901
Views
7
CrossRef citations to date
0
Altmetric
Review

Food as porous media: a review of the dynamics of porous properties during processing

ORCID Icon & ORCID Icon

References

  • Dhall, A. Multiphase Transport in Deformable Phase-Changing Porous Materials. In Biological and Environmental Engineering. Cornell University, 2011.
  • Dadmohammadi, Y.; Kantzas, A.; Yu, X.; Datta, A. K. Estimating Permeability and Porosity of Plant Tissues: Evolution from Raw to the Processed States of Potato. J. Food Eng. 2020, 277, 109912. DOI: 10.1016/j.jfoodeng.2020.109912.
  • Halder, A.; Dhall, A.; Datta, A. K. Modeling Transport in Porous Media with Phase Change: Applications to Food Processing. J. Heat. Transfer. 2011, 133(3), 031010. DOI: 10.1115/1.4002463.
  • Dadmohammadi, Y.; Datta, A. K. Prediction of Effective Moisture Diffusivity in Plant Tissue Food Materials over Extended Moisture Range. Drying Technol. 2019, 1–15. doi:10.1080/07373937.2019.1690500.
  • Ni, H.; Datta, A. K. Moisture, Oil and Energy Transport during Deep-fat Frying of Food Materials. Food Bioprod. Process. 1999, 77(C3), 194–204. DOI: 10.1205/096030899532475.
  • Nobel, P.S., Physicochemical & environmental plant physiology; Academic Press: University of California, Los Angeles, 1999 .
  • Datta, A. K. Porous Media Approaches to Studying Simultaneous Heat and Mass Transfer in Food Processes. I: Problem Formulations. J. Food Eng. 2007, 80(1), 80–95. DOI: 10.1016/j.jfoodeng.2006.05.013.
  • Datta, A. K. Porous Media Approaches to Studying Simultaneous Heat and Mass Transfer in Food Processes. II: Property Data and Representative Results. J. Food Eng. 2007, 80(1), 96–110. DOI: 10.1016/j.jfoodeng.2006.05.012.
  • Herremans, E.; Verboven, P.; Defraeye, T.; Rogge, S.; Ho, Q. T.; Hertog, M. L. A. T. M.; Verlinden, B. E.; Bongaers, E.; Wevers, M.; Nicolai, B. M. X-ray CT for Quantitative Food Microstructure Engineering: The Apple Case. Nucl. Instrum. Methods Phys. Res. B. 2014, 324, 88–94. DOI: 10.1016/j.nimb.2013.07.035.
  • Acevedo, N. C.; Briones, V.; Buera, P.; Aguilera, J. M. Microstructure Affects the Rate of Chemical, Physical and Color Changes during Storage of Dried Apple Discs. J. Food Eng. 2008, 85(2), 222–231.
  • Ni, H. Multiphase Moisture Transport in Porous Media under Intensive Microwave Heating; Cornell University, 1997.
  • Dadmohammadi, Y.; Misra, S.; Sondergeld, C. H.; Rai, C. S. Petrophysical Interpretation of Laboratory Pressure-step-decay Measurements on Ultra-tight Rock Samples. Part 1-In the Presence of Only Gas Slippage. J Pet Sci Eng 2017a,156, 381–395. DOI: 10.1016/j.petrol.2017.06.013.
  • Woolley, J. T. Maintenance of Air in Intercellular Spaces of Plants. Plant Physiol. 1983, 72(4), 989–991. DOI: 10.1104/pp.72.4.989.
  • Kuroki, S.; Oshita, S.; Sotome, I.; Kawagoe, Y.; Seo, Y. Visualization of 3-D Network of Gas-filled Intercellular Spaces in Cucumber Fruit after Harvest. Postharvest. Biol. Technol. 2004, 33(3), 255–262.
  • Rahman, M. S. Toward Prediction of Porosity in Foods during Drying: A Brief Review. Drying Technol. 2001, 19(1), 1–13. DOI: 10.1081/DRT-100001349.
  • Rahman, M. S.; Al-Zakwani, I.; Guizani, N. Pore Formation in Apple during Air-drying as a Function of Temperature: Porosity and Pore-size Distribution. J. Sci. Food Agric. 2005, 85(6), 979–989. DOI: 10.1002/jsfa.2056.
  • Rahman, M. S. Handbook of Food Preservation; CRC Press, Taylor & Francis Group: USA , 2007.
