2,423
Views
34
CrossRef citations to date
0
Altmetric
Review

An Emerging Segment of Functional Legume-Based Beverages: A Review

ORCID Icon, , ORCID Icon & ORCID Icon

References

  • Eertmans, A.; Baeyens, F.; Van den Bergh, O. Food Likes and Their Relative Importance in Human Eating Behavior: Review and Preliminary Suggestions for Health Promotion. Health Educ. Res. 2001, 16(4), 443–456. DOI: 10.1093/her/16.4.443.
  • Salami, S. A.; Luciano, G.; O’Grady, M. N.; Biondi, L.; Newbold, C. J.; Kerry, J. P.; Priolo, A. Sustainability of Feeding Plant By-products: A Review of the Implications for Ruminant Meat Production. Anim. Feed Sci. Technol. 2019, 251, 37–55. DOI: 10.1016/j.anifeedsci.2019.02.006.
  • Mottet, A.; de Haan, C.; Falcucci, A.; Tempio, G.; Opio, C.; Gerber, P. Livestock: On Our Plates or Eating at Our Table? A New Analysis of the Feed/food Debate. Global Food Secur. 2017, 14, 1–8. DOI: 10.1016/j.gfs.2017.01.001.
  • Jeske, S.; Zannini, E.; Arendt, E. K. Past, Present and Future: The Strength of Plant-based Dairy Substitutes Based on Gluten-free Raw Materials. Food Res. Int. 2018, 110, 42–51. DOI: 10.1016/j.foodres.2017.03.045.
  • Grant, C. A.; Hicks, A. L. Comparative Life Cycle Assessment of Milk and Plant-based Alternatives. Environ. Eng. Sci. 2018, 35(11), 1235–1247. DOI: 10.1089/ees.2018.0233.
  • Crittenden, R. G.; Bennett, L. E. Cow’s Milk Allergy: A Complex Disorder. J. Am. Coll. Nutr. 2005, 24(sup6), 582S–591S. DOI: 10.1080/07315724.2005.10719507.
  • Lifschitz, C.; Szajewska, H. Cow’s Milk Allergy: Evidence-based Diagnosis and Management for the Practitioner. Eur. J. Pediatr. 2015, 174(2), 141–150. DOI: 10.1007/s00431-014-2422-3.
  • Vesa, T. H.; Marteau, P.; Korpela, R. Lactose Intolerance. J. Am. Coll. Nutr. 2000, 19(sup2), 165S–175S. DOI: 10.1080/07315724.2000.10718086.
  • Ishaq, Z.; Nawaz, M. A. Analysis of Contaminated Milk with Organochlorine Pesticide Residues Using Gas Chromatography. Int. J. Food Prop. 2018, 21(1), 879–891. DOI: 10.1080/10942912.2018.1460607.
  • Vonk, R. J.; Priebe, M. G.; Koetse, H. A.; Stellaard, F.; Lenoir-Wijnkoop, I.; Antoine, J.-M.; Zhong, Y.; Huang, C.-Y. Lactose Intolerance: Analysis of Underlying Factors. Eur. J. Clin. Invest. 2003, 33(1), 70–75. DOI: 10.1046/j.1365-2362.2003.01099.x.
  • Lomer, M. C. E.; Parkes, G. C.; Sanderson, J. D. Review Article: Lactose Intolerance in Clinical Practice – Myths and Realities. Aliment. Pharmacol. Ther. 2008, 27(2), 93–103. DOI: 10.1111/j.1365-2036.2007.03557.x.
  • Mintel. US Non-dairy Milk Sales Grow 61% over the Last Five Years. https://www.mintel.com/press-centre/food-and-drink/us-non-dairy-milk-sales-grow-61-over-the-last-five-years (accessed Feb 25, 2020).
  • Markets; Markets. Dairy Alternatives Market by Source (Soy, Almond, Coconut, Rice, Oats, Hemp), Application (Milk, Cheese, Yogurt, Ice Creams, Creamers), Distribution Channel (Supermarkets, Health Stores, Pharmacies), Formulation and Region – Global Forecast 2023, 2019. https://www.marketsandmarkets.com/Market-Reports/dairy-alternative-plant-milk-beverages-market-677.html (accessed Oct 12, 2019).
  • Jiang, S.; Cai, W.; Xu, B. Food Quality Improvement of Soy Milk Made from Short-Time Germinated Soybeans. Foods. 2013, 2(2), 198–212. DOI: 10.3390/foods2020198.
  • Bawa, A.; Anilakumar, K. Genetically Modified Foods: Safety, Risks and Public Concerns—a Review. J. Food Sci. Technol. 2013, 50(6), 1035–1046. DOI: 10.1007/s13197-012-0899-1.
  • Sethi, S.; Tyagi, S. K.; Anurag, R. K. Plant-based Milk Alternatives an Emerging Segment of Functional Beverages: A Review. J. Food Sci. Technol. 2016, 53(9), 3408–3423. DOI: 10.1007/s13197-016-2328-3.
  • Mäkinen, O. E.; Wanhalinna, V.; Zannini, E.; Arendt, E. K. Foods for Special Dietary Needs: Non-dairy Plant-based Milk Substitutes and Fermented Dairy-type Products. Crit. Rev. Food Sci. Nutr. 2016, 56(3), 339–349. DOI: 10.1080/10408398.2012.761950.
  • McClements, D. J.; Newman, E.; McClements, I. F. Plant-based Milks: A Review of the Science Underpinning Their Design, Fabrication, and Performance. Compr. Rev. Food Sci. Food Saf. 2019, 18(6), 2047–2067. DOI: 10.1111/1541-4337.12505.
  • McHugh, T.;. How Plant-based Milks are Processed. Food Technol. 2018, 72, 63–64.
  • Gilham, B.; Hall, R.; Woods, J. L. Vegetables and Legumes in New Australasian Food Launches: How are They Being Used and are They a Healthy Choice? Nutr. J. 2018, 17(1), 104. DOI: 10.1186/s12937-018-0414-2.
  • Lea, E.; Worsley, A.; Crawford, D. Australian Adult Consumers’ Beliefs About Plant Foods: A Qualitative Study. Health Educ. Behav. 2005, 32(6), 795–808. DOI: 10.1177/1090198105277323.
  • German brand launches lupin drinks after technical advance. https://www.foodbev.com/news/german-brand-launches-lupin-drinks-after-technical-breakthrough/ (accessed Feb 4, 2020).
  • Youn, S. Drink Pea Milk and Save the World: But What if the Peas are Shipped from France? The Guardian, May 26, 2016. https://www.theguardian.com/lifeandstyle/2016/may/25/pea-milk-non-dairy-ripple-france-environment (accessed Feb 4, 2020).
  • Hodges, J. K.; Cao, S.; Cladis, D. P.; Weaver, C. M. Lactose Intolerance and Bone Health: The Challenge of Ensuring Adequate Calcium Intake. Nutrients. 2019, 11(4), 718. DOI: 10.3390/nu11040718.
  • Hasler, C. M.;. The Cardiovascular Effects of Soy Products. J. Cardiovasc. Nurs. 2002, 16(4), 50–63. DOI: 10.1097/00005082-200207000-00006.
  • Wei, P.; Liu, M.; Chen, Y.; Chen, D.-C. Systematic Review of Soy Isoflavone Supplements on Osteoporosis in Women. Asian Pac. J. Trop. Med. 2012, 5(3), 243–248. DOI: 10.1016/S1995-7645(12)60033-9.
  • Hsieh, H.-M.; Wu, W.-M.; Hu, M.-L. Soy Isoflavones Attenuate Oxidative Stress and Improve Parameters Related to Aging and Alzheimer’s Disease in C57BL/6J Mice Treated with D-galactose. Food Chem. Toxicol. 2009, 47(3), 625–632. DOI: 10.1016/j.fct.2008.12.026.
  • Sathyapalan, T.; Aye, M.; Rigby, A. S.; Thatcher, N. J.; Dargham, S. R.; Kilpatrick, E. S.; Atkin, S. L. Soy Isoflavones Improve Cardiovascular Disease Risk Markers in Women during the Early Menopause. Nutr. Metab. Cardiovasc. Dis. 2018, 28(7), 691–697. DOI: 10.1016/j.numecd.2018.03.007.
  • Amaral, C.; Toloi, M. R. T.; Vasconcelos, L. D.; Fonseca, M. J. V.; Correia-da-Silva, G.; Teixeira, N. The Role of Soybean Extracts and Isoflavones in Hormone-dependent Breast Cancer: Aromatase Activity and Biological Effects. Food Funct. 2017, 8(9), 3064–3074. DOI: 10.1039/C7FO00205J.
  • Cui, C.; Birru, R.; Snitz, B. E.; Ihara, M.; Lopresti, B. J.; Aizenstein, H. J.; Lopez, O. L.; Mathis, C.; Miyamoto, Y.; Kuller, L. H. Effects of Soy Isoflavones on Cognitive Function: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Alzheimer’s Dementia. 2018, 14(7), P1365–P1366. DOI: 10.1016/j.jalz.2018.06.1982.
  • Cabanillas, B.; Jappe, U.; Novak, N. Allergy to Peanut, Soybean, and Other Legumes: Recent Advances in Allergen Characterization, Stability to Processing and IgE Cross‐Reactivity. Mol. Nutr. Food Res. 2018, 62(1), 1700446. DOI: 10.1002/mnfr.201700446.
  • Isanga, J.; Zhang, G.-N. Soybean Bioactive Components and Their Implications to Health—A Review. Food Rev. Int. 2008, 24(2), 252–276. DOI: 10.1080/87559120801926351.
  • Wang, K.-H.; Lai, Y.-H.; Chang, J.-C.; Ko, T.-F.; Shyu, S.-L.; Chiou, R. Y. Y. Germination of Peanut Kernels to Enhance Resveratrol Biosynthesis and Prepare Sprouts as a Functional Vegetable. J. Agric. Food Chem. 2005, 53(2), 242–246. DOI: 10.1021/jf048804b.
