pan, X.; Xu, X.; Jin, Z.; Jiao, A. Comparison between ATR-IR, Raman, Concatenated ATR-IR and Raman Spectroscopy for the Determination of Total Antioxidant Capacity and Total Phenolic Content of Chinese Rice Wine. Food Chem. 2015, 194, 671–679. DOI: 10.1016/j.foodchem.2015.08.071.
  • Ferrari, E.; Foca, G.; Vignali, M.; Tassi, L.; Ulrici, A. Adulteration of the Anthocyanin Content of Red Wines: Perspectives for Authentication by Fourier Transform-Near InfraRed and 1H NMR Spectroscopies. Anal. Chim. Acta. 2011, 701(2), 139–151. DOI: 10.1016/j.aca.2011.05.053.
  • Son, H. S.; Myong Kim, K.; van der Berg, F.; Hwang, G. S.; Park, W. M.; Lee, C. H.; Hong, Y. S. 1H Nuclear Magnetic Resonance-Based Metabolomic Characterization of Wines by Grape Varieties and Production Areas. J. Agric. Food Chem. 2008, 56(17), 8007–8016. DOI: 10.1021/jf801424u.
  • Žiak, Ľ.; Sádecká, J.; Májek, P.; Hroboňová, K. Simultaneous Determination of Phenolic Acids and Scopoletin in Brandies Using Synchronous Fluorescence Spectrometry Coupled with Partial Least Squares. Food Anal. Methods. 2014, 7(3), 563–570. DOI: 10.1007/s12161-013-9656-y.
  • Gómez-Alonso, S.; García-Romero, E.; Hermosín-Gutiérrez, I. HPLC Analysis of Diverse Grape and Wine Phenolics Using Direct Injection and Multidetection by DAD and Fluorescence. J. Food Compost. Anal. 2007, 20(7), 618–626. DOI: 10.1016/j.jfca.2007.03.002.
  • Viñas, P.; López-Erroz, C.; Marín-Hernández, J. J.; Hernández-Córdoba, M. Determination of Phenols in Wines by Liquid Chromatography with Photodiode Array and Fluorescence Detection. J. Chromatogr. A. 2000, 871(1–2), 85–93. DOI: 10.1016/S0021-9673(99)01087-0.
  • Martin, C.; Bruneel, J.-L.; Castet, F.; Fritsch, A.; Teissedre, P.-L.; Jourdes, M.; Guillaume, F. Spectroscopic and Theoretical Investigations of Phenolic Acids in White Wines. Food Chem. 2017, 221, 568–575. DOI: 10.1016/j.foodchem.2016.11.137.
  • Saad, R.; Bouveresse, D. J. R.; Locquet, N.; Rutledge, D. N. Using pH Variations to Improve the Discrimination of Wines by 3D Front Face Fluorescence Spectroscopy Associated to Independent Components Analysis. Talanta. 2016, 153, 278–284. DOI: 10.1016/j.talanta.2016.03.023.
  • Beaver, C. W.; Harbertson, J. F. Comparison of Multivariate Regression Methods for the Analysis of Phenolics in Wine Made from Two Vitis Vinifera Cultivars. Am. J. Enol. Viticult. 2016, 67(1), 56–64. DOI: 10.5344/ajev.2015.15063.
  • Aleixandre-Tudo, J. L.; Nieuwoudt, H.; Olivieri, A.; Aleixandre, J. L.; Du Toit, W. Phenolic Profiling of Grapes, Fermenting Samples and Wines Using UV-Visible Spectroscopy with Chemometrics. Food Control. 2018, 85, 11–22. DOI: 10.1016/j.foodcont.2017.09.014.
  • Molla, N.; Bakardzhiyski, I.; Manolova, Y.; Bambalov, V.; Cozzolino, D.; Antonov, L. The Effect of Path Length on the Measurement Accuracies of Wine Chemical Parameters by UV, Visible, and Near-Infrared Spectroscopy. Food Anal. Methods. 2016, 10, 1156–1163.
  • Aleixandre-Tudo, J. L.; Nieuwoudt, H.; Aleixandre, J. L.; Du Toit, W. Robust Ultraviolet-visible (Uv-vis) Partial Least-squares (PLS) Models for Tannin Quantification in Red Wine. J. Agric. Food Chem. 2015, 63(4), 1088–1098. DOI: 10.1021/jf503412t.
  • Kilmartin, P. A.; Zou, H.; Waterhouse, A. L. Correlation of Wine Phenolic Composition versus Cyclic Voltammetry Response. Am. J. Enol. Viticult. 2002, 53(4), 294–302.
  • Jara-Palacios, M. J.; Escudero-Gilete, M. L.; Hernández-Hierro, J. M.; Heredia, F. J.; Hernanz, D. Cyclic Voltammetry to Evaluate the Antioxidant Potential in Winemaking By-products. Talanta. 2017, 165, 211–215. DOI: 10.1016/j.talanta.2016.12.058.