  • Gulati, T.; Datta, A. K. Enabling Computer-aided Food Process Engineering: Property Estimation Equations for Transport Phenomena-based Models. J. Food Eng. 2013, 116(2), 483–504. DOI: 10.1016/j.jfoodeng.2012.12.016.
  • Paudel, E.; Boom, R. M.; Van der Sman, R. G. M. Effects of Porosity and Thermal Treatment on Hydration of Mushrooms. Food Bioprocess. Technol. 2016, 9(3), 511–519. DOI: 10.1007/s11947-015-1641-6.
  • Alam, T.; Zhao, Y.; Takhar, P. S. Water and Oil Permeability of Poroelastic Potato Discs. Int. J. Food Prop. 2017, 20(3), 633–644. DOI: 10.1080/10942912.2016.1174710.
  • Welti-Chanes, J.; Aguilera, J. M. Engineering and Food for the 21st Century; CRC Press, 2002.
  • Gulati, T.; Datta, A. K. Mechanistic Understanding of Case-hardening and Texture Development during Drying of Food Materials. J. Food Eng. 2015, 166(Supplement C), 119–138. DOI: 10.1016/j.jfoodeng.2015.05.031.
  • Ni, H.; Datta, A. K.; Torrance, K. E. Moisture Transport in Intensive Microwave Heating of Biomaterials: A Multiphase Porous Media Model. Int. J. Heat and Mass Transfer. 1999, 42(8), 1501–1512.
  • Vincent, J. F. V. Relationship between Density and Stiffness of Apple Flesh. J. Sci. Food Agric. 1989, 47(4), 443–462. DOI: 10.1002/jsfa.2740470406.
  • Joardder, M. U. H.; Brown, R. J.; Kumar, C.; Karim, M. A. Effect of Cell Wall Properties on Porosity and Shrinkage of Dried Apple. Int. J. Food Prop. 2015, 18(10), 2327–2337.
  • Feng, H.; Tang, J.; Plumb, O. A.; Cavalieri, R. P. Intrinsic and Relative Permeability for Flow of Humid Air in Unsaturated Apple Tissues. J. Food Eng. 2004, 62(2), 185–192.
  • Khalloufi, S.; Kharaghani, A.; Almeida-Rivera, C.; Nijsse, J.; van Dalen, G.; Tsotsas, E. Monitoring of Initial Porosity and New Pores Formation during Drying: A Scientific Debate and A Technical Challenge. Trends Food Sci. Technol. 2015, 45(2), 179–186.
  • Lozano, J.; Rotstein, E.; Urbicain, M. Shrinkage, Porosity and Bulk Density of Foodstuffs at Changing Moisture Contents. J. Food Sci. 1983, 48(5), 1497–1502. DOI: 10.1111/j.1365-2621.1983.tb03524.x.
  • Harper, J. C. Transport Properties of Gases in Porous Media at Reduced Pressures with Reference to Freeze-drying. AIChE J. 1962, 8(3), 298–302. DOI: 10.1002/aic.690080308.
  • Joardder, M. U. H.; Kumar, C.; Brown, R. J.; Karim, M. A. A Micro-level Investigation of the Solid Displacement Method for Porosity Determination of Dried Food. J. Food Eng. 2015, 166, 156–164. DOI: 10.1016/j.jfoodeng.2015.05.034.
  • Hicsasmaz, Z.; Clayton, J. T. Characterization of the Pore Structure of Starch Based Food Materials. Food Struct. 1992, vol. 11.
  • Datta, A. Hydraulic Permeability of Food Tissues. Int. J. Food Prop. 2006, 9(4), 767–780. DOI: 10.1080/10942910600596167.
  • Michael, W.; Schultz, A.; Meshcheryakov, A. B.; Ehwald, R. Apoplasmic and Protoplasmic Water Transport through the Parenchyma of the Potato Storage Organ. Plant Physiol. 1997, 115(3), 1089–1099.
  • Carman, P. C. Fluid Flow through Granular Beds. Chemical Engineering Research and Design. 1997, 75, S32–S48. DOI: 10.1016/S0263-8762(97)80003-2.
  • Thussu, S.; Datta, A. K. Texture Prediction during Deep Frying: A Mechanistic Approach. J. Food Eng. 2012, 108(1), 111–121. DOI: 10.1016/j.jfoodeng.2011.07.017.
  • Zhu, H.; Gulati, T.; Datta, A. K.; Huang, K. Microwave Drying of Spheres: Coupled Electromagnetics-multiphase Transport Modeling with Experimentation. Part I: Model Development and Experimental Methodology. Food Bioprod. Process. 2015, 96, 314–325. DOI: 10.1016/j.fbp.2015.08.003.
