469
Views
4
CrossRef citations to date
0
Altmetric
Review

Polymer Based Nanomaterials for Strategic Applications in Animal Food Value Chains

ORCID Icon & ORCID Icon

References

  • FAO The State of Food and Agriculture. 2017, Available from: www.fao.org/3/a-i7658e.pdf Accessed 2019 August 16.
  • FAO How to Feed the World in 2050. 2009, Available from: http://www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/How_to_Feed_the_World_in_2050.pdf Accessed Aug 16, 2019.
  • Alexandratos, N. & Bruinsma, J. World Agriculture Towards 2030/2050: The 2012 Revision Ch. 4 (ESA/12-03, FAO, 2012).
  • Kah, M.; Kookana, R. S.; Gogos, A.; Bucheli, T. D. A Critical Evaluation of Nanopesticides and Nanofertilizers against Their Conventional Analogues. Nat. Nanotechnol. 2018, 13, 677–684. DOI: 10.1038/s41565-018-0131-1.
  • UN, Transforming Our World: The 2030 Agenda for Sustainable Development. 2017, Available:https://sustainabledevelopment.un.org/content/documents/21252030%20Agenda%20for%20Sustainable%20Development%20web.pdf Accessed Aug 20, 2019.
  • Timmermans, A. J. M.; Ambuko, J.; Belik, W.; Huang, J. Food Losses and Waste in the Context of Sustainable Food Systems (No. 8). CFS Committee on World Food Security HLPE. 2014.
  • Rezaei, M.; Liu, B. Food Loss and Waste in the Food Supply Chain. Int. Nut Dried Fruit Counc. 2017, 1, 26–27.
  • Otles, S.; Despoudi, S.; Bucatariu, C.; Kartal, C. Food Waste Recovery. In Food Waste Management, Valorization, and Sustainability in the Food Industry; Galanakis, C.M., Ed.; Academic Press: San Diego, 2015; pp 3–23.
  • Mody, R. K.; Griffin, P. M. Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases, 8th ed.; Elsevier B.V: New York, 2015.
  • Mclinden, T.; Sargeant, J. M.; Thomas, M. K.; Papadopoulos, A.; Fazil, A. Component Costs of Foodborne Illness: A Scoping Review. BMC Public Health. 2014, 14, 509.
  • Gelli, A.; Hawkes, C.; Donovan, J.; Harris, J.; Allen, S.; de Brauw, A.; Henson, S.; Johnson, N.; Garrett, J.; Ryckembusch, D. Value Chains and Nutrition: A Framework to Support the Identification, Design, and Evaluation of Interventions. 2015, IFPRI Discussion Paper 01413. Washington DC, International Food Policy Research Institute http://ebrary.ifpri.org/utils/getfile/collection/p15738coll2/id/128951/filename/129162.pdf
  • Roco, M. C.;. Nanotechnology: Convergence with Modern Biology and Medicine. Curr. Opin. Biotechnol. 2003, 14, 337–346. DOI: 10.1016/S0958-1669(03)00068-5.
  • Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, Applications and Toxicities. Arab. J. Chem. 2017. DOI: 10.1016/j.arabjc.2017.05.011.
  • Singh, R. P.; Ramarao, P. Cellular Uptake, Intracellular Trafficking and Cytotoxicity of Silver Nanoparticles. Toxicol. Lett. 2012, 213, 249–259. DOI: 10.1016/j.toxlet.2012.07.009.
  • Sabliov, C. M.; Astete, C. E. Polymeric Nanoparticles for Food Applications. In Nanotechnology and Functional Foods: Effective Delivery of Bioactive Ingredients; Sabliov, C.M., Chen, H., Yada, R., Eds.; John Wiley Sons, Ltd: Chicago (IL), 2015; pp 272–296.
  • Rao, J. P.; Geckeler, K. E. Polymer Nanoparticles: Preparation Techniques and Size-control Parameters. Prog. Polym. Sci. 2011, 36, 887–913. DOI: 10.1016/j.progpolymsci.2011.01.001.
  • Greeff, G.; Ghoshal, R. Practical E-manufacturing and Supply Chain Management; Elsevier Publishers Inc: Oxford, 2004.
  • Bhatia, S.;. Natural Polymer Drug Delivery Systems; Springer International Publishing: Cham, Switzerland, 2016; pp 33–93.
  • Ghosh, S.;. Recent Research and Development in Synthetic Polymer-based Drug Delivery Systems. J. Chem. Res. 2004, 4, 241–246. DOI: 10.3184/0308234041209158.
  • Han, J.; Zhao, D.; Li, D.; Wang, X.; Jin, Z.; Zhao, K. Polymer-based Nanomaterials and Applications for Vaccines and Drugs. Polymers. 2018, 10, 31. DOI: 10.3390/polym10010031.