  • Chang, J.-C.; Lai, Y.-H.; Djoko, B.; Wu, P.-L.; Liu, C.-D.; Liu, Y.-W.; Chiou, R.-Y.-Y. Biosynthesis Enhancement and Antioxidant and Anti-inflammatory Activities of Peanut (Arachis Hypogaea L.) Arachidin-1, Arachidin-3, and Isopentadienylresveratrol. J. Agric. Food Chem. 2006, 54(26), 10281–10287. DOI: 10.1021/jf0620766.
  • Wien, M.; Oda, K.; Sabaté, J. A Randomized Controlled Trial to Evaluate the Effect of Incorporating Peanuts into an American Diabetes Association Meal Plan on the Nutrient Profile of the Total Diet and Cardiometabolic Parameters of Adults with Type 2 Diabetes. Nutr. J. 2014, 13(1), 10. DOI: 10.1186/1475-2891-13-10.
  • Toomer, O. T.;. Nutritional Chemistry of the Peanut (Arachis Hypogaea). Crit. Rev. Food Sci. Nutr. 2018, 58(17), 3042–3053. DOI: 10.1080/10408398.2017.1339015.
  • Dahl, W. J.; Foster, L. M.; Tyler, R. T. Review of the Health Benefits of Peas (Pisum Sativum L.). Br. J. Nutr. 2012, 108(S1), S3–S10. DOI: 10.1017/S0007114512000852.
  • Sanchez-Monge, R.; Lopez-Torrejón, G.; Pascual, C. Y.; Varela, J.; Martin-Esteban, M.; Salcedo, G. Vicilin and Convicilin are Potential Major Allergens from Pea. Clin. Exp. Allergy. 2004, 34(11), 1747–1753. DOI: 10.1111/j.1365-2222.2004.02085.x.
  • Dueñas, M.; Estrella, I.; Hernández, T. Occurrence of Phenolic Compounds in the Seed Coat and the Cotyledon of Peas (Pisum Sativum L.). Eur. Food Res. Technol. 2004, 219(2), 116–123. DOI: 10.1007/s00217-004-0938-x.
  • Vargas-Guerrero, B.; Garcia-Lopez, P. M.; Martinez-Ayala, A. L.; Dominguez-Rosales, J. A.; Gurrola-Diaz, C. M. Administration of Lupinus Albus Gamma Conglutin (Cgamma) to N5 STZ Rats Augmented Ins-1 Gene Expression and Pancreatic Insulin Content. Plant Foods Human Nutr. 2014, 69(3), 241–247. DOI: 10.1007/s11130-014-0424-y.
  • Arnoldi, A.; Boschin, G.; Zanoni, C.; Lammi, C. The Health Benefits of Sweet Lupin Seed Flours and Isolated Proteins. J. Funct. Foods. 2015, 18, 550–563. DOI: 10.1016/j.jff.2015.08.012.
  • Siger, A.; Czubinski, J.; Kachlicki, P.; Dwiecki, K.; Lampart-Szczapa, E.; Nogala-Kalucka, M. Antioxidant Activity and Phenolic Content in Three Lupin Species. J. Food Compost. Anal. 2012, 25(2), 190–197. DOI: 10.1016/j.jfca.2011.10.002.
  • Khan, M. K.; Karnpanit, W.; Nasar-Abbas, S. M.; Huma, Z.-E.; Jayasena, V. Phytochemical Composition and Bioactivities of Lupin: A Review. Int. J. Food Sci. Technol. 2015, 50(9), 2004–2012. DOI: 10.1111/ijfs.12796.
  • Erdemoglu, N.; Ozkan, S.; Tosun, F. Alkaloid Profile and Antimicrobial Activity of Lupinus Angustifolius L. Alkaloid Extract. Phytochem. Rev. 2007, 6(1), 197–201. DOI: 10.1007/s11101-006-9055-8.
  • Thambiraj, S. R.; Phillips, M.; Koyyalamudi, S. R.; Reddy, N. Yellow Lupin (Lupinus Luteus L.) Polysaccharides: Antioxidant, Immunomodulatory and Prebiotic Activities and Their Structural Characterisation. Food Chem. 2018, 267, 319–328. DOI: 10.1016/j.foodchem.2018.02.111.
  • Lima-Cabello, E.; Alche, V.; Foley, R. C.; Andrikopoulos, S.; Morahan, G.; Singh, K. B.; Alche, J. D.; Jimenez-Lopez, J. C. Narrow-leafed Lupin (Lupinus Angustifolius L.) β-conglutin Proteins Modulate the Insulin Signaling Pathway as Potential Type 2 Diabetes Treatment and Inflammatory-related Disease Amelioration. Mol. Nutr. Food Res. 2017, 61(5), 1600819. DOI: 10.1002/mnfr.201600819.
  • Dueñas, M.; Fernández, D.; Hernández, T.; Estrella, I.; Muñoz, R. Bioactive Phenolic Compounds of Cowpeas (Vigna Sinensis L). Modifications by Fermentation with Natural Microflora and with Lactobacillus Plantarum ATCC 14917. J. Sci. Food Agric. 2005, 85(2), 297–304. DOI: 10.1002/jsfa.1924.
  • Rao, T. R.; Rao, D. N.; Kotilingam, K.; Athota, R. R. Isolation and Characterization of Allergens from the Seeds of Vigna Sinensis. Asian Pac. J. Allergy Immunol. 2000, 18(1), 9–14.
  • Aisa, H. A.; Gao, Y.; Yili, A.; Ma, Q.; Cheng, Z. Beneficial Role of Chickpea (Cicer Arietinum L.) Functional Factors in the Intervention of Metabolic Syndrome and Diabetes Mellitus. In Bioactive Food as Dietary Interventions for Diabetes; Elsevier: Amsterdam, 2019; pp 615–627.
  • Venkidasamy, B.; Selvaraj, D.; Nile, A. S.; Ramalingam, S.; Kai, G.; Nile, S. H. Indian Pulses: A Review on Nutritional, Functional and Biochemical Properties with Future Perspectives. Trends Food Sci. Technol. 2019, 88, 228–242. DOI: 10.1016/j.tifs.2019.03.012.
  • Gupta, R. K.; Gupta, K.; Sharma, A.; Das, M.; Ansari, I. A.; Dwivedi, P. D. Health Risks and Benefits of Chickpea (Cicer Arietinum) Consumption. J. Agric. Food Chem. 2017, 65(1), 6–22. DOI: 10.1021/acs.jafc.6b02629.
  • Ramya, K. B.; Thaakur, S. Herbs Containing L- Dopa: An Update. Ancient Sci. Life. 2007, 27(1), 50–55.
  • Xiao, M.; Du, G.; Zhong, G.; Yan, D.; Zeng, H.; Cai, W. Gas Chromatography/Mass Spectrometry-Based Metabolomic Profiling Reveals Alterations in Mouse Plasma and Liver in Response to Fava Beans. Plos One. 2016, 11(3), e0151103. DOI: 10.1371/journal.pone.0151103.
  • Cohen, L.; Zhao, Z.; Pittman, B.; Scimeca, J. Effect of Intact and Isoflavone-depleted Soy Protein on NMU-induced Rat Mammary Tumorigenesis. Carcinogenesis. 2000, 21(5), 929–935. DOI: 10.1093/carcin/21.5.929.
  • Omoni, A. O.; Aluko, R. E. Soybean Foods and Their Benefits: Potential Mechanisms of Action. Nutr. Rev. 2005, 63(8), 272–283. DOI: 10.1111/j.1753-4887.2005.tb00141.x.
  • Xiao, C. W.;. Health Effects of Soy Protein and Isoflavones in Humans. J. Nutr. 2008, 138(6), 1244S–1249S. DOI: 10.1093/jn/138.6.1244S.
  • Khatoon, S.; Raja Rajan, R. G.; Gopala Krishna, A. G. Physicochemical Characteristics and Composition of Indian Soybean Oil Deodorizer Distillate and the Recovery of Phytosterols. J. Am. Oil Chem. Soc. 2010, 87(3), 321–326. DOI: 10.1007/s11746-009-1499-8.
  • Peng, C.; Cao, C.; He, M.; Shu, Y.; Tang, X.; Wang, Y.; Zhang, Y.; Xia, X.; Li, Y.; Wu, J. Soybean Glycinin- and β-Conglycinin-Induced Intestinal Damage in Piglets via the p38/JNK/NF-κB Signaling Pathway. J. Agric. Food Chem. 2018, 66(36), 9534–9541. DOI: 10.1021/acs.jafc.8b03641.
  • Singh, S.; Patel, S.; Litoriya, N.; Gandhi, K.; Faldu, P.; Patel, K. Comparative Efficiency of Conventional and NIR Based Technique for Proximate Composition of Pigeon Pea, Soybean and Rice Cultivars. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 773–782. DOI: 10.20546/ijcmas.2018.701.094.
  • Settaluri, V.; Kandala, C.; Puppala, N.; Sundaram, J. Peanuts and Their Nutritional Aspects—a Review. Food Nutr. Sci. 2012, 3(12), 1644. DOI: 10.4236/fns.2012.312215.
  • Nikolopoulou, D.; Grigorakis, K.; Stasini, M.; Alexis, M. N.; Iliadis, K. Differences in Chemical Composition of Field Pea (Pisum Sativum) Cultivars: Effects of Cultivation Area and Year. Food Chem. 2007, 103(3), 847–852. DOI: 10.1016/j.foodchem.2006.09.035.
  • Kohajdova, Z.; Karovicova, J.; Schmidt, Š. Lupin Composition and Possible Use in Bakery- A Review. Czech J. Food Sci. 2011, 29, 203–211. DOI: 10.17221/252/2009-CJFS.