  • Ho, Q. T.; Verlinden BE; Verboven P; Vandewalle S; Nicolai BM. A Permeation–diffusion–reaction Model of Gas Transport in Cellular Tissue of Plant Materials. J. Exp. Bot. 2006, 57(15), 4215–4224.
  • Rao, M. A.; Rizvi SS; Datta AK; Ahmed J. Engineering Properties of Foods; CRC Press, Taylor & Francis Group: USA, 2014.
  • Rahman, M. S. Food Properties Handbook; CRC Press, Taylor & Francis Group: USA, 2009.
  • Boukouvalas, C. J.; Krokida, M. K.; Maroulis, Z. B.; Marinos-Kouris, D. Effect of Material Moisture Content and Temperature on the True Density of Foods. Int. J. Food Prop. 2006, 9(1), 109–125.
  • Levick, J. R. Flow through Interstitium and Other Fibrous Matrices. Quarterly J. Exp. Physiol. Cognate Med. Sci. 1987, 72(4), 409–438. DOI: 10.1113/expphysiol.1987.sp003085.
  • Mebatsion, H. K.; Verboven, P.; Ho, Q. T.; Verlinden, B. E.; Nicolaï, B. M. Modelling Fruit (Micro)structures, Why and How? Trends Food Sci. Technol. 2008, 19(2), 59–66.
  • Glover, P. Petrophysics MSc Course Notes: Porosity; University of Leeds: UK, 2016.
  • Alberts, L. J. H.;, Initial Porosity of Random Packing: Computer Simulation of Grain Rearrangement. 2005.
  • Warning, A.; Verboven, P.; Nicolaï, B.; van Dalen, G.; Datta, A. K. Computation of Mass Transport Properties of Apple and Rice from X-ray Microtomography Images. Innovative Food Sci. Emerg. Technol. 2014, 24, 14–27. DOI: 10.1016/j.ifset.2013.12.017.
  • Barrande, M.; Bouchet, R.; Denoyel, R. Tortuosity of Porous Particles. Anal. Chem. 2007, 79(23), 9115–9121. DOI: 10.1021/ac071377r.
  • Comiti, J.; Renaud, M. A New Model for Determining Mean Structure Parameters of Fixed Beds from Pressure Drop Measurements: Application to Beds Packed with Parallelepipedal Particles. Chem. Eng. Sci. 1989, 44(7), 1539–1545. DOI: 10.1016/0009-2509(89)80031-4.
  • Mauret, E.; Renaud, M. Transport Phenomena in Multi-particle systems—I. Limits of Applicability of Capillary Model in High Voidage Beds-application to Fixed Beds of Fibers and Fluidized Beds of Spheres. Chem. Eng. Sci. 1997, 52(11), 1807–1817. DOI: 10.1016/S0009-2509(96)00499-X.
  • Araki, T.; Sagara, Y.; Abdullah, K.; Tambunan, A. H. Transport Properties of Cellular Food Materials Undergoing Freeze-drying. Drying Technol. 2001, 19(2), 297–312.
  • Warning, A.; Dhall, A.; Mitrea, D.; Datta, A. K. Porous Media Based Model for Deep-fat Vacuum Frying Potato Chips. J. Food Eng. 2012, 110(3), 428–440.
  • Saravacos, G. D.; Maroulis, Z. B. Transport Properties of Foods; CRC Press, 2001.
  • Berg, C.; Bruin, S., Water Activity and Its Estimation in Food Systems: Theoretical Aspects. 1981.
  • Alvarez, C.; Aguerre, R.; Gómez, R.; Vidales, S.; Alzamora, S. M.; Gerschenson, L. N. Air Dehydration of Strawberries: Effects of Blanching and Osmotic Pretreatments on the Kinetics of Moisture Transport. J. Food Eng. 1995, 25(2), 167–178.
  • Aguilar, C. N.; Anzaldua-Morales, A.; Talamas, R.; Gastelum, G. Low-temperature Blanch Improves Textural Quality of French-fries. J. Food Sci. 1997, 62(3), 568–571.
  • Sanjuán, N.; Hernando, I.; Lluch, M. A.; Mulet, A. Effects of Low Temperature Blanching on Texture, Microstructure and Rehydration Capacity of Carrots. J. Sci. Food Agric. 2005, 85(12), 2071–2076.