  • Lertsutthiwong, P.; Noomun, K.; Jongaroonngamsang, N.; Rojsitthisak, P.; Nimmannit, U. Preparation of Alginate Nanocapsules Containing Turmeric Oil. Carbohydr. Polym. 2008, 74, 209–214. DOI: 10.1016/j.carbpol.2008.02.009.
  • You, J. O.; Liu, Y. C.; Peng, C. A. Efficient Gene Transfection Using Chitosan-alginate Core-shell Nanoparticles. Int. J. Nanomed. 2006, 1(2), 173–180. DOI: 10.2147/nano.2006.1.2.173.
  • Douglas, K. L.; Piccirillo, C. A.; Tabrizian, M. Effects of Alginate Inclusion on the Vector Properties of Chitosan-based Nanoparticles. J. Control. Release. 2006, 115, 354–361. DOI: 10.1016/j.jconrel.2006.08.021.
  • Xu, Y.; Rehmani, N.; Alsubaie, L.; Kim, C.; Sismour, E.; Scales, A. Tapioca Starch Active Nanocomposite Films and Their Antimicrobial Effectiveness on Ready-to-eat Chicken Meat. Food Packag. Shelf. 2018, 16, 86–91. DOI: 10.1016/j.fpsl.2018.02.006.
  • Alishahi, A.; Mirvaghefi, A.; Tehrani, M. R.; Farahmand, H.; Shojaosadati, S. A.; Dorkoosh, F. A.; Elsabee, M. Z. Shelf Life and Delivery Enhancement of Vitamin C Using Chitosan Nanoparticles. Food Chem. 2011, 126, 935–940. DOI: 10.1016/j.foodchem.2010.11.086.
  • Semyonov, D.; Ramon, O.; Shoham, Y.; Shimoni, E. Enzymatically Synthesized Dextran Nanoparticles and Their Use as Carriers for Nutraceuticals. Food Funct. 2014, 5, 2463–2474. DOI: 10.1039/C4FO00103F.
  • Jiménez-Sánchez, M.; Pérez-Morales, R.; Goycoolea, F. M.; Mueller, M.; Praznik, W.; Loeppert, R.; Bermúdez-Morales, V.; Zavala-Padilla, G.; Ayala, M.; Olvera, C. Self-assembled High Molecular Weight Inulin Nanoparticles: Enzymatic Synthesis, Physicochemical and Biological Properties. Carbohyd. Polym. 2019, 215, 160–169. DOI: 10.1016/j.carbpol.2019.03.060.
  • Krivorotova, T.; Cirkovas, A.; Maciulyte, S.; Staneviciene, R.; Budriene, S.; Serviene, E.; Sereikaite, J. Nisin-loaded Pectin Nanoparticles for Food Preservation. Food Hydrocolloids. 2016, 54, 49–56. DOI: 10.1016/j.foodhyd.2015.09.015.
  • Dai, L.; Li, C.; Zhang, J.; Cheng, F. Preparation and Characterization of Starch Nanocrystals Combining Ball Milling with Acid Hydrolysis. Carbohyd. Polym. 2018, 180, 122–127. DOI: 10.1016/j.carbpol.2017.10.015.
  • Fang, R.; Hao, R.; Wu, X.; Li, Q.; Leng, X.; Jing, H. Bovine Serum Albumin Nanoparticle Promotes the Stability of Quercetin in Simulated Intestinal Fluid. J. Agr. Food Chem. 2011, 59, 6292–6298. DOI: 10.1021/jf200718j.
  • Nagarajan, U.; Kawakami, K.; Zhang, S.; Chandrasekaran, B.; Unni Nair, B. Fabrication of Solid Collagen Nanoparticles Using Electrospray Deposition. Chem. Pharm. Bull. 2014, 62(5), 422–428. DOI: 10.1248/cpb.c13-01004.
  • Chen, Y. C.; Yu, S. H.; Tsai, G. J.; Tang, D. W.; Mi, F. L. Novel Technology for the Preparation of Self-assembled Catechin/gelatin Nanoparticles and Their Characterization. J. Agr. Food Chem. 2010, 58, 6728–6734. DOI: 10.1021/jf1005116.
  • Praveen, G.; Sreerekha, P. R.; Menon, D.; Nair, S. V.; Chennazhi, K. P. Fibrin Nanoconstructs: A Novel Processing Method and Their Use as Controlled Delivery Agents. Nanotechnology. 2012, 23, 95102. DOI: 10.1088/0957-4484/23/9/095102.
  • Dhandayuthapani, B.; Poulose, A. C.; Nagaoka, Y.; Hasumura, T.; Yoshida, Y.; Maekawa, T.; Kumar, D. S. Biomimetic Smart Nanocomposite: In Vitro Biological Evaluation of Zein Electrospun Fluorescent Nanofiber Encapsulated CdS Quantum Dots. Biofabrication. 2012, 4(2), 025008. DOI: 10.1088/1758-5082/4/2/025008.