  • ISO. Iso 9001:2000. In Quality Management Systems – Requirements, Standardization, I.O.F., Ed.,  ISO: Geneve, 2000, 1–23.
  • OIV. State of the Vitiviniculture World Market. Int. Organ. Vine Wine. 2017, 1, 1–10.
  • Cravens, D. W.; Piercy, N. F. Strategic Marketing; McGraw-Hill Irwin:Boston: Boston, 2009. pp 784.
  • Stranieri, S.; Cavaliere, A.; Banterle, A. Do Motivations Affect Different Voluntary Traceability Schemes? an Empirical Analysis among Food Manufacturers. Food Control. 2017, 80, 187–196. DOI: 10.1016/j.foodcont.2017.04.047.
  • Galpin, V. C. A comparison of legislation about winemaking additives and processes; 2006.
  • Ribereau-Gayon, P.; Glories, Y.; Maujean, A.; Dubordieu, D. Handbook of Enology, Volume 2: The Chemistry of Wine - Stabilization and Treatments, Wiley: Chichester, UK, 2006.
  • Versari, A.; Laurie, V. F.; Ricci, A.; Laghi, L.; Parpinello, G. P. Progress in Authentication, Typification and Traceability of Grapes and Wines by Chemometric Approaches. Food Res. Int. 2014, 60, 2–18. DOI: 10.1016/j.foodres.2014.02.007.
  • Villano, C.; Lisanti, M. T.; Gambuti, A.; Vecchio, R.; Moio, L.; Frusciante, L.; Aversano, R.; Carputo, D. Wine Varietal Authentication Based on Phenolics, Volatiles and DNA Markers: State of the Art, Perspectives and Drawbacks. Food Control. 2017, 80, 1–10. DOI: 10.1016/j.foodcont.2017.04.020.
  • Geana, I.; Iordache, A.; Ionete, R.; Marinescu, A.; Ranca, A.; Culea, M. Geographical Origin Identification of Romanian Wines by ICP-MS Elemental Analysis. Food Chem. 2013, 138(2), 1125–1134. DOI: 10.1016/j.foodchem.2012.11.104.
  • Baca-Bocanegra, B.; Hernández-Hierro, J. M.; Nogales-Bueno, J.; Heredia, F. J. Feasibility Study on the Use of a Portable Micro near Infrared Spectroscopy Device for the “In Vineyard” Screening of Extractable Polyphenols in Red Grape Skins. Talanta. 2019, 192, 353–359. DOI: 10.1016/j.talanta.2018.09.057.
  • Ugliano, M. Rapid Fingerprinting of White Wine Oxidizable Fraction and Classification of White Wines Using Disposable Screen Printed Sensors and Derivative Voltammetry. Food Chem. 2016, 212, 837–843. DOI: 10.1016/j.foodchem.2016.05.156.
  • Alimelli, A.; Filippini, D.; Paolesse, R.; Moretti, S.; Ciolfi, G.; D’Amico, A.; Lundström, I.; Di Natale, C. Direct Quantitative Evaluation of Complex Substances Using Computer Screen Photo-assisted Technology: The Case of Red Wine. Anal. Chim. Acta. 2007, 597(1), 103–112. DOI: 10.1016/j.aca.2007.06.033.
  • Galgano, F.; Caruso, M.; Perretti, G.; Favati, F. Authentication of Italian Red Wines on the Basis of the Polyphenols and Biogenic Amines. Eur. Food Res. Technol. 2011, 232(5), 889–897. DOI: 10.1007/s00217-011-1457-1.
  • Serrano-Lourido, D.; Saurina, J.; Hernandez-Cassou, S.; Checa, A. Classification and Characterisation of Spanish Red Wines according to Their Appellation of Origin Based on Chromatographic Profiles and Chemometric Data Analysis. Food Chem. 2012, 135(3), 1425–1431. DOI: 10.1016/j.foodchem.2012.06.010.
  • Franquet-Griell, H.; Checa, A.; Nunez, O.; Saurina, J.; Hernandez-Cassou, S.; Puignou, L. Determination of Polyphenols in Spanish Wines by Capillary Zone Electrophoresis. Application to Wine Characterization by Using Chemometrics. J. Agric. Food. Chem. 2012, 60(34), 8340–8349. DOI: 10.1021/jf302078j.
  • Pavlousek, P.; Kumšta, M. Authentication of Riesling Wines from the Czech Republic on the Basis of the Non-flavonoid Phenolic Compounds. Czech J. Food Sci. 2013, 31(5), 474–482. DOI: 10.17221/40/2013-CJFS.