  • Abu-Ghannam, N.; Crowley, H. The Effect of Low Temperature Blanching on the Texture of Whole Processed New Potatoes. J. Food Eng. 2006, 74(3), 335–344. DOI: 10.1016/j.jfoodeng.2005.03.025.
  • Walde, S. G.; Velu, V.; Jyothirmayi, T.; Math, R. G. Effects of Pretreatments and Drying Methods on Dehydration of Mushroom. J. Food Eng. 2006, 74(1), 108–115.
  • Pimpaporn, P.; Devahastin, S.; Chiewchan, N. Effects of Combined Pretreatments on Drying Kinetics and Quality of Potato Chips Undergoing Low-pressure Superheated Steam Drying. J. Food Eng. 2007, 81(2), 318–329. DOI: 10.1016/j.jfoodeng.2006.11.009.
  • Taiwo, K. A.; Baik, O. D. Effects of Pre-treatments on the Shrinkage and Textural Properties of Fried Sweet Potatoes. LWT Food Sci. Technol. 2007, 40(4), 661–668. DOI: 10.1016/j.lwt.2006.03.005.
  • Kowalska, H.; Lenart, A.; Leszczyk, D. The Effect of Blanching and Freezing on Osmotic Dehydration of Pumpkin. J. Food Eng. 2008, 86(1), 30–38. DOI: 10.1016/j.jfoodeng.2007.09.006.
  • Rodrigues, S.; Gomes, M. C.; Gallão, M. I.; Fernandes, F. A. Effect of Ultrasound-assisted Osmotic Dehydration on Cell Structure of Sapotas. J. Sci. Food Agric. 2009, 89(4), 665–670.
  • Wang, Y.; Zhang, M.; Mujumdar, A. S.; Mothibe, K. J.; Roknul Azam, S. M. Effect of Blanching on Microwave Freeze Drying of Stem Lettuce Cubes in a Circular Conduit Drying Chamber. J. Food Eng. 2012, 113(2), 177–185.
  • de Oliveira Alves, C. C.; de Resende, J. V.; Prado, M. E. T.; Cruvinel, R. S. R. The Effects of Added Sugars and Alcohols on the Induction of Crystallization and the Stability of the Freeze-dried Peki (Caryocar Brasiliense Camb.) Fruit Pulps. LWT - Food Sci. Technol. 2010, 43(6), 934–941.
  • Wang, R.; Zhang, M.; Mujumdar, A. S. Effects of Vacuum and Microwave Freeze Drying on Microstructure and Quality of Potato Slices. J. Food Eng. 2010, 101(2), 131–139. DOI: 10.1016/j.jfoodeng.2010.05.021.
  • Singh, F.; Katiyar, V. K.; Singh, B. P. Analytical Study of Turgor Pressure in Apple and Potato Tissues. Postharvest. Biol. Technol. 2014, 89, 44–48. DOI: 10.1016/j.postharvbio.2013.11.007.
  • Niamnuy, C.; Devahastin, S.; Soponronnarit, S. Some Recent Advances in Microstructural Modification and Monitoring of Foods during Drying: A Review. J. Food Eng. 2014, 123, 148–156. DOI: 10.1016/j.jfoodeng.2013.08.026.
  • Aylward, F.; Haisman, D. R. Oxidation Systems in Fruits and Vegetables– Their Relation to the Quality of Preserved Products. In Advances in Food Research; Chichester, C.O., Mrak, E.M., Stewart, G.F., Eds.; Academic Press, 1969; pp 1–76.
  • Bai, Y.; Rahman, M. S.; Perera, C. O.; Smith, B.; Melton, L. D. Structural Changes in Apple Rings during Convection Air-drying with Controlled Temperature and Humidity. J. Agric. Food Chem. 2002, 50(11), 3179–3185.
  • Andersson, A.; Gekas, V.; Lind, I.; Oliveira, F.; Öste, R.; Aguilfra, J. M. Effect of Preheating on Potato Texture. Crit. Rev. Food Sci. Nutr. 1994, 34(3), 229–251.
  • Quintero-Ramos, A.; Bourne, M. C.; AnzaldÚA-Morales, A. Texture and Rehydration of Dehydrated Carrots as Affected by Low Temperature Blanching. J. Food Sci. 1992, 57(5), 1127–1139. DOI: 10.1111/j.1365-2621.1992.tb11279.x.