  • Tobio, M.; Gref, R.; Sanchez, A.; Langer, R.; Alonso, M. T. Stealth PLA–PEG Nanoparticles as Protein Carriers for Nasal Administration. Pharm. Res. 1998, 15, 270–272. DOI: 10.1023/A:1011922819926.
  • Ma, T.; Wang, L.; Yang, T.; Ma, G.; Wang, S. Homogeneous PLGA-lipid Nanoparticles as a Promising Oral Vaccine Delivery System for Ovalbumin. Asian J. Pharm. Sci. 2014, 9, 129–136. DOI: 10.1016/j.ajps.2014.03.002.
  • Kim, B. K.; Lee, J. S.; Oh, J. K.; Park, D. J. Preparation of Resveratrol-loaded Poly (ε-caprolactone) Nanoparticles by Oil-in-water Emulsion Solvent Evaporation Method. Food Sci. Biotechnol. 2009, 2009(18), 157–161.
  • Kim, K. O.; Kim, B. S.; Kim, I. S. Self-assembled Core-shell Poly (Ethylene Glycol)-poss Nanocarriers for Drug Delivery. J. Biomed. Nanotechnol. 2011, 2, 201–206.
  • Paques, J. P.; van der Linden, E.; Van Rijn, C. J.; Sagis, L. M. Preparation Methods of Alginate Nanoparticles. Adv. Colloid Interface Sci. 2014, 209, 163–171. DOI: 10.1016/j.cis.2014.03.009.
  • Saito, T.; Uematsu, T.; Kimura, S.; Enomae, T.; Isogai, A. Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials. Soft Matter. 2011, 7, 8804–8809.
  • Gayathri, N. K.; Aparna, V.; Maya, S.; Biswas, R.; Jayakumar, R.; Mohan, C. G. Preparation, characterization, drug release and computational modelling studies of antibiotics loaded amorphous chitin nanoparticles. Carbohydr. Polym. 2017, 177, 67–76.
  • Joye, I. J.; Davidov-Pardo, G.; McClements, D. J. Encapsulation of resveratrol in biopolymer particles produced using liquid antisolvent precipitation. Part 2: stability and functionality. Food Hydrocoll. 2015, 49, 127–134.
  • Xiong, Y. C.; Yao, Y. C.; Zhan, X. Y.; Chen, G. Q. Application of Polyhydroxyalkanoates Nanoparticles as Intracellular Sustained Drug-release Vectors. J Biomater. Sci. Polym. Ed. 2010, 2010(21), 127–140. DOI: 10.1163/156856209X410283.
  • Uyar, T.; Besenbacher, F. Electrospinning of Cyclodextrin Functionalized Polyethylene Oxide (PEO) Nanofibers. Eur. Polym. J. 2009, 45, 1032–1037. DOI: 10.1016/j.eurpolymj.2008.12.024.
  • Ahmad, N.; Umar, S.; Ashafaq, M.; Akhtar, M.; Iqbal, Z.; Samim, M.; Ahmad, F. J. A Comparative Study of PNIPAM Nanoparticles of Curcumin, Demethoxycurcumin, and Bisdemethoxycurcumin and Their Effects on Oxidative Stress Markers in Experimental Stroke. Protoplasma. 2013, 250, 1327–1338.
  • Rudnik, E.;. Biodegradability Testing of Compostable Polymer Materials. In Handbook of Biopolymers and Biodegradable Plastics: Properties, Processing and Applications; Ebnesajjad, S., Ed.; Elsevier Publishing Inc: New York, 2013; pp 213–263.
  • Abitbol, T.; Rivkin, A.; Cao, Y.; Nevo, Y.; Abraham, E.; Ben-Shalom, T.; Lapidot, S.; Lapidot, S. Nanocellulose, a Tiny Fiber with Huge Applications. Curr. Opin. Biotechnol. 2016, 39, 76–88. DOI: 10.1016/j.copbio.2016.01.002.
  • Kargarzadeh, H.; Mariano, M.; Huang, J.; Lin, N.; Ahmad, I.; Dufresne, A.; Thomas, S. Recent Developments on Nanocellulose Reinforced Polymer Nanocomposites: A Review. Polymer. 2017, 132, 368–393. DOI: 10.1016/j.polymer.2017.09.043.
  • Xiong, S.; George, S.; Yu, H.; Damoiseaux, R.; France, B.; Ng, K. W.; Loo, J. S. C. Size Influences the Cytotoxicity of Poly (Lactic-co-glycolic Acid) (PLGA) and Titanium Dioxide (Tio2) Nanoparticles. Arch. Toxicol. 2013, 2013(87), 1075–1086. DOI: 10.1007/s00204-012-0938-8.