  • Gonçalves, A.; Goufo, P.; Barros, A.; Domínguez-Perles, R.; Trindade, H.; Rosa, E. A. S.; Ferreira, L.; Rodrigues, M. Cowpea (Vigna Unguiculata L. Walp), a Renewed Multipurpose Crop for a More Sustainable Agri-food System: Nutritional Advantages and Constraints. J. Sci. Food Agric. 2016, 96(9), 2941–2951. DOI: 10.1002/jsfa.7644.
  • Arab, E. A.; Helmy, I.; Bareh, G. Nutritional Evaluation and Functional Properties of Chickpea (Cicer Arietinum L.). Flour and the Improvement of Spaghetti Produced from Its. J. Am. Sci. 2010, 6(10), 1055–1072.
  • Revilla, I.;. Impact of Thermal Processing on Faba Bean (Vicia Faba) Composition. In Processing and Impact on Active Components in Food; Elsevier: Amsterdam, 2015; pp 337–343.
  • Kumar, V.; Rani, A.; Hussain, L. Essential Amino Acids Profile of Differentially Processed Soy Products and Their Efficiency in Meeting Daily Requirement. Nutr. Food Sci. 2016, 46(2), 237–245. DOI: 10.1108/NFS-07-2015-0082.
  • Yang, A.; Smyth, H.; Chaliha, M.; James, A. Sensory Quality of Soymilk and Tofu from Soybeans Lacking Lipoxygenases. Food Sci. Nutr. 2016, 4(2), 207–215. DOI: 10.1002/fsn3.274.
  • Poliseli-Scopel, F. H.; Hernández-Herrero, M.; Guamis, B.; Ferragut, V. Comparison of Ultra High Pressure Homogenization and Conventional Thermal Treatments on the Microbiological, Physical and Chemical Quality of Soymilk. LWT - Food Sci. Technol. 2012, 46(1), 42–48. DOI: 10.1016/j.lwt.2011.11.004.
  • Floury, J.; Legrand, J.; Desrumaux, A. Analysis of a New Type of High Pressure Homogeniser. Part B. Study of Droplet Break-up and Recoalescence Phenomena. Chem. Eng. Sci. 2004, 59(6), 1285–1294. DOI: 10.1016/j.ces.2003.11.025.
  • Chiba, H.; Takahashi, N.; Sasaki, R. Enzymatic Improvement of Food Flavor II. Removal of Beany Flavor from Soybean Products by Aldehyde Dehydrogenase. Agric Biol Chem. 1979, 43(9), 1883–1889.
  • Yoo, S.-H.; Chang, Y. H. Volatile Compound, Physicochemical, and Antioxidant Properties of Beany Flavor-Removed Soy Protein Isolate Hydrolyzates Obtained from Combined High Temperature Pre-Treatment and Enzymatic Hydrolysis. Preventive Nutr. Food Sci. 2016, 21(4), 338–347. DOI: 10.3746/pnf.2016.21.4.338.
  • Zhang, Y.; Guo, S.; Liu, Z.; Chang, S. K. C. Off-Flavor Related Volatiles in Soymilk as Affected by Soybean Variety, Grinding, and Heat-Processing Methods. J. Agric. Food Chem. 2012, 60(30), 7457–7462. DOI: 10.1021/jf3016199.
  • Yuan, S.; Chang, S. K. C.; Liu, Z.; Xu, B. Elimination of Trypsin Inhibitor Activity and Beany Flavor in Soy Milk by Consecutive Blanching and Ultrahigh-Temperature (UHT) Processing. J. Agric. Food Chem. 2008, 56(17), 7957–7963. DOI: 10.1021/jf801039h.
  • Khaleque, A.; Bannatyne, W. R.; Wallace, G. M. Studies on the Processing and Properties of Soymilk I.—Effect of Preprocessing Conditions on the Flavour and Compositions of Soymilks. J. Sci. Food Agric. 1970, 21(11), 579–583. DOI: 10.1002/jsfa.2740211110.
  • Ashraf, H. R. L.; Snyder, H. Influence of Ethanolic Soaking of Soybeans on Flavor and Lipoxygenase Activity of Soymilk. J. Food Sci. 1981, 46(4), 1201–1204. DOI: 10.1111/j.1365-2621.1981.tb03023.x.
  • Damodaran, S.; Arora, A. Off-flavor Precursors in Soy Protein Isolate and Novel Strategies for Their Removal. Ann. Rev. Food Sci. Technol. 2013, 4, 327–346. DOI: 10.1146/annurev-food-030212-182650.
  • Kwok, K. C.; Qin, W. H.; Tsang, J. C. Heat Inactivation of Trypsin Inhibitors in Soymilk at Ultra-High Temperatures. J. Food Sci. 1993, 58(4), 859–862. DOI: 10.1111/j.1365-2621.1993.tb09377.x.
  • Vagadia, B. H.; Vanga, S. K.; Raghavan, V. Inactivation Methods of Soybean Trypsin Inhibitor – A Review. Trends Food Sci. Technol. 2017, 64, 115–125. DOI: 10.1016/j.tifs.2017.02.003.
  • Vanga, S. K.; Singh, A.; Raghavan, V. Review of Conventional and Novel Food Processing Methods on Food Allergens. Crit. Rev. Food Sci. Nutr. 2017, 57(10), 2077–2094. DOI: 10.1080/10408398.2015.1045965.
  • Diarra, K.; Nong, Z. G.; Jie, C. Peanut Milk and Peanut Milk Based Products Production: A Review. Crit. Rev. Food Sci. Nutr. 2005, 45(5), 405–423. DOI: 10.1080/10408390590967685.
  • Isanga, J.; Zhang, G. Production and Evaluation of Some Physicochemical Parameters of Peanut Milk Yoghurt. LWT - Food Sci. Technol. 2009, 42(6), 1132–1138. DOI: 10.1016/j.lwt.2009.01.014.
  • Lee, C.; Beuchat, L. R. Changes in Chemical Composition and Sensory Qualities of Peanut Milk Fermented with Lactic Acid Bacteria. Int. J. Food Microbiol. 1991, 13(4), 273–283. DOI: 10.1016/0168-1605(91)90085-4.
  • Jeske, S.; Zannini, E.; Cronin, M. F.; Arendt, E. K. Impact of Protease and Amylase Treatment on Proteins and the Product Quality of a Quinoa-based Milk Substitute. Food Funct. 2018, 9(6), 3500–3508. DOI: 10.1039/C8FO00336J.
  • Qamar, S.; Bhandari, B.; Prakash, S. Effect of Different Homogenisation Methods and UHT Processing on the Stability of Pea Protein Emulsion. Food Res. Int. 2019, 116, 1374–1385. DOI: 10.1016/j.foodres.2018.10.028.
  • Carvajal-Larenas, F.; Linnemann, A.; Nout, M.; Koziol, M.; Van Boekel, M. Lupinus Mutabilis: Composition, Uses, Toxicology, and Debittering. Crit. Rev. Food Sci. Nutr. 2016, 56(9), 1454–1487. DOI: 10.1080/10408398.2013.772089.
  • Yorgancilar, M.; Bilgiçli, N. Chemical and Nutritional Changes in Bitter and Sweet Lupin Seeds (Lupinus Albus L.) During Bulgur Production. J. Food Sci. Technol. 2014, 51(7), 1384–1389. DOI: 10.1007/s13197-012-0640-0.
  • Elsamani, M. O.; Habbani, S. S.; Babiker, E. E.; Mohamed Ahmed, I. A. Biochemical, Microbial and Sensory Evaluation of White Soft Cheese Made from Cow and Lupin Milk. LWT - Food Sci. Technol. 2014, 59(1), 553–559. DOI: 10.1016/j.lwt.2014.04.027.
  • Tano-Debrah, K.; Asiamah, K.; Sakyi-Dawson, E.; Budu, A. S. Effect of Malt Enzyme Treatment on the Nutritional and Physicochemical Characteristics of Cowpea-peanut Milk; University of Pretoria: Pretoria, 2005; pp 1–7.
  • Abudu, I. A.; Akinyele, I. O. The Effect of Germination on the Oligosaccharides, Trypsin Inhibitors and Nutrient Content of Cowpea Milk. Food Chem. 1990, 35(3), 161–166. DOI: 10.1016/0308-8146(90)90029-4.
  • Onyesom, I.; Enaholo, A.; Mordi, J. Effect of Processing Techniques on the Contents of Flatulence Factors and Emulsion Properties of Cowpea (Vigna Unguiculata). J. Appl. Sci. Environ. Manage. 2005, 9(2), 65–72. DOI: 10.4314/jasem.v9i2.17293.
  • Navicha, W.; Hua, Y.; Masamba, K. G.; Kong, X.; Zhang, C. Effect of Soybean Roasting on Soymilk Sensory Properties. Br. Food J. 2018, 120(12), 2832–2842. DOI: 10.1108/BFJ-11-2017-0646.
  • Nelson, A. I.; Steinberg, M. I.; Wei, L. S. Illinois Process for Preparation of Soymilk. J. Food Sci. 1976, 41(1), 57–61. DOI: 10.1111/j.1365-2621.1976.tb01100.x.
  • Hsieh, O. A.-L.; Huang, A.-S.; Chang, S. S. Isolation and Identification of Objectionable Volatile Flavor Compounds in Defatted Soybean Flour. J. Food Sci. 1982, 47(1), 16–18. DOI: 10.1111/j.1365-2621.1982.tb11016.x.
  • Liu, K.;. Soybean Trypsin Inhibitor Assay: The Sequence Effect of Adding Reagents, Factors Involved, and Mechanistic Explanations. J. Am. Oil Chem. Soc. 2019, 96(6), 619–633. DOI: 10.1002/aocs.12216.
  • Zhang, H.; Li, L.; Tatsumi, E.; Isobe, S. High-pressure Treatment Effects on Proteins in Soy Milk. LWT - Food Sci. Technol. 2005, 38(1), 7–14. DOI: 10.1016/j.lwt.2004.04.007.