  • Kawas, M. L.; Moreira, R. G. Characterization of Product Quality Attributes of Tortilla Chips during the Frying Process. J. Food Eng. 2001, 47(2), 97–107. DOI: 10.1016/S0260-8774(00)00104-7.
  • Fernandes, F. A. N.; Rodrigues, S. Application of Ultrasound and Ultrasound-Assisted Osmotic Dehydration in Drying of Fruits. Drying Technol. 2008, 26(12), 1509–1516. DOI: 10.1080/07373930802412256.
  • Verlinden, B. E.; Yuksel, D.; Baheri, M.; De Baerdemaeker, J.; van Dijk, C. Low Temperature Blanching Effect on the Changes in Mechanical Properties during Subsequent Cooking of Three Potato Cultivars. Int. J. Food Sci. Technol. 2000, 35(3), 331–340.
  • Garcia-Noguera, J.; Oliveira, F. I. P.; Gallão, M. I.; Weller, C. L.; Rodrigues, S.; Fernandes, F. A. N. Ultrasound-Assisted Osmotic Dehydration of Strawberries: Effect of Pretreatment Time and Ultrasonic Frequency. Drying Technol. 2010, 28(2), 294–303.
  • Ade-Omowaye, B. I. O.; Rastogi, N. K.; Angersbach, A.; Knorr, D. Effects of High Hydrostatic Pressure or High Intensity Electrical Field Pulse Pre-treatment on Dehydration Characteristics of Red Paprika. Innovative Food Sci. Emerg. Technol. 2001, 2(1), 1–7.
  • Askari, G.; Emam-Djomeh, Z.; Mousavi, S. Effects of Combined Coating and Microwave Assisted Hot-air Drying on the Texture, Microstructure and Rehydration Characteristics of Apple Slices. Revista de Agaroquimica y Tecnologia de Alimentos. 2006, 12(1), 39–46.
  • Ormerod, A.; Ralfs, J.; Jobling, S.; Gidley, M. The Influence of Starch Swelling on the Material Properties of Cooked Potatoes. J. Mater. Sci. 2002, 37(8), 1667–1673.
  • Sterling, C.; Bettelheim, F. A. Factors Associated with Potato Texture. J. Food Sci. 1955, 20(2), 130–137. DOI: 10.1111/j.1365-2621.1955.tb16820.x.
  • Jarvis, M. C.; Briggs, S. P. H.; Knox, J. P. Intercellular Adhesion and Cell Separation in Plants. Plant Cell Environ. 2003, 26(7), 977–989. DOI: 10.1046/j.1365-3040.2003.01034.x.
  • Fedec, P.; Ooraikul, B.; Hadziyev, D. Microstructure of Raw and Granulated Potatoes. Can. Inst. Food Sci. Technol. Journal-Journal De L Institut Canadien De Science Et Technologie Alimentaires. 1977, 10(4), 295–306. DOI: 10.1016/S0315-5463(77)73551-5.
  • Bordoloi, A.; Kaur, L.; Singh, J. Parenchyma Cell Microstructure and Textural Characteristics of Raw and Cooked Potatoes. Food Chem. 2012, 133(4), 1092–1100. DOI: 10.1016/j.foodchem.2011.11.044.
  • Lozano, J. E.; Rotstein, E.; Urbicain, M. J. Total Porosity and Open-pore Porosity in the Drying of Fruits. J. Food Sci. 1980, 45(5), 1403–1407. DOI: 10.1111/j.1365-2621.1980.tb06564.x.
  • Luyten, H.; Plijter, J. J.; Vliet, T. V. Crispy/crunchy Crusts of Cellular Solid Foods: A Literature Review with Discussion. J. Texture Stud. 2004, 35(5), 445–492. DOI: 10.1111/j.1745-4603.2004.35501.x.
  • Scanlon, M. G.; Zghal, M. C. Bread Properties and Crumb Structure. Food Res. Int. 2001, 34(10), 841–864. DOI: 10.1016/S0963-9969(01)00109-0.
  • Zhang, J.; Datta, A. K. Mathematical Modeling of Bread Baking Process. J. Food Eng. 2006, 75(1), 78–89. DOI: 10.1016/j.jfoodeng.2005.03.058.
  • Rahman, M. S. A Theoretical Model to Predict the Formation of Pores in Foods during Drying. Int. J. Food Prop. 2003, 6(1), 61–72. DOI: 10.1081/JFP-120016624.