  • Roman, M.;. Toxicity of Cellulose Nanocrystals: A Review. Ind. Biotechnol. 2015, 11, 25–33. DOI: 10.1089/ind.2014.0024.
  • Zwiorek, K.; Kloeckner, J.; Wagner, E.; Coester, C. Gelatin Nanoparticles as a New and Simple Gene Delivery System. J Pharm Pharm Sci. 2005, 7, 22–28.
  • Luz, C. M.; Boyles, M. S. P.; Falagan-Lotsch, P.; Pereira, M. R.; Tutumi, H. R.; de Oliveira Santos, E.; Martins, N. B.; Himly, M.; Sommer, A.; Foer, I.;, et al. Poly-lactic Acid Nanoparticles (PLA-NP) Promote Physiological Modifications in Lung Epithelial Cells and are Internalized by Clathrin-coated Pits and Lipid Rafts. J. Nanobiotechnol. 2017, 15, 11. DOI: 10.1186/s12951-016-0238-1.
  • Mukherjee, S. P.; Davoren, M.; Byrne, H. J. In Vitro Mammalian Cytotoxicological Study of PAMAM Dendrimers–towards Quantitative Structure Activity Relationships. Toxicol. In Vitro. 2010, 24, 169–177.
  • Phromviyo, N.; Lert-itthiporn, A.; Swatsitang, E.; Chompoosor, A. Biodegradable Poly (Vinyl Alcohol)/polyoxalate Electrospun Nanofibers for Hydrogen Peroxide-triggered Drug Release. J. Biomater. Sci. 2015, 26, 975–987.
  • Kolter, M.; Ott, M.; Hauer, C.; Reimold, I.; Fricker, G. Nanotoxicity of Poly (N-butylcyano-acrylate) Nanoparticles at the Blood–brain Barrier, in Human Whole Blood and in Vivo. J. Control. Release. 2015, 197, 165–179. DOI: 10.1016/j.jconrel.2014.11.005.
  • Elieh-Ali-Komi, D.; Hamblin, M. R. Chitin and Chitosan: Production and Application of Versatile Biomedical Nanomaterials. Int. J. Adv. Res. 2016, 4(3), 411–427.
  • Gutiérrez, T. J.;. Chitosan Applications for the Food Industry; Chitosan, S.A., Ikram, S.,eds.; John Wiley Sons, Inc: Hoboken, NJ , 2017. DOI:10.1002/9781119364849.ch8
  • Hu, Y. L.; Qi, W.; Han, F.; Shao, J. Z.; Gao, J. Q. Toxicity Evaluation of Biodegradable Chitosan Nanoparticles Using a Zebrafish Embryo Model. Int. J. Nanomed. 2011, 6, 3351–3359.
  • Nikapitiya, C.; Dananjaya, S. H. S.; De Silva, B. C. J.; Heo, G. J.; Oh, C.; De Zoysa, M.; Lee, J. Chitosan Nanoparticles: A Positive Immune Response Modulator as Display in Zebrafish Larvae against Aeromonas Hydrophila Infection. Fish Shellfish Immunol. 2018, 76, 240–246. DOI: 10.1016/j.fsi.2018.03.010.
  • Gracia, R.; Marradi, M.; Cossío, U.; Benito, A.; Pérez-San Vicente, A.; Gómez-Vallejo, V.; Grande, H.-J.; Llop, J.; Loinaz, I. Synthesis and Functionalization of Dextran-based Single-chain Nanoparticles in Aqueous Media. J. Mater. Chem. B. 2017, 5, 1143–1147. DOI: 10.1039/C6TB02773C.
  • Le Corre, D.; Angellier-Coussy, H. Preparation and Application of Starch Nanoparticles for Nanocomposites: A Review. React. Funct. Polym. 2014, 85, 97–120. DOI: 10.1016/j.reactfunctpolym.2014.09.020.
  • Kaur, J.; Kaur, G.; Sharma, S.; Jeet, K. Cereal Starch Nanoparticles—a Prospective Food Additive: A Review. Crit. Rev. Food Sci. Nutr. 2017, 8398, 1–11.
  • Elzoghby, A. O.; Samy, W. M.; Elgindy, N. A. Albumin-based Nanoparticles as Potential Controlled Release Drug Delivery Systems. J. Control Release. 2012, 157, 168–182. Doi:10.1016/j.jconrel.2011.07.031.
  • Tiwari, A. P.; Joshi, M. K.; Maharjan, B.; Lee, J.; Park, C. H.; Kim, C. S. Formation of Lipophilic Drug-loaded Human Serum Albumin Nanofibers with the Aid of Glutathione. Chem. Eng. 2017, 313, 753–758.
  • Sahoo, N.; Sahoo, R. K.; Biswas, N.; Guha, A.; Kuotsu, K. Recent Advancement of Gelatin Nanoparticles in Drug and Vaccine Delivery. Int. J. Biol. Macromol. 2015, 81, 317–331. DOI: 10.1016/j.ijbiomac.2015.08.006.