  • Xiang, B. Y.; Simpson, M. V.; Ngadi, M. O.; Simpson, B. K. Effect of Pulsed Electric Field on the Rheological and Colour Properties of Soy Milk. Int. J. Food Sci. Nutr. 2011, 62(8), 787–793. DOI: 10.3109/09637486.2011.584860.
  • Setchell, K. D. R.;. Soy Isoflavones - Benefits and Risks from Nature’s Selective Estrogen Receptor Modulators (Serms). J. Am. Coll. Nutr. 2001, 20(5), 354S-#62S. DOI: 10.1080/07315724.2001.10719168.
  • Nielsen, I. L. F.; Williamson, G. Review of the Factors Affecting Bioavailability of Soy Isoflavones in Humans. Nutr. Cancer. 2007, 57(1), 1–10. DOI: 10.1080/01635580701267677.
  • Setchell, K. D.;. Phytoestrogens: The Biochemistry, Physiology, and Implications for Human Health of Soy Isoflavones. Am. J. Clin. Nutr. 1998, 68(6), 1333S–1346S. DOI: 10.1093/ajcn/68.6.1333S.
  • Rowland, I. R.; Wiseman, H.; Sanders, T. A. B.; Adlercreutz, H.; Bowey, E. A. Interindividual Variation in Metabolism of Soy Isoflavones and Lignans: Influence of Habitual Diet on Equol Production by the Gut Microflora. Nutr. Cancer. 2000, 36(1), 27–32. DOI: 10.1207/S15327914NC3601_5.
  • Turner, N. J.; Thomson, B. M.; Shaw, I. C. Bioactive Isoflavones in Functional Foods: The Importance of Gut Microflora on Bioavailability. Nutr. Rev. 2003, 61(6), 204–213. DOI: 10.1301/nr.2003.jun.204-213.
  • Gaya, P.; Peirotén, Á.; Landete, J. M. Transformation of Plant Isoflavones into Bioactive Isoflavones by Lactic Acid Bacteria and Bifidobacteria. J. Funct. Foods. 2017, 29, 198–205. DOI: 10.1016/j.jff.2017.10.029.
  • Rekha, C. R.; Vijayalakshmi, G. Bioconversion of Isoflavone Glycosides to Aglycones, Mineral Bioavailability and Vitamin B Complex in Fermented Soymilk by Probiotic Bacteria and Yeast. J. Appl. Microbiol. 2010, 109, 1198–1208. DOI: 10.1111/j.1365-2672.2010.04745.x.
  • Abou-Dobara, M. I.; Ismail, M. M.; Refaat, N. M. Chemical Composition, Sensory Evaluation and Starter Activity in Cow, Soy, Peanut and Rice Milk. J. Nutr. Health Food Eng. 2016, 5(3), 00175.
  • de Albuquerque, E. M. B.; Almeida, F. D. A. C.; Gomes, J. P.; Alves, N. M. C.; da Silva, W. P. Production of “Peanut Milk” Based Beverages Enriched with Umbu and Guava Pulps. J. Saudi Soc. Agric. Sci. 2015, 14(1), 61–67. DOI: 10.1016/j.jssas.2013.07.002.
  • Arya, S. S.; Salve, A. R.; Chauhan, S. Peanuts as Functional Food: A Review. J. Food Sci. Technol. 2016, 53(1), 31–41. DOI: 10.1007/s13197-015-2007-9.
  • Ghatak, S. K.; Sen, K. Peanut Proteins: Applications, Ailments and Possible Remediation. J. Ind. Eng. Chem. 2013, 19, 369–374. DOI: 10.1016/j.jiec.2012.09.009.
  • Turner, P. J.; Campbell, D. E. Implementing Primary Prevention for Peanut Allergy at a Population Level. JAMA. 2017, 317(11), 1111–1112. DOI: 10.1001/jama.2017.0922.
  • Morales-Romero, J.; Bedolla-Barajas, M.; Valdez-Soto, J.; Bedolla-Pulido, T.; Segura-Delgadillo, M.; Bedolla-Pulido, A. Anaphylaxis Associated with Peanuts and Nuts in Late Mexican Adolescents: A Population Based Study. Int. J. Pediatr. 2019, 7(5), 9443–9451.
  • Krause, S.; Reese, G.; Randow, S.; Zennaro, D.; Quaratino, D.; Palazzo, P.; Ciardiello, M. A.; Petersen, A.; Becker, W.; Mari, A. Lipid Transfer Protein (Ara H 9) as a New Peanut Allergen Relevant for a Mediterranean Allergic Population. J. Allergy Clin. Immunol. 2009, 124(4), 771–778.e5. DOI: 10.1016/j.jaci.2009.06.008.
  • Palladino, C.; Breiteneder, H. Peanut Allergens. Mol. Immunol. 2018, 100, 58–70. DOI: 10.1016/j.molimm.2018.04.005.
  • Koppelman, S. J.; Bruijnzeel-Koomen, C. A. F. M.; Hessing, M.; de Jongh, H. H. J. Heat-induced Conformational Changes of Ara H 1, a Major Peanut Allergen, Do Not Affect Its Allergenic Properties. J. Biol. Chem. 1999, 274, 4770–4777. DOI: 10.1074/jbc.274.8.4770.
  • Chung, S.; Maleki, S. J.; Champagne, E. T. Allergenic Properties of Roasted Peanut Allergens May Be Reduced by Peroxidase. J. Agric. Food. Chem. 2004, 52(14), 4541–4545. DOI: 10.1021/jf030808d.
  • Chung, S.; Champagne, E. T. Effects of Phytic Acid on Peanut Allergens and Allergenic Properties of Extracts. J. Agric. Food. Chem. 2007, 55, 9054–9058. DOI: 10.1021/jf071213b.
  • Kopper, R. A.; Kim, A.; Van, T.; Helm, R. M. Adsorption of Peanut (Arachis Hypogaea, Leguminosae) Proteins by Activated Charcoal. J. Agric. Food. Chem. 2008, 56, 10619–10624. DOI: 10.1021/jf801731n.
  • Galvez, F. C. F.; Resurreccion, A. V. A.; Koehler, P. E. Optimization of Processing of Peanut Beverage 1. J. Sens. Stud. 1990, 5(1), 1–17. DOI: 10.1111/j.1745-459X.1990.tb00478.x.
  • Hudson, B. J. F.;. Developments in Food Proteins, Elsevier Applied Science Publishers LTD, London. New York. 1987, 5, 21–22.
  • Yu, Q.; Zhao, Q.; Zhao, M. Effects of Ratio and Dosage of Emulsifiers on Stability of Peanut Milk. Modern Food Sci. Technol. 2009, 25(8), 903–906.
  • Deshpande, R. P.; Chinnan, M. S.; Phillips, R. D. Process Development of a Chocolate-flavoured Peanut–soy Beverage. Int. J. Food Sci. Technol. 2008, 43(5), 886–894. DOI: 10.1111/j.1365-2621.2007.01537.x.
  • Smýkal, P.; Aubert, G.; Burstin, J.; Coyne, C. J.; Ellis, N. T. H.; Flavell, A. J.; Ford, R.; Hýbl, M.; Macas, J.; Neumann, P.; et al. Pea (Pisum Sativum L.) In the Genomic Era. Agronomy. 2012, 2(2), 74–115. DOI: 10.3390/agronomy2020074.
  • Tamm, F.; Herbst, S.; Brodkorb, A.; Drusch, S. Functional Properties of Pea Protein Hydrolysates in Emulsions and Spray-dried Microcapsules. Food Hydrocolloids. 2016, 58, 204–214. DOI: 10.1016/j.foodhyd.2016.02.032.
  • Zhang, X.; Xiong, Y. L.; Chen, J.; Zhou, L. Synergistic Inhibition of Lipid Oxidation by Pea Protein Hydrolysate Coupled with Licorice Extract in a Liposomal Model System. J. Agric. Food Chem. 2013, 61(35), 8452–8461. DOI: 10.1021/jf402256k.
  • Adebiyi, A. P.; Aluko, R. E. Functional Properties of Protein Fractions Obtained from Commercial Yellow Field Pea (Pisum Sativum L.) Seed Protein Isolate. Food Chem. 2011, 128(4), 902–908. DOI: 10.1016/j.foodchem.2011.03.116.
  • Boye, J. I.; Aksay, S.; Roufik, S.; Ribéreau, S.; Mondor, M.; Farnworth, E.; Rajamohamed, S. H. Comparison of the Functional Properties of Pea, Chickpea and Lentil Protein Concentrates Processed Using Ultrafiltration and Isoelectric Precipitation Techniques. Food Res. Int. 2010, 43(2), 537–546. DOI: 10.1016/j.foodres.2009.07.021.
  • Karaca, A. C.; Low, N.; Nickerson, M. Emulsifying Properties of Chickpea, Faba Bean, Lentil and Pea Proteins Produced by Isoelectric Precipitation and Salt Extraction. Food Res. Int. 2011, 44(9), 2742–2750. DOI: 10.1016/j.foodres.2011.06.012.
  • Lam, A. C. Y.; Can Karaca, A.; Tyler, R. T.; Nickerson, M. T. Pea Protein Isolates: Structure, Extraction, and Functionality. Food Rev. Int. 2018, 34(2), 126–147. DOI: 10.1080/87559129.2016.1242135.
  • Liang, H.-N.; Tang, C.-H. pH-dependent Emulsifying Properties of Pea [Pisum Sativum (L.)] Proteins. Food Hydrocolloids. 2013, 33(2), 309–319. DOI: 10.1016/j.foodhyd.2013.04.005.
  • Bajaj, P. R.; Bhunia, K.; Kleiner, L.; Joyner, H. S.; Smith, D.; Ganjyal, G.; Sablani, S. S. Improving Functional Properties of Pea Protein Isolate for Microencapsulation of Flaxseed Oil. J. Microencapsulation. 2017, 34(2), 218–230. DOI: 10.1080/02652048.2017.1317045.