  • Madiouli, J.; Sghaier, J.; Lecomte, D.; Sammouda, H. Determination of Porosity Change from Shrinkage Curves during Drying of Food Material. Food Bioprod. Process. 2012, 90(1), 43–51.
  • Madamba, P. S.; Driscoll, R. H.; Buckle, K. A. Shrinkage, Density and Porosity of Garlic during Drying. J. Food Eng. 1994, 23(3), 309–319. DOI: 10.1016/0260-8774(94)90056-6.
  • Rahman, M. Mechanism of Pore Formation in Foods during Drying: Present Status. Proceedings of the Eighth International Congress on Engineering and Food ICEF, Puebla City, Mexico. 2000.
  • Roos, Y. H. Glass Transition Temperature and Its Relevance in Food Processing. Ann. Rev. Food Sci. Technol. 2010, 1(1), 469–496. DOI: 10.1146/annurev.food.102308.124139.
  • Ratti, C. Shrinkage during Drying of Foodstuffs. J. Food Eng. 1994, 23(1), 91–105. DOI: 10.1016/0260-8774(94)90125-2.
  • Setiady, D.; Tang J.; Younce F.; Swanson BA.; Rasco BA.; Clary CD. Porosity, Color, Texture, and Microscopic Structure of Russet Potatoes Dried Using Microwave Vacuum, Heated Air, and Freeze Drying. Appl Eng Agri. 2009, 25.
  • Datta, A. K.; Sahin, S.; Sumnu, G.; Ozge Keskin, S. Porous Media Characterization of Breads Baked Using Novel Heating Modes. J. Food Eng. 2007, 79(1), 106–116.
  • Mayor, L.; Sereno, A. M. Modelling Shrinkage during Convective Drying of Food Materials: A Review. J. Food Eng. 2004, 61(3), 373–386. DOI: 10.1016/S0260-8774(03)00144-4.
  • Tsami, E.; Katsioti, M. Drying Kinetics for Some Fruits: Predicting of Porosity and Color during Dehydration. Drying Technol. 2000, 18(7), 1559–1581. DOI: 10.1080/07373930008917793.
  • Dhall, A.; Datta, A. K. Transport in Deformable Food Materials: A Poromechanics Approach. Chem. Eng. Sci. 2011, 66(24), 6482–6497. DOI: 10.1016/j.ces.2011.09.001.
  • Gogoi, B. K.; Alavi, S. H.; Rizvi, S. S. H. Mechanical Properties of Protein‐stabilized Starch‐based Supercritical Fluid Extrudates. Int. J. Food Prop. 2000, 3(1), 37–58. DOI: 10.1080/10942910009524615.
  • Delgado, A.; Sun, D.-W. Heat and Mass Transfer Models for Predicting Freezing Processes–a Review. J. Food Eng. 2001, 47(3), 157–174. DOI: 10.1016/S0260-8774(00)00112-6.
  • Voda, A.; Homan, N.; Witek, M.; Duijster, A.; van Dalen, G.; van der Sman, R.; Nijsse, J.; van Vliet, L.; Van As, H.; van Duynhoven, J. The Impact of Freeze-drying on Microstructure and Rehydration Properties of Carrot. Food Res. Int. 2012, 49(2), 687–693.
  • Aguilera, J. M.; Lillford, P. J. Structure–property Relationships in Foods, in Food Materials Science; Springer, 2008; pp 229–253.
  • Harnkarnsujarit, N.; Charoenrein, S.; Roos, Y. H. Microstructure Formation of Maltodextrin and Sugar Matrices in Freeze-dried Systems. Carbohydr. Polym. 2012, 88(2), 734–742. DOI: 10.1016/j.carbpol.2012.01.028.
  • Khalloufi, S.; Ratti, C. Quality Deterioration of Freeze‐dried Foods as Explained by Their Glass Transition Temperature and Internal Structure. J. Food Sci. 2003, 68(3), 892–903. DOI: 10.1111/j.1365-2621.2003.tb08262.x.
  • Karathanos, V. T.; Kanellopoulos, N. K.; Belessiotis, V. G. Development of Porous Structure during Air Drying of Agricultural Plant Products. J. Food Eng. 1996, 29(2), 167–183. DOI: 10.1016/0260-8774(95)00058-5.
  • Spencer, P. L. Prepared Food Article and Method of Preparing. Google Patents. 1949.
  • Buffler, C. R. Microwave Cooking and Processing: Engineering Fundamentals for the Food Scientist; Springer: US, 1995.