  • Garcia, X.; Seyve, L.; Tellier, Z.; Chevreux, G.; Bihoreau, N.; Polack, B.; Caton, F. Aggregates Dramatically Alter Fibrin Ultrastructure. bioRxiv. 2018, 432138. DOI: 10.1101/432138.
  • Kariduraganavar, M. Y.; Heggannavar, G. B.; Amado, S.; Mitchell, G. R. Protein Nanocarriers for Targeted Drug Delivery for Cancer Therapy. In Nanocarriers for Drug Delivery; Mohapatra, S.S., Ranjan, S., Dasgupta, N., Mishra, R.K., Thomas, S., Eds.; Elsevier Publishing Inc: New York, 2019; pp 173–204.
  • Elzoghby, A. O.; Laqany, S.; Sabra, S.; Helmy, M.; El-Demellawy, M.; Elgindy, M. Novel Tumor-targeted Zein-based Nanocarriers for Co-delivery of Anti-cancer Drugs in Breast Cancer Therapy. World Drug Delivery Summit: Journal of Pharmaceutics Drug Delivery Research. 2015, 3(3), 96, August. 17-19, 2015, Houston, USA.
  • Zhao, H.; Lin, Z. Y.; Yildirimer, L.; Dhinakar, A.; Zhao, X.; Wu, J. Polymer-based Nanoparticles for Protein Delivery: Design, Strategies and Applications. J. Mater. Chem. B. 2016, 4, 4060–4071. DOI: 10.1039/C6TB00308G.
  • Pandita, D.; Kumar, S.; Lather, V. Hybrid Poly (Lactic-co-glycolic Acid) Nanoparticles: Design and Delivery Prospective. Drug Discov. Today. 2015, 20, 95–104. DOI: 10.1016/j.drudis.2014.09.018.
  • Jokerst, J. V.; Lobovkina, T.; Zare, R. N.; Gambhir, S. S. Nanoparticle PEGylation for Imaging and Therapy. Nanomedicine. 2011, 6, 715–728. DOI: 10.2217/nnm.11.19.
  • Feldman, D.;. Polyamide Nanocomposites. J. Macromol. Sci. A. 2017, 54, 255–262. DOI: 10.1080/10601325.2017.1282700.
  • Gualdesi, M. S.; Igarzabal, C. I. A.; Vara, J.; Ortiz, C. S. Synthesis and Physicochemical Properties of Polyacrylamide Nanoparticles as Photosensitizer Carriers. Int. J. Pharm. 2016, 512(1), 213–218. DOI: 10.1016/j.ijpharm.2016.08.051.
  • Thornton, P. K.;. Livestock Production: Recent Trends, Future Prospects. ‎Philos. Trans. Royal Soc. B. 2010, 365, 2853–2867. DOI: 10.1098/rstb.2010.0134.
  • Hosseini, S. A.; Meimandipour, A. Feeding Broilers with Thyme Essential Oil Loaded in Chitosan Nanoparticles: An Efficient Strategy for Successful Delivery. Brit. Poultry Sci. 2018, 59, 669–678. DOI: 10.1080/00071668.2018.1521511.
  • Wang, C.; Wang, M. Q.; Ye, S. S.; Tao, W. J.; Du, Y. J. Effects of Copper-loaded Chitosan Nanoparticles on Growth and Immunity in Broilers. Poult. Sci. 2011, 90, 2223–2228. DOI: 10.3382/ps.2011-01511.
  • Wang, M. Q.; Du, Y. J.; Wang, C.; Tao, W. J.; He, Y. D.; Li, H. Effects of Copper-loaded Chitosan Nanoparticles on Intestinal Microflora and Morphology in Weaned Piglets. Biol. Trace Elem. Res. 2012, 149, 184–189. DOI: 10.1007/s12011-012-9410-0.
  • Wang, M. Q.; Wang, C.; Du, Y. J.; Li, H.; Tao, W. J.; Ye, S. S.; He, Y. D.; Chen, S. Y. Effects of Chromium-loaded Chitosan Nanoparticles on Growth, Carcass Characteristics, Pork Quality, and Lipid Metabolism in Finishing Pigs. Livest. Sci. 2014, 161, 123–129. DOI: 10.1016/j.livsci.2013.12.029.
  • Wang, M. Q.; Wang, C.; Li, H.; Du, Y. J.; Tao, W. J.; Ye, S. S.; He, Y. D. Effects of Chromium-loaded Chitosan Nanoparticles on Growth, Blood Metabolites, Immune Traits and Tissue Chromium in Finishing Pigs. Biol. Trace Elem. Res. 2012, 149, 197–203. DOI: 10.1007/s12011-012-9428-3.