  • Airado-Rodriguez, D.; Galeano-Diaz, T.; Duran-Meras, I.; Wold, J. P. Usefulness of Fluorescence Excitation-emission Matrices in Combination with PARAFAC, as Fingerprints of Red Wines. J. Agric. Food. Chem. 2009, 57(5), 1711–1720. DOI: 10.1021/jf8033623.
  • Belmiro, T. M. C.; Pereira, C. F.; Paim, A. P. S. Red Wines from South America: Content of Phenolic Compounds and Chemometric Distinction by Origin. Microchem. J. 2017, 133, 114–120. DOI: 10.1016/j.microc.2017.03.018.
  • Beltrán, N. H.; Duarte-Mermoud, M. A.; Bustos, M. A.; Salah, S. A.; Loyola, E. A.; Peña-Neira, A. I.; Jalocha, J. W. Feature Extraction and Classification of Chilean Wines. J. Food Eng. 2006, 75(1), 1–10. DOI: 10.1016/j.jfoodeng.2005.03.045.
  • González-Neves, G.; Franco, J.; Barreiro, L.; Gil, G.; Moutounet, M.; Carbonneau, A. Varietal Differentiation of Tannat, Cabernet-Sauvignon and Merlot Grapes and Wines according to Their Anthocyanic Composition. Eur. Food Res. Technol. 2007, 225(1), 111–117. DOI: 10.1007/s00217-006-0388-8.
  • Gutiérrez, L.; Quintana, F. A.; von Baer, D.; Mardones, C. Multivariate Bayesian Discrimination for Varietal Authentication of Chilean Red Wine. J. Appl. Stat. 2011, 38(10), 2099–2109. DOI: 10.1080/02664763.2010.545116.
  • Vergara, C.; Von Baer, D.; Mardones, C.; Gutiérrez, L.; Hermosín-Gutiérrez, I.; Castillo-Muñoz, N. Flavonol Profiles for Varietal Differentiation between Carménère and Merlot Wines Produced in Chile: HPLC and Chemometric Analysis. J. Chil. Chem. Soc. 2011, 56(4), 827–832. DOI: 10.4067/S0717-97072011000400001.
  • Lampír, R.;. Varietal Differentiation of White Wines on the Basis of Phenolic Compounds Profile. Czech J. Food Sci. 2013, 31(2), 172–179. DOI: 10.17221/270/2012-CJFS.
  • Ragone, R.; Crupi, P.; Piccinonna, S.; Bergamini, C.; Mazzone, F.; Fanizzi, F. P.; Schena, F. P.; Antonacci, D. Classification and Chemometric Study of Southern Italy Monovarietal Wines Based on NMR and HPLC-DAD-MS. Food Sci. Biotechnol. 2015, 24(3), 817–826. DOI: 10.1007/s10068-015-0106-z.
  • Agatonovic-Kustrin, S.; Milojković-Opsenica, D.; Morton, D. W.; Ristivojević, P. Chemometric Characterization of Wines according to Their HPTLC Fingerprints. Eur. Food Res. Technol. 2017, 243(4), 659–667. DOI: 10.1007/s00217-016-2779-9.
  • Arozarena, I.; Casp, A.; Marín, R.; Navarro, M. Differentiation of Some Spanish Wines according to Variety and Region Based on Their Anthocyanin Composition. Eur. Food Res. Technol. 2000, 212(1), 108–112. DOI: 10.1007/s002170000212.
  • Dufour, É.; Letort, A.; Laguet, A.; Lebecque, A.; Serra, J. N. Investigation of Variety, Typicality and Vintage of French and German Wines Using Front-face Fluorescence Spectroscopy. Anal. Chim. Acta. 2006, 563(1), 292–299. DOI: 10.1016/j.aca.2005.11.005.
  • Kallithraka, S.; Mamalos, A.; Makris, D. P. Differentiation of Young Red Wines Based on Chemometrics of Minor Polyphenolic Constituents. J. Agric. Food. Chem. 2007, 55(9), 3233–3239. DOI: 10.1021/jf070114v.
  • Bellomarino, S. A.; Conlan, X. A.; Parker, R. M.; Barnett, N. W.; Adams, M. J. Geographical Classification of Some Australian Wines by Discriminant Analysis Using HPLC with UV and Chemiluminescence Detection. Talanta. 2009, 80(2), 833–838. DOI: 10.1016/j.talanta.2009.08.001.
  • Mandrile, L.; Zeppa, G.; Giovannozzi, A. M.; Rossi, A. M. Controlling Protected Designation of Origin of Wine by Raman Spectroscopy. Food Chem. 2016, 211, 260–267. DOI: 10.1016/j.foodchem.2016.05.011.
  • Sartor, S.; Malinovski, L. I.; Caliari, V.; da Silva, A. L.; Bordignon-Luiz, M. T. Particularities of Syrah Wines from Different Growing Regions of Southern Brazil: Grapevine Phenology and Bioactive Compounds. J. Food Sci. Technol. 2017, 54(6), 1414–1424. DOI: 10.1007/s13197-017-2557-0.