  • Chao, D.; Jung, S.; Aluko, R. E. Physicochemical and Functional Properties of High Pressure-treated Isolated Pea Protein. Innovative Food Sci. Emerg. Technol. 2018, 45, 179–185. DOI: 10.1016/j.ifset.2017.10.014.
  • Devi, J.; Sanwal, S. K.; Koley, T. K.; Mishra, G. P.; Karmakar, P.; Singh, P. M.; Singh, B. Variations in the Total Phenolics and Antioxidant Activities among Gardenpea (Pisum Sativum L.) Genotypes Differing for Maturity Duration, Seed and flower Traits and Their Association with the Yield. Sci. Hortic. 2019, 244, 141–150. DOI: 10.1016/j.scienta.2018.09.048.
  • Murray, D. R.;. Amino Acid and Amide Metabolism in the Hulls and Seeds of Developing Fruits of Graden Pea, Pisum Sativum L. New Phytol. 1992, 120(2), 259–264. DOI: 10.1111/j.1469-8137.1992.tb05662.x.
  • Daveby, Y. D.; Abrahamsson, M.; Åman, P. Changes in Chemical Composition during Development of Three Different Types of Peas. J. Sci. Food Agric. 1993, 63, 21–28. DOI: 10.1002/jsfa.2740630105.
  • Johnson, S. K.; Clements, J.; Villarino, C. B. J.; Coorey, R. Chapter 8 - Lupins: Their Unique Nutritional and Health-Promoting Attributes. In Gluten-Free Ancient Grains; Taylor, J.R.N., Awika, J.M., Eds.; Woodhead Publishing: Sawston, Cambridge, 2017; pp 179–221.
  • FAO. Statistical Databases; FAO, U. N., Ed: Rome, 2017.
  • Mahmood, T.; Iqbal, Z.; Akhtar, M.; Ali, R.; Yaqub, M. Exploring the Potential of Domesticating Lupins in Punjab, Pakistan. Soil Environ. 2014, 33, 59–66.
  • Jayasena, V.; Khu, W. S.; Nasar-Abbas, S. M. The Development and Sensory Acceptability of Lupin-based Tofu. J. Food Qual. 2010, 33(1), 85–97. DOI: 10.1111/j.1745-4557.2009.00290.x.
  • Feldheim, W.;. The Use of Lupins in Human Nutrition; International Lupin Association: Canterbury, 2000; pp 434–437.
  • Wäsche, A.; Müller, K.; Knauf, U. New Processing of Lupin Protein Isolates and Functional Properties. Food/Nahrung. 2001, 45(6), 393–395. DOI: 10.1002/1521-3803(20011001)45:6<393::AID-FOOD393>3.0.CO;2-O.
  • Bader, S.; Oviedo, J. P.; Pickardt, C.; Eisner, P. Influence of Different Organic Solvents on the Functional and Sensory Properties of Lupin (Lupinus Angustifolius L.) Proteins. LWT - Food Sci. Technol. 2011, 44(6), 1396–1404. DOI: 10.1016/j.lwt.2011.01.007.
  • Snowden, J.; Sipsas, S.; John, C. S. Method to Produce Lupin Protein-based Dairy Substitutes. Google Patents, 2007.
  • Camacho, L.; Vásquez, M.; Leiva, M.; Vargas, E. Effect of Processing and Methionine Addition on the Sensory Quality and Nutritive Value of Spray‐dried Lupin Milk. Int. J. Food Sci. Technol. 1988, 23(3), 233–240. DOI: 10.1111/j.1365-2621.1988.tb00574.x.
  • Hickisch, A.; Beer, R.; Vogel, R. F.; Toelstede, S. Influence of Lupin-based Milk Alternative Heat Treatment and Exopolysaccharide-producing Lactic Acid Bacteria on the Physical Characteristics of Lupin-based Yogurt Alternatives. Food Res. Int. 2016, 84, 180–188. DOI: 10.1016/j.foodres.2016.03.037.
  • Hickisch, A.; Bindl, K.; Vogel, R. F.; Toelstede, S. Thermal Treatment of Lupin-based Milk Alternatives – Impact on Lupin Proteins and the Network of Respective Lupin-based Yogurt Alternatives. Food Res. Int. 2016, 89, 850–859. DOI: 10.1016/j.foodres.2016.10.013.
  • Eisner, P.; Müller, K.; Pickardt, C.; Malberg, A. Method for Obtaining a Vegetable Plant Protein Fraction, in Particular for Producing Vegetable Ice Cream. Google Patents, 2012.
  • Abraham, E. M.; Ganopoulos, I.; Madesis, P.; Mavromatis, A.; Mylona, P.; Nianiou-Obeidat, I.; Parissi, Z.; Polidoros, A.; Tani, E.; Vlachostergios, D. The Use of Lupin as a Source of Protein in Animal Feeding: Genomic Tools and Breeding Approaches. Int. J. Mol. Sci. 2019, 20(4), 851. DOI: 10.3390/ijms20040851.
  • van de Noort, M.;. Lupin: An Important Protein and Nutrient Source. In Sustainable Protein Sources; Nadathur, S.R., Wanasundara, J.P.D., Scanlin, L., Eds.; Elsevier: Amsterdam, 2017; pp 165–183.
  • de Cortes Sánchez, M.; Altares, P.; Pedrosa, M. M.; Burbano, C.; Cuadrado, C.; Goyoaga, C.; Muzquiz, M.; Jiménez-Martínez, C.; Dávila-Ortiz, G. Alkaloid Variation during Germination in Different Lupin Species. Food Chem. 2005, 90, 347–355. DOI: 10.1016/j.foodchem.2004.04.008.
  • In, K. W.;. The Current and Potential Uses of Lupins for Human Food. In Proceedings of First Australian Lupin Technical Symposium; Department of Agriculture: Perth, Australia, 1994; pp 89–97.
  • Yakubu, B. L.; Mbonu, O. A.; Nda, A. J. Cowpea (Vigna Unguiculata) Pest Control Methods in Storage and Recommended Practices for Efficiency: A Review. J. Biol. Agric. Healthcare. 2012, 2(2), 27–33.
  • Asif, M.; Rooney, L. W.; Ali, R.; Riaz, M. N. Application and Opportunities of Pulses in Food System: A Review. Crit. Rev. Food Sci. Nutr. 2013, 53(11), 1168–1179. DOI: 10.1080/10408398.2011.574804.
  • Trehan, I.; Benzoni, N. S.; Wang, A. Z.; Bollinger, L. B.; Ngoma, T. N.; Chimimba, U. K.; Stephenson, K. B.; Agapova, S. E.; Maleta, K. M.; Manary, M. J. J. T. Common Beans and Cowpeas as Complementary Foods to Reduce Environmental Enteric Dysfunction and Stunting in Malawian Children: Study Protocol for Two Randomized Controlled Trials. Trials. 2015, 16(1), 520. DOI: 10.1186/s13063-015-1027-0.
  • Petchiammal, C.; Hopper, W. J. I. J. O. P.; Sciences, P. Antioxidant Activity of Proteins from Fifteen Varieties of Legume Seeds Commonly Consumed in India. Int. J. Pharm. Pharm. Sci. 2014, 6(1–2), 476–479.
  • Cai, R.; Hettiarachchy, N. S.; Jalaluddin, M. High-Performance Liquid Chromatography Determination of Phenolic Constituents in 17 Varieties of Cowpeas. J. Agric. Food Chem. 2003, 51(6), 1623–1627. DOI: 10.1021/jf020867b.
  • Jayathilake, C.; Visvanathan, R.; Deen, A.; Bangamuwage, R.; Jayawardana, B. C.; Nammi, S.; Liyanage, R. Cowpea: An Overview on Its Nutritional Facts and Health Benefits. J. Sci. Food Agric. 2018, 98(13), 4793–4806. DOI: 10.1002/jsfa.9074.
  • Awika, J. M.; Duodu, K. G. J. J. O. F. F. Bioactive Polyphenols and Peptides in Cowpea (Vigna Unguiculata) and Their Health Promoting Properties: A Review. J. Funct. Foods. 2017, 38, 686–697. DOI: 10.1016/j.jff.2016.12.002.
  • Patil, A. G. G.; Kote, N. V.; Mulimani, V. Enzymatic Removal of Flatulence-inducing Sugars in Chickpea Milk Using Free and Polyvinyl Alcohol Immobilized α-galactosidase from Aspergillus Oryzae. J. Ind. Microbiol. Biotechnol. 2009, 36(1), 29–33. DOI: 10.1007/s10295-008-0467-x.
  • Rachwa-Rosiak, D.; Nebesny, E.; Budryn, G. Chickpeas—Composition, Nutritional Value, Health Benefits, Application to Bread and Snacks: A Review. Crit. Rev. Food Sci. Nutr. 2015, 55(8), 1137–1145. DOI: 10.1080/10408398.2012.687418.
  • Skrzypczak, K.; Jabłońska- Ryś, E.; Gustaw, K.; Sławińska, A.; Waśko, A.; Radzki, W.; Michalak-Majewska, M.; Gustaw, W. Reinforcement of the Antioxidative Properties of Chickpea Beverages through Fermentation Carried Out by Probiotic Strain Lactobacillus Plantarum 299v. J. Pure Appl. Microbiol. 2019, 13, 01–12. DOI: 10.22207/JPAM.13.1.01.
  • Boye, J.; Zare, F.; Pletch, A. Pulse Proteins: Processing, Characterization, Functional Properties and Applications in Food and Feed. Food Res. Int. 2010, 43(2), 414–431. DOI: 10.1016/j.foodres.2009.09.003.
  • Gupta, S.; Liu, C.; Sathe, S. K. J. J. O. F. S. Quality of a Chickpea‐Based High Protein Snack. J. Food Sci. 2019, 84(6), 1621–1630. DOI: 10.1111/1750-3841.14636.