  • Clark, D. E.; Sutton, W. H. Microwave Processing of Materials. Ann. Rev. Mater. Sci. 1996, 26(1), 299–331. DOI: 10.1146/annurev.ms.26.080196.001503.
  • Therdthai, N.; Zhou, W. Characterization of Microwave Vacuum Drying and Hot Air Drying of Mint Leaves (Mentha Cordifolia Opiz Ex Fresen). J. Food Eng. 2009, 91(3), 482–489. DOI: 10.1016/j.jfoodeng.2008.09.031.
  • Datta, A. K. Handbook of Microwave Technology for Food Application; CRC Press, 2001.
  • Funebo, T.; Ahrné, L.; Kidman, S.; Langton, M.; Skjöldebrand, C. Microwave Heat Treatment of Apple before Air Dehydration–effects on Physical Properties and Microstructure. J. Food Eng. 2000, 46(3), 173–182.
  • Joardder, M. U. H.; Kumar, C.; Karim, M. A. Food Structure: Its Formation and Relationships with Other Properties. Crit. Rev. Food Sci. Nutr. 2017, 57(6), 1190–1205. DOI: 10.1080/10408398.2014.971354.
  • Joardder, M. U. H.; Kumar, C.; Karim, M. A. Multiphase Transfer Model for Intermittent Microwave-convective Drying of Food: Considering Shrinkage and Pore Evolution. Int. J. Multiphase Flow. 2017, 95, 101–119. DOI: 10.1016/j.ijmultiphaseflow.2017.03.018.
  • Yongsawatdigul, J.; Gunasekaran, S. Microwave‐vacuum Drying of Cranberries: Part Ii. Quality Evaluation. J. Food Process. Preserv. 1996, 20(2), 145–156. DOI: 10.1111/j.1745-4549.1996.tb00851.x.
  • Pereira, N. R.; Marsaioli, A.; Ahrné, L. M. Effect of Microwave Power, Air Velocity and Temperature on the Final Drying of Osmotically Dehydrated Bananas. J. Food Eng. 2007, 81(1), 79–87. DOI: 10.1016/j.jfoodeng.2006.09.025.
  • Sham, P. W. Y.; Scaman, C. H.; Durance, T. D. Texture of Vacuum Microwave Dehydrated Apple Chips as Affected by Calcium Pretreatment, Vacuum Level, and Apple Variety. J. Food Sci. 2001, 66(9), 1341–1347. DOI: 10.1111/j.1365-2621.2001.tb15212.x.
  • Durance, T. D.; Wang, J. H. Energy Consumption, Density, and Rehydration Rate of Vacuum Microwave- and Hot-Air Convection- Dehydrated Tomatoes. J. Food Sci. 2002, 67(6), 2212–2216. DOI: 10.1111/j.1365-2621.2002.tb09529.x.
  • Clary, C. D.; Mejia-Meza, E.; Wang, S.; Petrucci, V. E. Improving Grape Quality Using Microwave Vacuum Drying Associated with Temperature Control. J. Food Sci. 2007, 72(1), E023-E028. DOI: 10.1111/j.1750-3841.2006.00234.x.
  • Puig, A.; Perez-Munuera, I.; Carcel, J. A.; Hernando, I.; Garcia-Perez, J. V. Moisture Loss Kinetics and Microstructural Changes in Eggplant (Solanum Melongena L.) During Conventional and Ultrasonically Assisted Convective Drying. Food Bioprod. Process. 2012, 90(4), 624–632.
  • Wang, N.; Brennan, J. G. Changes in Structure, Density and Porosity of Potato during Dehydration. J. Food Eng. 1995, 24(1), 61–76. DOI: 10.1016/0260-8774(94)P1608-Z.
  • Krokida, M.; Maroulis, Z. Effect of Drying Method on Shrinkage and Porosity. Drying Technol. 1997, 15(10), 2441–2458. DOI: 10.1080/07373939708917369.
  • Witrowa-Rajchert, D.; Lewicki, P. P. Rehydration Properties of Dried Plant Tissues. Int. J. Food Sci. Technol. 2006, 41(9), 1040–1046. DOI: 10.1111/j.1365-2621.2006.01164.x.
  • Koc, B.; Eren, İ.; Ertekin, F. K. Modelling Bulk Density, Porosity and Shrinkage of Quince during Drying: The Effect of Drying Method. J. Food Eng. 2008, 85(3), 340–349. DOI: 10.1016/j.jfoodeng.2007.07.030.