  • Coelho, C.; Aron, A.; Roullier-Gall, C.; Gonsior, M.; Schmitt-Kopplin, P.; Gougeon, R. D. Fluorescence Fingerprinting of Bottled White Wines Can Reveal Memories Related to Sulfur Dioxide Treatments of the Must. Anal. Chem. 2015, 87(16), 8132–8137. DOI: 10.1021/acs.analchem.5b00388.
  • Ignat, G.; Balan, G.; Sandu, I.; Costuleanu, C.; Ville, S. T. Study of Phenolic Compounds in Merlot Red Wines Obtained by Different Technologies. Rev. Chim. 2016, 67(8), 1560–1565.
  • Fernández-Novales, J.; Garde-Cerdán, T.; Tardáguila, J.; Gutiérrez-Gamboa, G.; Pérez-Álvarez, E. P.; Diago, M. P. Assessment of Amino Acids and Total Soluble Solids in Intact Grape Berries Using Contactless Vis and NIR Spectroscopy during Ripening. Talanta. 2019, 199, 244–253. DOI: 10.1016/j.talanta.2019.02.037.
  • Rocha, S.; Pinto, E.; Almeida, A.; Fernandes, E. Multi-elemental Analysis as a Tool for Characterization and Differentiation of Portuguese Wines according to Their Protected Geographical Indication. Food Control. 2019, 103, 27–35. DOI: 10.1016/j.foodcont.2019.03.034.
  • Carpentieri, A.; Marino, G.; Amoresano, A. Rapid Fingerprinting of Red Wines by MALDI Mass Spectrometry. Anal. Bioanal. Chem. 2007, 389(3), 969–982. DOI: 10.1007/s00216-007-1476-8.
  • Di Paola-Naranjo, R. D.; Baroni, M. V.; Podio, N. S.; Rubinstein, H. R.; Fabani, M. P.; Badini, R. G.; Inga, M.; Ostera, H. A.; Cagnoni, M.; Gallegos, E.; et al. Fingerprints for Main Varieties of Argentinean Wines: Terroir Differentiation by Inorganic, Organic, and Stable Isotopic Analyses Coupled to Chemometrics. J. Agric. Food. Chem. 2011, 59(14), 7854–7865. DOI: 10.1021/jf2007419.
  • Mazerolles, G.; Preys, S.; Bouchut, C.; Meudec, E.; Fulcrand, H.; Souquet, J. M.; Cheynier, V. Combination of Several Mass Spectrometry Ionization Modes: A Multiblock Analysis for a Rapid Characterization of the Red Wine Polyphenolic Composition. Anal. Chim. Acta. 2010, 678(2), 195–202. DOI: 10.1016/j.aca.2010.07.034.
  • Soleas, G. J.; Dam, J.; Carey, M.; Goldberg, D. M. Toward the Fingerprinting of Wines: Cultivar-Related Patterns of Polyphenolic Constituents in Ontario Wines. J. Agric. Food Chem. 1997, 45(10), 3871–3880. DOI: 10.1021/jf970183h.
  • Delcambre, A.; Saucier, C. High-Throughput OEnomics: Shotgun Polyphenomics of Wines. Anal. Chem. 2013, 85(20), 9736–9741. DOI: 10.1021/ac4021402.
  • Li, S.-Y.; He, F.; Zhu, B.-Q.; Wang, J.; Duan, C.-Q. Comparison of Phenolic and Chromatic Characteristics of Dry Red Wines Made from Native Chinese Grape Species and Vitis Vinifera. Int. J. Food Prop. 2017, 20(9), 2134–2146. DOI: 10.1080/10942912.2016.1233117.
  • Arbulu, M.; Sampedro, M. C.; Gomez-Caballero, A.; Goicolea, M. A.; Barrio, R. J. Untargeted Metabolomic Analysis Using Liquid Chromatography Quadrupole Time-of-flight Mass Spectrometry for Non-volatile Profiling of Wines. Anal. Chim. Acta. 2015, 858, 32–41. DOI: 10.1016/j.aca.2014.12.028.
  • Airado-Rodríguez, D.; Durán-Merás, I.; Galeano-Díaz, T.; Wold, J. P. Front-face Fluorescence Spectroscopy: A New Tool for Control in the Wine Industry. J. Food Compost Anal. 2011, 24(2), 257–264. DOI: 10.1016/j.jfca.2010.10.005.
  • Barros Neto, B. D.; Scarminio, I. S.; Bruns, R. E. 25 Anos De Quimiometria No Brasil. Quím. Nova. 2006, 29(6), 1401–1406. DOI: 10.1590/S0100-40422006000600042.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.