  • Anand, P.; Kunnumakkara, A. B.; Newman, R. A.; Aggarwal, B. B. Bioavailability of Curcumin: Problems and Promises. Mol. Pharm. 2007, 4, 807–818. DOI: 10.1021/mp700113r.
  • Tsai, Y. M.; Jan, W. C.; Chien, C. F.; Lee, W. C.; Lin, L. C.; Tsai, T. H. Optimised Nano-formulation on the Bioavailability of Hydrophobic Polyphenol, Curcumin, in Freely-moving Rats. Food Chem. 2011, 127, 918–925. DOI: 10.1016/j.foodchem.2011.01.059.
  • Xie, X.; Tao, Q.; Zou, Y.; Zhang, F.; Guo, M.; Wang, Y.; Yu, S.; Zhou, Q.; Yu, S. PLGA Nanoparticles Improve the Oral Bioavailability of Curcumin in Rats: Characterizations and Mechanisms. J. Agr. Food Chem. 2011, 59, 9280–9289. DOI: 10.1021/jf202135j.
  • Rahmani, M.; Golian, A.; Kermanshahi, H.; Bassami, M. R. Effects of Curcumin and Nanocurcumin on Growth Performance, Blood Gas Indices and Ascites Mortalities of Broiler Chickens Reared under Normal and Cold Stress Conditions, Ital. J. Anim. Sci. 2017, 16, 438–446.
  • Song, Z.; Feng, R.; Sun, M.; Guo, C.; Gao, Y.; Li, L.; Curcumin-loaded, Z. G. PLGA-PEG-PLGA Triblock Copolymeric Micelles: Preparation, Pharmacokinetics and Distribution in Vivo. J. Colloid Interface Sci. 2011, 354, 116–123. DOI: 10.1016/j.jcis.2010.10.024.
  • Wang, Y.; Li., J. Effects of Chitosan Nanoparticles on Survival, Growth and Meat Quality of Tilapia Oreochromis Nilotica. Nanotoxicol. 2011, 2018(5), 425–431.
  • Saez, M. I.; Vizcaíno, A. J.; Alarcón, F. J.; Martínez, T. F. Feed Pellets Containing Chitosan Nanoparticles as Plasmid DNA Oral Delivery System for Fish: In Vivo Assessment in Gilthead Sea Bream (Sparus Aurata) Juveniles. Fish Shellfish Immunol. 2018, 80, 458–466. DOI: 10.1016/j.fsi.2018.05.055.
  • Wisdom, K. S.; Bhat, I. A.; Kumar, P.; Pathan, M. K.; Chanu, T. I.; Walke, P.; Sharma, R. Fabrication of Chitosan Nanoparticles Loaded with Aromatase Inhibitors for the Advancement of Gonadal Development in Clarias Magur (Hamilton, 1822). Aquac. 2018, 2018(497), 125–133. DOI: 10.1016/j.aquaculture.2018.07.049.
  • Scheerlinck, J. P. Y.; Gloster, S.; Gamvrellis, A.; Mottram, P. L.; Plebanski, M. Systemic Immune Responses in Sheep, Induced by a Novel Nano-bead Adjuvant. Vaccine. 2006, 24, 1124–1131. DOI: 10.1016/j.vaccine.2005.09.009.
  • Campos, V. F.; de Leon, P. M. M.; Komninou, E. R.; Dellagostin, O. A.; Deschamps, J. C.; Seixas, F. K.; Collares, T. NanoSMGT: Transgene Transmission into Bovine Embryos Using Halloysite Clay Nanotubes or Nanopolymer to Improve Transfection Efficiency. Theriogenology. 2011, 2011(76), 1552–1560. DOI: 10.1016/j.theriogenology.2011.06.027.
  • Kim, W.; Lee, J.; Singh, B.; Maharjan, S.; Hong, L.; Lee, S.-M.; Cui, L.-H.; Lee, K.-J.; Kim, G.; Yun, C.-H.;; et al. A New Way of Producing Pediocin in Pediococcus Acidilactici through Intracellular Stimulation by Internalized Inulin Nanoparticles. Sci. Rep. 2018, 8, 5878.
  • Fenaroli, F.; Westmoreland, D.; Benjaminsen, J.; Kolstad, T.; Skjeldal, F. M.; Meijer, A. H.; Hildahl, J. Nanoparticles as Drug Delivery System against Tuberculosis in Zebrafish Embryos: Direct Visualization and Treatment. ACS Nano. 2014, 8, 7014–7026. DOI: 10.1021/nn5019126.
  • Annamalai, T.; Pina-Mimbela, R.; Kumar, A.; Binjawadagi, B.; Liu, Z.; Renukaradhya, G. J.; Rajashekara, G. Evaluation of Nanoparticle-encapsulated Outer Membrane Proteins for the Control of Campylobacter Jejuni Colonization in Chickens. Poult. Sci. 2013, 92(8), 2201–2211. DOI: 10.3382/ps.2012-03004.