  • Han, K.; Choi, J. Antioxidative Effect and Quality Characteristics of Chickpeas Yeotgangjeong Added with Lentil Beans. Culinary Sci. Hospitality Res. 2019, 25(2), 76–84. DOI: 10.20878/cshr.2019.26.2.010.
  • Wallace, T.; Murray, R.; Zelman, K. J. N. The Nutritional Value and Health Benefits of Chickpeas and Hummus. Nutrients. 2016, 8(12), 766. DOI: 10.3390/nu8120766.
  • Merga, B.; Haji, J. Economic Importance of Chickpea: Production, Value, and World Trade. Cogent Food Agric. 2019, 5(1), 1615718. DOI: 10.1080/23311932.2019.1615718.
  • Wang, S.; Chelikani, V.; Serventi, L. Evaluation of Chickpea as Alternative to Soy in Plant-based Beverages, Fresh and Fermented. LWT - Food Sci. Technol. 2018, 97, 570–572. DOI: 10.1016/j.lwt.2018.07.067.
  • Sosulski, F.; Chakraborty, P.; Humbert, E. Legume-based Imitation and Blended Milk Products. Can. Inst. Food Sci. Technol. J. 1978, 11(3), 117–123. DOI: 10.1016/S0315-5463(78)73224-4.
  • Basheer-Salimia, R.; Camilli, B.; Scacchi, S.; Noli, E.; Awad, M. Genetic Diversity among Palestinian Faba Bean (Vicia Faba L.) Ecotypes Based on Single Nucleotide Polymorphisms. Eur. J. Hortic. Sci. 2014, 79, 300–305.
  • Multari, S.; Stewart, D.; Russell, W. R. Potential of Fava Bean as Future Protein Supply to Partially Replace Meat Intake in the Human Diet. Compr. Rev. Food Sci. Food Saf. 2015, 14(5), 511–522. DOI: 10.1111/1541-4337.12146.
  • Tanno, K.-I.; Willcox, G. The Origins of Cultivation of Cicer Arietinum L. And Vicia Faba L.: Early Finds from Tell el-Kerkh, North-west Syria, Late 10th Millennium B.p. Veg. History Archaeobot. 2006, 15(3), 197–204. DOI: 10.1007/s00334-005-0027-5.
  • Duc, G.; Bao, S.; Baum, M.; Redden, B.; Sadiki, M.; Suso, M. J.; Vishniakova, M.; Zong, X. Diversity Maintenance and Use of Vicia Faba L. Genetic Resources. Field Crops Res. 2010, 115(3), 270–278. DOI: 10.1016/j.fcr.2008.10.003.
  • Turco, I.; Ferretti, G.; Bacchetti, T. Review of the Health Benefits of Faba Bean (Vicia Faba L.) Polyphenols. J. Food Nutr. Res. 2016, 55, 4.
  • Pihlanto, A.; Mattila, P.; Mäkinen, S.; Pajari, A. M. Bioactivities of Alternative Protein Sources and Their Potential Health Benefits. Food Funct. 2017, 8(10), 3443–3458. DOI: 10.1039/C7FO00302A.
  • Abu-Ghannam, N.; Gowen, A. 10 - Pulse-based Food Products. In Pulse Foods; Tiwari, B.K., Gowen, A., McKenna, B., Eds.; Academic Press: San Diego, 2011; pp 249–282.
  • Ingredion Meet the demand for protein-enriched, delicious foods with VITESSENCE™ Pulse proteins. https://emea.ingredion.com/findingredients/Range/VITESSENCE.html (accessed Jul 9, 2019).
  • Gugger, E. T.; Galuska, P.; Tremaine, A. Legume-based Dairy Substitute and Consumable Food Products Incorporating Same. Google Patents, 2016.
  • Liu, Y.; Wu, X.; Hou, W.; Li, P.; Sha, W.; Tian, Y. Structure and Function of Seed Storage Proteins in Faba Bean (Vicia Faba L.). 3 Biotech. 2017, 7(1), 74. DOI: 10.1007/s13205-017-0691-z.
  • Maria, M. F.; Victoria, A. T. Influence of Processing Treatments on Quality of Vegetable Milk from Almond (Terminalia Catappa) Kernels. ACTA Sci. Nutr. Health. 2018, 2(6), 37–42.
  • Ozturk, B.; McClements, D. J. Progress in Natural Emulsifiers for Utilization in Food Emulsions. Curr. Opin. Food Sci. 2016, 7, 1–6. DOI: 10.1016/j.cofs.2015.07.008.
  • Chen, T.; Zhang, M.; Bhandari, B.; Yang, Z. Micronization and Nanosizing of Particles for an Enhanced Quality of Food: A Review. Crit. Rev. Food Sci. Nutr. 2018, 58(6), 993–1001. DOI: 10.1080/10408398.2016.1236238.
  • McClements, D. J.;. Food Emulsions: Principles, Practices, and Techniques; CRC Press, Taylor & Francis: Oxfordshire, 2015.
  • Mäkinen, O. E.; Uniacke-Lowe, T.; O’Mahony, J. A.; Arendt, E. K. Physicochemical and Acid Gelation Properties of Commercial UHT-treated Plant-based Milk Substitutes and Lactose Free Bovine Milk. Food Chem. 2015, 168, 630–638. DOI: 10.1016/j.foodchem.2014.07.036.
  • Euston, S. R.; Finnigan, S. R.; Hirst, R. L. Heat-Induced Destabilization of Oil-in-Water Emulsions Formed from Hydrolyzed Whey Protein. J. Agric. Food Chem. 2001, 49(11), 5576–5583. DOI: 10.1021/jf0102620.
  • Brückner-Gühmann, M.; Banovic, M.; Drusch, S. Towards an Increased Plant Protein Intake: Rheological Properties, Sensory Perception and Consumer Acceptability of Lactic Acid Fermented, Oat-based Gels. Food Hydrocolloids. 2019, 96, 201–208. DOI: 10.1016/j.foodhyd.2019.05.016.
  • Poliseli-Scopel, F. H.; Hernández-Herrero, M.; Guamis, B.; Ferragut, V. Sterilization and Aseptic Packaging of Soymilk Treated by Ultra High Pressure Homogenization. Innovative Food Sci. Emerg. Technol. 2014, 22, 81–88. DOI: 10.1016/j.ifset.2014.01.001.
  • Dong, P.; Georget, E.; Aganovic, K.; Heinz, V.; Mathys, A. Inactivation of Bacillus Amyloliquefaciens Spores by Continuous High-pressure-assisted Thermal Sterilization in an Oil-in-water (O/w) Emulsion with 10 % Soybean Oil. Eur. Food Res. Technol. 2016, 242(6), 935–942. DOI: 10.1007/s00217-015-2600-1.
  • Cruz, N.; Capellas, M.; Hernández, M.; Trujillo, A.; Guamis, B.; Ferragut, V. Ultra High Pressure Homogenization of Soymilk: Microbiological, Physicochemical and Microstructural Characteristics. Food Res. Int. 2007, 40(6), 725–732. DOI: 10.1016/j.foodres.2007.01.003.
  • Terefe, N. S.; Sikes, A. L.; Juliano, P. 8 - Ultrasound for Structural Modification of Food Products. In Innovative Food Processing Technologies; Knoerzer, K., Juliano, P., Smithers, G., Eds.; Woodhead Publishing: Sawston, Cambridge, 2016; pp 209–230.
  • Jafari, S. M.; He, Y.; Bhandari, B. Production of Sub-micron Emulsions by Ultrasound and Microfluidization Techniques. J. Food Eng. 2007, 82(4), 478–488. DOI: 10.1016/j.jfoodeng.2007.03.007.
  • Iswarin, S. J.; Permadi, B. Coconut Milk’s Fat Breaking by Means of Ultrasound. Int. J. Basic Appl. Sci. 2012, 12(1), 1–5.
  • Maghsoudlou, Y.; Alami, M.; Mashkour, M.; Shahraki, M. H. Optimization of Ultrasound-Assisted Stabilization and Formulation of Almond Milk. J. Food Process. Preserv. 2016, 40(5), 828–839. DOI: 10.1111/jfpp.12661.
  • Firouz, M. S.; Farahmandi, A.; Hosseinpour, S. Recent Advances in Ultrasound Application as A Novel Technique in Analysis, Processing and Quality of Fruits, Juices and Dairy Products Industries: A Review. Ultrasonics - Sonochem. 2019, 57, 73–88. DOI: 10.1016/j.ultsonch.2019.05.014.
  • Chemat, F.; Grondin, I.; Shum Cheong Sing, A.; Smadja, J. Deterioration of Edible Oils during Food Processing by Ultrasound. Ultrasonics - Sonochem. 2004, 11, 13–15. DOI: 10.1016/S1350-4177(03)00127-5.
  • Wiktor, A.; Sledz, M.; Nowacka, M.; Rybak, K.; Witrowa-Rajchert, D. The Influence of Immersion and Contact Ultrasound Treatment on Selected Properties of the Apple Tissue. Appl. Acoustics. 2016, 103, 136–142. DOI: 10.1016/j.apacoust.2015.05.001.
  • Nadeem, M.; Ubaid, N.; Qureshi, T. M.; Munir, M.; Mehmood, A. Effect of Ultrasound and Chemical Treatment on Total Phenol, Flavonoids and Antioxidant Properties on Carrot-grape Juice Blend during Storage. Ultrasonics - Sonochem. 2018, 45, 1–6. DOI: 10.1016/j.ultsonch.2018.02.034.
  • Soria, A. C.; Villamiel, M. Effect of Ultrasound on the Technological Properties and Bioactivity of Food: A Review. Trends Food Sci. Technol. 2010, 21, 323–331. DOI: 10.1016/j.tifs.2010.04.003.
  • Zhu, D.; Damodaran, S. Removal of Off-flavour-causing Precursors in Soy Protein by Concurrent Treatment with Phospholipase A2 and Cyclodextrins. Food Chem. 2018, 264, 319–325. DOI: 10.1016/j.foodchem.2018.05.045.