  • Yang, C.; Atallah, W. Effect of Four Drying Methods on the Quality of Intermediate Moisture Lowbush Blueberries. J. Food Sci. 1985, 50(5), 1233–1237. DOI: 10.1111/j.1365-2621.1985.tb10450.x.
  • Béttega, R.; Rosa, J. G.; Corrêa, R. G.; Freire, J. T. Comparison of Carrot (Daucus Carota) Drying in Microwave and in Vacuum Microwave. Braz. J. Chem. Eng. 2014, 31(2), 403–412.
  • Monteiro, R. L.; Carciofi, B. A.; Laurindo, J. B. A Microwave Multi-flash Drying Process for Producing Crispy Bananas. J. Food Eng. 2016, 178, 1–11. DOI: 10.1016/j.jfoodeng.2015.12.024.
  • Marabi, A.; Saguy, I. S. Effect of Porosity on Rehydration of Dry Food Particulates. J. Sci. Food Agric. 2004, 84(10), 1105–1110. DOI: 10.1002/jsfa.1793.
  • Oikonomopoulou, V. P.; Krokida, M. K.; Karathanos, V. T. The Influence of Freeze Drying Conditions on Microstructural Changes of Food Products. Procedia Food Sci. 2011, 1, 647–654. DOI: 10.1016/j.profoo.2011.09.097.
  • Karlsson, E. Gaseous Diffusion in Solid Food Systems and the Dependence on Structure and Temperature; University of California: Davis, 1986.
  • Sablani, S.; Rahman, M. S.; Al-Kuseibi, M. K.; Al-Habsi, N. A.; Al-Belushi, R. H.; Al-Marhubi, I.; Al-Amri, I. S. Influence of Shelf Temperature on Pore Formation in Garlic during Freeze-drying. J. Food Eng. 2007, 80(1), 68–79.
  • O’Neill, M. B.; Rahman, M. S.; Perera, C. O.; Smith, B.; Melton, L. D. Color and Density of Apple Cubes Dried in Air and Modified Atmosphere. Int. J. Food Prop. 1998, 1(3), 197–205.
  • Şahin, I.; Özbakır, Y.; İnönü, Z.; Ulker, Z.; Erkey, C. Kinetics of Supercritical Drying of Gels. Gels. 2018, 4(1), 3.
  • Devahastin, S.; Suvarnakuta, P.; Soponronnarit, S.; Mujumdar, A. S. A Comparative Study of Low-Pressure Superheated Steam and Vacuum Drying of A Heat-Sensitive Material. Drying Technol. 2004, 22(8), 1845–1867.
  • Nieto, A.; Salvatori, D. M.; Castro, M. A.; Alzamora, S. M. Structural Changes in Apple Tissue during Glucose and Sucrose Osmotic Dehydration: Shrinkage, Porosity, Density and Microscopic Features. J. Food Eng. 2004, 61(2), 269–278.
  • Ziaiifar, A. M.; Courtois, F.; Trystram, G. Porosity Development and Its Effect on Oil Uptake during Frying Process. J. Food Process Eng. 2010, 33(2), 191–212. DOI: 10.1111/j.1745-4530.2008.00267.x.
  • Kalogianni, E. P.; Papastergiadis, E. Crust Pore Characteristics and Their Development during Frying of French-fries. J. Food Eng. 2014, 120(Supplement C), 175–182. DOI: 10.1016/j.jfoodeng.2013.07.029.
  • van Koerten, K. N.; Schutyser, M. A. I.; Somsen, D.; Boom, R. M. A Pore Inactivation Model for Describing Oil Uptake of French Fries during Pre-frying. J. Food Eng. 2015, 146(Supplement C), 92–98.
  • Renshaw, R. C.; Robinson, J. P.; Dimitrakis, G. A.; Bows, J. R.; Kingman, S. W. Characterisation of Potato Crisp Effective Porosity Using micro-CT. J. Sci. Food Agric. 2016, 96(13), 4440–4448.
  • Hayman, D. A.; Hoseney, R. C.; Faubion, J. M. Bread Crumb Grain Development During Baking. Cereal Chem. 1998, 75(5), 577–580. DOI: 10.1094/CCHEM.1998.75.5.577.
  • Klein, L. B.; Mondy, N. I. Comparison of Microwave and Conventional Baking of Potatoes in Relation to Nitrogenous Constituents and Mineral Composition. J. Food Sci. 1981, 46(6), 1874–1877. DOI: 10.1111/j.1365-2621.1981.tb04508.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.