  • Taha-Abdelaziz, K.; Yitbarek, A.; Alkie, T. N.; Hodgins, D. C.; Read, L. R.; Weese, J. S.; Sharif, S. PLGA-encapsulated CpG ODN and Campylobacter Jejuni Lysate Modulate Cecal Microbiota Composition in Broiler Chickens Experimentally Challenged With. C. Jejuni. Sci. Rep. 2018, 8, 12076. DOI: 10.1038/s41598-018-30510-w.
  • Kaikabo, A. A.; AbdulKarim, S. M.; Abas, F. Evaluation of the Efficacy of Chitosan Nanoparticles Loaded ΦKAZ14 Bacteriophage in the Biological Control of Colibacillosis in Chickens. Poult. Sci. 2016, 96(2), 295–302. DOI: 10.3382/ps/pew255.
  • Udo, I. U.; Etukudo, U.; Anwana, U. I. U. Effects of Chitosan and Chitosan Nanoparticles on Water Quality, Growth Performance, Survival Rate and Meat Quality of the African Catfish, Clarias Gariepinus. Nano. 2018, 1, 12–25. DOI: 10.31058/j.nano.2018.11002.
  • Zhao, K.; Li, S.; Li, W.; Yu, L.; Duan, X.; Han, J.; Jin, Z.; Jin, Z. Quaternized Chitosan Nanoparticles Loaded with the Combined Attenuated Live Vaccine against Newcastle Disease and Infectious Bronchitis Elicit Immune Response in Chicken after Intranasal Administration. Drug. Deliv. 2017, 24, 1574–1586. DOI: 10.1080/10717544.2017.1388450.
  • Alkie, T. N.; Taha-Abdelaziz, K.; Barjesteh, N.; Bavananthasivam, J.; Hodgins, D. C.; Sharif, S. Characterization of Innate Responses Induced by PLGA Encapsulated-and Soluble TLR Ligands in Vitro and in Vivo in Chickens. PloS One. 2017, 12, e0169154. DOI: 10.1371/journal.pone.0169154.
  • Alkie, T. N.; Yitbarek, A.; Taha-Abdelaziz, K.; Astill, J.; Sharif, S. Characterization of Immunogenicity of Avian Influenza Antigens Encapsulated in PLGA Nanoparticles following Mucosal and Subcutaneous Delivery in Chickens. PloS One. 2018, 13, e0206324. DOI: 10.1371/journal.pone.0206324.
  • Bavananthasivam, J.; Alkie, T. N.; Matsuyama-Kato, A.; Hodgins, D. C.; Sharif, S. Characterization of Innate Responses Induced by in Ovo Administration of Encapsulated and Free Forms of Ligands of Toll-like Receptor 4 and 21 in Chicken Embryos. Res. Vet. Sci. 2017, 125, 405–415. DOI: 10.1016/j.rvsc.2017.10.002.
  • Ferosekhan, S.; Gupta, S.; Singh, A.; Rather, M.; Kumari, R.; Kothari, C. D.; Pal, A.; Jadhao, S. RNA-loaded Chitosan Nanoparticles for Enhanced Growth, Immunostimulation and Disease Resistance in Fish. Curr. Nanosci. 2014, 10, 453–464. DOI: 10.2174/1573413710666140115220300.
  • Udayangani, R. M. C.; Dananjaya, S. H. S.; Fronte, B.; Kim, C. H.; Lee, J.; De Zoysa, M. Feeding of Nano Scale Oats β-glucan Enhances the Host Resistance against Edwardsiella Tarda and Protective Immune Modulation in Zebrafish Larvae. Fish Shellfish Immunol. 2017, 60, 72–77. DOI: 10.1016/j.fsi.2016.11.035.
  • Gomathi, T.; Sudha, P. N.; Florence, J. A. K.; Venkatesan, J.; Anil, S. Fabrication of Letrozole Formulation Using Chitosan Nanoparticles through Ionic Gelation Method. Int. J. Biol. Macromol., 2017, 104, 1820–1832.
  • Walker, W. H.;. Testosterone Signaling and the Regulation of Spermatogenesis. Spermatogenesis. 2011, 1, 116–120. DOI: 10.4161/spmg.1.2.16956.
  • Gazola, R.; Borella, M. I. Plasma Testosterone and 11-ketotestosterone Levels of Male Pacu Piaractus Mesopotamicus (Cypriniformes, Characidae). Braz. J Med. Biol. Res. 1997, 30, 1485–1487.
  • Barkalina, N.; Charalambous, C.; Jones, C.; Coward, K. Nanotechnology in Reproductive Medicine: Emerging Applications of Nanomaterials. Nanomed. Nanotechnol. 2014, 10, e921–e938. DOI: 10.1016/j.nano.2014.01.001.