  • Alhendi, A.; Yang, W.; Goodrich‐Schneider, R.; Sims, C.; Marshall, S.; Sarnoski, P. J. Sensory Evaluation and Flavour Analysis of Soymilk Produced from Lipoxygenase‐free Soya Beans after Modified Processes and Pulsed Light Treatment. Int. J. Food Sci. Technol. 2018, 53(6), 1434–1441. DOI: 10.1111/ijfs.13721.
  • Hayward, S.; Cilliers, T.; Swart, P. Lipoxygenases: From Isolation to Application. Compr. Rev. Food Sci. Food Saf. 2017, 16(1), 199–211. DOI: 10.1111/1541-4337.12239.
  • Guerrero-Beltrán, J. A.; Estrada-girón, Y.; Swanson, B. G.; BARBOSA-Cánovas, G. V. Inactivation Kinetics of Lipoxygenase in Pressurized Raw Soymilk and Soymilk from High-pressure Treated Soybeans. J. Food Process. Preserv. 2009, 33(2), 143–158. DOI: 10.1111/j.1745-4549.2008.00234.x.
  • Wilkens, W. F.; Mattick, L. R.; Hand, D. B. Effect of Processing Method on Oxidative Off-flavors of Soybean Milk. Food Technol. 1967, 21, 1630.
  • Davies, C. S.; Nielsen, S. S.; Nielsen, N. C. Flavor Improvement of Soybean Preparations by Genetic Removal of Lipoxygenase-2. J. Am. Oil Chem. Soc. 1987, 64(10), 1428–1433. DOI: 10.1007/BF02636994.
  • Wang, S. H.; Toledo, M. C. F. Inactivation of Soybean Lipoxygenase by Microwave Heating: Effect of Moisture Content and Exposure Time. J. Food Sci. 1987, 52(5), 1344–1347. DOI: 10.1111/j.1365-2621.1987.tb14078.x.
  • Gupta, R. P.; Gupta, R. R. Equipment for Making No-beany Flavor Soymilk. Google Patents, 1988.
  • Araujo, A. J. D. Method for Preparing a Beanless-flavor Soymilk And/or Okara Using Carbon Dioxide in a State of Sublimation. Google Patents, 2007.
  • Mitsuda, H.; Yasumoto, K.; Yamamoto, A. Inactivation of Lipoxygenase by Hydrogen Peroxide, Cysteine and Some Other Reagents. Agric Biol Chem. 1967, 31(7), 853–860. DOI: 10.1080/00021369.1967.10858886.
  • Cheman, Y.; Wei, L.; Nelson, A. Acid Inactivation of Soybean Lipoxygenase with Retention of Protein Solubility. J. Food Sci. 1989, 54(4), 963–967. DOI: 10.1111/j.1365-2621.1989.tb07922.x.
  • Kon, S.; Wagner, J. R.; GuadagnI, D. G.; Horvat, R. J. pH Adjustment Control of Oxidative Off-flavors during Grinding of Raw Legume Seeds. J. Food Sci. 1970, 35(4), 343–345. DOI: 10.1111/j.1365-2621.1970.tb00925.x.
  • Hofland, G. W.; de Rijke, A.; Thiering, R.; van der Wielen, L. A. M.; Witkamp, G.-J. Isoelectric Precipitation of Soybean Protein Using Carbon Dioxide as a Volatile Acid. J. Chromatogr. B Biomed. Sci. Appl. 2000, 743(1), 357–368. DOI: 10.1016/S0378-4347(00)00259-0.
  • Tabtabaei, S.; Konakbayeva, D.; Rajabzadeh, A. R.; Legge, R. L. Functional Properties of Navy Bean (Phaseolus Vulgaris) Protein Concentrates Obtained by Pneumatic Tribo-electrostatic Separation. Food Chem. 2019, 283, 101–110. DOI: 10.1016/j.foodchem.2019.01.031.
  • Zhang, Y.; He, S.; Simpson, B. K. Enzymes in Food Bioprocessing—novel Food Enzymes, Applications, and Related Techniques. Curr. Opin. Food Sci. 2018, 19, 30–35. DOI: 10.1016/j.cofs.2017.12.007.
  • Lal, N.; Barcchiya, J.; Raypuriya, N.; Shiurkar, G. Anti-nutrition in Legumes: Effect in Human Health and Its Elimination. Innovative Farming. 2017, 2(1), 32–36.
  • Avilés‐Gaxiola, S.; Chuck‐Hernández, C.; Serna Saldivar, S. O. Inactivation Methods of Trypsin Inhibitor in Legumes: A Review. J. Food Sci. 2018, 83(1), 17–29. DOI: 10.1111/1750-3841.13985.
  • Yalcin, S.; Basman, A. Effects of Infrared Treatment on Urease, Trypsin Inhibitor and Lipoxygenase Activities of Soybean Samples. Food Chem. 2015, 169, 203–210. DOI: 10.1016/j.foodchem.2014.07.114.
  • Embaby, H. E.-S.;. Effect of Heat Treatments on Certain Antinutrients and in Vitro Protein Digestibility of Peanut and Sesame Seeds. Food Sci. Technol. Res. 2010, 17(1), 31–38. DOI: 10.3136/fstr.17.31.
  • Habiba, R. A.;. Changes in Anti-nutrients, Protein Solubility, Digestibility, and HCl-extractability of Ash and Phosphorus in Vegetable Peas as Affected by Cooking Methods. Food Chem. 2002, 77(2), 187–192. DOI: 10.1016/S0308-8146(01)00335-1.
  • Embaby, H. E.-S.;. Effect of Soaking, Dehulling, and Cooking Methods on Certain Antinutrients and in Vitro Protein Digestibility of Bitter and Sweet Lupin Seeds. Food Sci. Biotechnol. 2010, 19(4), 1055–1062. DOI: 10.1007/s10068-010-0148-1.
  • Rivas-Vega, M. E.; Goytortúa-Bores, E.; Ezquerra-Brauer, J. M.; Salazar-García, M. G.; Cruz-Suárez, L. E.; Nolasco, H.; Civera-Cerecedo, R. Nutritional Value of Cowpea (Vigna Unguiculata L. Walp) Meals as Ingredients in Diets for Pacific White Shrimp (Litopenaeus Vannamei Boone). Food Chem. 2006, 97(1), 41–49. DOI: 10.1016/j.foodchem.2005.03.021.
  • Ertaş, N.; Türker, S. Bulgur Processes Increase Nutrition Value: Possible Role in In-vitro Protein Digestability, Phytic Acid, Trypsin Inhibitor Activity and Mineral Bioavailability. J. Food Sci. Technol. 2014, 51(7), 1401–1405. DOI: 10.1007/s13197-012-0638-7.
  • Alonso, R.; Aguirre, A.; Marzo, F. Effects of Extrusion and Traditional Processing Methods on Antinutrients and in Vitro Digestibility of Protein and Starch in Faba and Kidney Beans. Food Chem. 2000, 68(2), 159–165. DOI: 10.1016/S0308-8146(99)00169-7.
  • Weizman, Z.;. Vegetarian Diet and Exocrine Pancreatic Function Using Fecal Tests. J. Pediatr. Gastroenterol. Nutr. 2004, 39(2), 212. DOI: 10.1097/00005176-200408000-00019.
  • Andrade, J.; Mandarino, J.; Kurozawa, L.; Ida, E. The Effect of Thermal Treatment of Whole Soybean Flour on the Conversion of Isoflavones and Inactivation of Trypsin Inhibitors. Food Chem. 2016, 194, 1095–1101. DOI: 10.1016/j.foodchem.2015.08.115.
  • Yang, H.-W.; Hsu, C.-K.; Yang, Y.-F. Effect of Thermal Treatments on Anti-nutritional Factors and Antioxidant Capabilities in Yellow Soybeans and Green-cotyledon Small Black Soybeans. J. Sci. Food Agric. 2014, 94(9), 1794–1801. DOI: 10.1002/jsfa.6494.
  • Carvalho, M. R. B.; Sgarbieri, V. C. Heat Treatment and Inactivation of Trypsin‐chymotrypsin Inhibitors and Lectins from Beans (Phaseolus Vulgaris L.). J. Food Biochem. 1997, 21(4), 219–233. DOI: 10.1111/j.1745-4514.1997.tb00216.x.
  • Li, J.; Xiang, Q.; Liu, X.; Ding, T.; Zhang, X.; Zhai, Y.; Bai, Y. Inactivation of Soybean Trypsin Inhibitor by Dielectric-barrier Discharge (DBD) Plasma. Food Chem. 2017, 232, 515–522. DOI: 10.1016/j.foodchem.2017.03.167.
  • Lajolo, F. M.; Genovese, M. I. Nutritional Significance of Lectins and Enzyme Inhibitors from Legumes. J. Agric. Food Chem. 2002, 50(22), 6592–6598. DOI: 10.1021/jf020191k.
  • Shi, L.; Arntfield, S. D.; Nickerson, M. Changes in Levels of Phytic Acid, Lectins and Oxalates during Soaking and Cooking of Canadian Pulses. Food Res. Int. 2018, 107, 660–668. DOI: 10.1016/j.foodres.2018.02.056.
  • Zhang, H.; Önning, G.; Triantafyllou, A. Ö.; Öste, R. Nutritional Properties of Oat-based Beverages as Affected by Processing and Storage. J. Sci. Food Agric. 2007, 87(12), 2294–2301. DOI: 10.1002/jsfa.2987.
  • Kumar, V.; Rani, A.; Mittal, P.; Shuaib, M. Kunitz Trypsin Inhibitor in Soybean: Contribution to Total Trypsin Inhibitor Activity as a Function of Genotype and Fate during Processing. J. Food Meas. Charact. 2019, 13(2), 1583–1590. DOI: 10.1007/s11694-019-00074-y.
  • Wang, R.; Guo, S. Effects of Endogenous Small Molecular Compounds on the Rheological Properties, Texture and Microstructure of Soymilk Coagulum: Removal of Phytate Using Ultrafiltration. Food Chem. 2016, 211, 521–529. DOI: 10.1016/j.foodchem.2016.05.086.
  • Murugkar, D. A.;. Effect of Sprouting of Soybean on the Chemical Composition and Quality of Soymilk and Tofu. J. Food Sci. Technol. 2014, 51(5), 915–921. DOI: 10.1007/s13197-011-0576-9.
  • Kamboj, R.; Nanda, V. Proximate Composition, Nutritional Profile and Health Benefits of legumes-A Review. Legume Res. 2018, 41(3), 325–332.
  • Fan, P.-H.; Zang, M.-T.; Xing, J. Oligosaccharides Composition in Eight Food Legumes Species as Detected by High-resolution Mass Spectrometry. J. Sci. Food Agric. 2015, 95(11), 2228–2236. DOI: 10.1002/jsfa.6940.
  • Kurbel, S.; Kurbel, B.; Včev, A. Intestinal Gases and Flatulence: Possible Causes of Occurrence. Med. Hypotheses. 2006, 67(2), 235–239. DOI: 10.1016/j.mehy.2006.01.057.
  • Azpiroz, F.; Hernandez, C.; Guyonnet, D.; Accarino, A.; Santos, J.; Malagelada, J. R.; Guarner, F. Effect of a Low‐flatulogenic Diet in Patients with Flatulence and Functional Digestive Symptoms. Neurogastroenterol. Motility. 2014, 26(6), 779–785. DOI: 10.1111/nmo.12324.
  • Jain, A. K.; Kumar, S.; Panwar, J. Antinutritional Factors and Their Detoxification in Pulses-a Review. Energy (K Cal). 2009, 139, 94.
  • Bush, C. S.; Bettle, G., III; Rutzinski, J. L. Process for Removing Flatulence-causing Oligosaccharides in Legumes. Google Patents, 2001.
  • Machaiah, J. P.; Pednekar, M. D. Carbohydrate Composition of Low Dose Radiation-processed Legumes and Reduction in Flatulence Factors. Food Chem. 2002, 79(3), 293–301. DOI: 10.1016/S0308-8146(02)00142-5.
  • Momoh, J. E.; Udobi, C. E.; Orukotan, A. A. Improving the Microbial Keeping Quality of Home Made Soymilk Using a Combination of Preservatives, Pasteurization and Refrigeration. Br. J. Dairy Sci. 2011, 2, 1–4.
  • Vanga, S. K.; Raghavan, V. How Well Do Plant Based Alternatives Fare Nutritionally Compared to Cow’s Milk? J. Food Sci. Technol. 2018, 55(1), 10–20. DOI: 10.1007/s13197-017-2915-y.
  • Tan, B. H. Technology of Soymilk and Some Derivatives. PhD Thesis, Agricultural University of Wageningen, Wageningen, Netherlands, 1958.
  • Bernat, N.; Cháfer, M.; Chiralt, A.; González-Martinez, C. Vegetable Milks and Their Fermented Derivative Products. Int. J. Food Stud. 2014, 3(1). DOI: 10.7455/ijfs/3.1.2014.a9.
  • Valencia-Flores, D. C.; Hernández-Herrero, M.; Guamis, B.; Ferragut, V. Comparing the Effects of Ultra-High-Pressure Homogenization and Conventional Thermal Treatments on the Microbiological, Physical, and Chemical Quality of Almond Beverages. J. Food Sci. 2013, 78(2), E199–E205. DOI: 10.1111/1750-3841.12029.
  • Gabrić, D.; Barba, F.; Roohinejad, S.; Gharibzahedi, S. M. T.; Radojčin, M.; Putnik, P.; Bursać Kovačević, D. Pulsed Electric Fields as an Alternative to Thermal Processing for Preservation of Nutritive and Physicochemical Properties of Beverages: A Review. J. Food Process Eng. 2018, 41(1), e12638. DOI: 10.1111/jfpe.12638.
  • Codex. Codex Alimentarius: Foods for Special Dietary Uses Including Food for Infants and Children; Food & Agriculture Organization of the UN (FAO): Rome, Italy, 1994.
  • Rowlands, J. C.; Hoadley, J. E. FDA Perspectives on Health Claims for Food Labels. Toxicology. 2006, 221(1), 35–43. DOI: 10.1016/j.tox.2005.10.023.
  • Bedell, S.; Nachtigall, M.; Naftolin, F. The Pros and Cons of Plant Estrogens for Menopause. J. Steroid Biochem. Mol. Biol. 2014, 139, 225–236. DOI: 10.1016/j.jsbmb.2012.12.004.
  • Massey, L. K.;. Dietary Animal and Plant Protein and Human Bone Health: A Whole Foods Approach. J. Nutr. 2003, 133(3), 862S–865S. DOI: 10.1093/jn/133.3.862S.
  • Friedman, M.;. Nutritional Value of Proteins from Different Food Sources. A Review. J. Agric. Food Chem. 1996, 44(1), 6–29. DOI: 10.1021/jf9400167.
  • Amusa, N.; Ashaye, O. Effect of Processing on Nutritional, Microbiological and Sensory Properties of Kunun-zaki (A Sorghum Based Non-alcoholic Beverage) Widely Consumed in Nigeria. Pak. J. Nutr. 2009, 8(3), 288–292. DOI: 10.3923/pjn.2009.20.25.
  • Javed, R.; Naz, S.; Saleem, F.; Aasim, M.; Zafar, R. A Review on Requirements for Vitamin D Fortification in Pakistan. Pak. J. Med. Res. 2018, 57, 2.
  • Herrero-Barbudo, M. C.; Granado-Lorencio, F.; Blanco-Navarro, I.; Olmedilla-Alonso, B. Retinol, α- and γ-tocopherol and Carotenoids in Natural and Vitamin A- and E-fortified Dairy Products Commercialized in Spain. Int. Dairy J. 2005, 15(5), 521–526. DOI: 10.1016/j.idairyj.2004.07.011.
  • Upreti, P.; Mistry, V. V.; Warthesen, J. J. Estimation and Fortification of Vitamin D3 in Pasteurized Process Cheese1. J. Dairy Sci. 2002, 85(12), 3173–3181. DOI: 10.3168/jds.S0022-0302(02)74405-6.
  • Gharibzahedi, S. M. T.; Jafari, S. M. The Importance of Minerals in Human Nutrition: Bioavailability, Food Fortification, Processing Effects and Nanoencapsulation. Trends Food Sci. Technol. 2017, 62, 119–132. DOI: 10.1016/j.tifs.2017.02.017.
  • Grumezescu, A.; Holban, A.-M. Production and Management of Beverages: Volume 1. The Science of Beverages; Woodhead Publishing: Sawston, Cambridge, 2018.
  • Zhao, Y.; Martin, B. R.; Weaver, C. M. Calcium Bioavailability of Calcium Carbonate Fortified Soymilk Is Equivalent to Cow’s Milk in Young Women. J. Nutr. 2005, 135(10), 2379–2382. DOI: 10.1093/jn/135.10.2379.
  • Pathomrungsiyounggul, P.; Lewis, M. J.; Grandison, A. S. Effects of Calcium-chelating Agents and Pasteurisation on Certain Properties of Calcium-fortified Soy Milk. Food Chem. 2010, 118(3), 808–814. DOI: 10.1016/j.foodchem.2009.05.067.
  • Chaiwanon, P.; Puwastien, P.; Nitithamyong, A.; Sirichakwal, P. P. Calcium Fortification in Soybean Milk and in Vitro Bioavailability. J. Food Compost. Anal. 2000, 13(4), 319–327. DOI: 10.1006/jfca.1999.0854.
  • FSANZ. Plant-based Milk Alternatives, Food Standards Australia New Zealand: Canberra 2016.
  • Coda, R.; Lanera, A.; Trani, A.; Gobbetti, M.; Di Cagno, R. Yogurt-like Beverages Made of a Mixture of Cereals, Soy and Grape Must: Microbiology, Texture, Nutritional and Sensory Properties. Int. J. Food Microbiol. 2012, 155(3), 120–127. DOI: 10.1016/j.ijfoodmicro.2012.01.016.
  • Deshpande, R. P.; Chinnan, M. S.; McWatters, K. H. Optimization of a Chocolate-flavored, Peanut–soy Beverage Using Response Surface Methodology (RSM) as Applied to Consumer Acceptability Data. LWT - Food Sci. Technol. 2008, 41(8), 1485–1492. DOI: 10.1016/j.lwt.2007.08.013.
  • Mensah-Brown, H.; Afoakwa, E. O.; Wadie, W. B. Optimization of the Production of a Chocolate-flavoured, Soy-peanut Beverage with Acceptable Chemical and Physicochemical Properties Using a Three-component Constrained Extreme Lattice Mixture Design. Optimization. 2014, 23, 46–54.
  • Mazumder, M. A.; Hongsprabhas, P. A Review on Nutrient Quality of Soymilk Powder for Malnourished Population. Pak. J. Nutr. 2016, 15, 600–606. DOI: 10.3923/pjn.2016.600.606.
  • Johnson, G. W. Simulated Milk Comprising Soy Bean Flour, Sesame Seed Flour and Coconut Meal. Google Patents, 1968.
  • Kluczkovski, A. M.; Martins, M.; Mundim, S. M.; Simoes, R. H.; Nascimento, K. S.; Marinho, H. A.; Junior, A. K. Properties of Brazil Nuts: A Review. Afr. J. Biotechnol. 2015, 14(8), 642–648. DOI: 10.5897/AJB2014.14184.
  • Felberg, I.; Antoniassi, R.; Deliza, R.; Freitas, S. C. D.; Modesta, R. C. D. Soy and Brazil Nut Beverage: Processing, Composition, Sensory, and Color Evaluation. Food Sci. Technol. 2009, 29(3), 609–617. DOI: 10.1590/S0101-20612009000300024.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.