  • Kim, Y. S.; Park, J. S.; Park, M.; Ko, M. Y.; Yi, S. W.; Yoon, J. A.; Yang, S.; Shim, S. H.; Park, K.-H.; Song, H. PLGA Nanoparticles with Multiple Modes are a Biologically Safe Nanocarrier for Mammalian Development and Their Offspring. Biomaterials. 2018, 183, 43–53. DOI: 10.1016/j.biomaterials.2018.08.042.
  • Hering, I.; Eilebrecht, E.; Parnham, M. J.; Günday-Türeli, N.; Türeli, A. E.; Weiler, M.; Wacker, M. G. Evaluation of Potential Environmental Toxicity of Polymeric Nanomaterials and Surfactants. Environ. Toxicol. Pharmacol. 2020, 76, 103353. DOI: 10.1016/j.etap.2020.103353.
  • Zhang, X.; Xu, G.; Gadora, K.; Cheng, H.; Peng, J.; Ma, Y.; Guo, Y.; Chi, C.; Zhou, J.; Ding, Y. Dual-sensitive Chitosan Derivative Micelles for Site-specific Drug Release in the Treatment of Chicken Coccidiosis. RSC Adv. 2018, 8(26), 14515–14526. DOI: 10.1039/C8RA02144A.
  • Blake, D. P.; Tomley, F. M. Securing Poultry Production from the Ever-present Eimeria Challenge. Trends Parasitol. 2014, 30, 12–19. DOI: 10.1016/j.pt.2013.10.003.
  • Guncum, E.; Işıklan, N.; Anlaş, C.; Ünal, N.; Bulut, E.; Bakırel, T. Development and Characterization of Polymeric-based Nanoparticles for Sustained Release of Amoxicillin–an Antimicrobial Drug. Artif. Cells Nanomed. Biotechnol. 2018, 2018(46), 964–973. DOI: 10.1080/21691401.2018.1476371.
  • Vibe, C. B.; Fenaroli, F.; Pires, D.; Wilson, S. R.; Bogoeva, V.; Kalluru, R.; Speth, M.; Anes, E.; Griffiths, G.; Hildahl, J. Thioridazine in PLGA Nanoparticles Reduces Toxicity and Improves Rifampicin Therapy against Mycobacterial Infection in Zebrafish. Nanotoxicology. 2016, 10, 680–688. DOI: 10.3109/17435390.2015.1107146.
  • Lu, B.; Lv, X.; Le, Y. Chitosan-modified PLGA Nanoparticles for Control-released Drug Delivery. Polymers. 2019, 11, 304. DOI: 10.3390/polym11020304.
  • Kuzma, J.;. Nanotechnology in Animal production—Upstream Assessment of Applications. Livest. Sci. 2010, 2010(130), 14–24. DOI: 10.1016/j.livsci.2010.02.006.
  • Dananjaya, S. H. S.; Godahewa, G. I.; Jayasooriya, R. G. P. T.; Lee, J.; De Zoysa, M. Antimicrobial Effects of Chitosan Silver Nano Composites (Cagncs) on Fish Pathogenic Aliivibrio (Vibrio) Salmonicida. Aquaculture. 2016, 450, 422–430. DOI: 10.1016/j.aquaculture.2015.08.023.
  • Florindo, H. F.; Pandit, S.; Lacerda, L.; Goncalves, L. M.; Alpar, H. O.; Almeida, A. J. The Enhancement of the Immune Response against S. Equi Antigens through the Intranasal Administration of Poly-epsilon-caprolactone-based Nanoparticles. Biomater. 2009, 30, 879–891. DOI: 10.1016/j.biomaterials.2008.10.035.
  • Manuja, A.; Kumar, B.; Singh, R. K. Nanotechnology Developments: Opportunities for Animal Health and Production. Nanotechnol. Dev. 2012, 2, e4. DOI: 10.4081/nd.2012.e4.
  • Djeri, N.; Williams, S. Celery Juice Powder Used as Nitrite Substitute in Sliced Vacuum-packaged Turkey Bologna Stored at 4°C for 10 Weeks under Retail Display Light. J. Food Qual. 2014, 37, 361–370. DOI: 10.1111/jfq.12102.
  • Zimet, P.; Mombrú, Á. W.; Faccio, R.; Brugnini, G.; Miraballes, I.; Rufo, C.; Pardo, H. Optimization and Characterization of Nisin-loaded Alginate-chitosan Nanoparticles with Antimicrobial Activity in Lean Beef. LWT Food Sci Tech. 2018, 91, 107–116. DOI: 10.1016/j.lwt.2018.01.015.
  • Zohri, M.; Shafiee Alavidjeh, M.; Mirdamadi, S. S.; Behmadi, H.; Hossaini Nasr, S. M.; Eshghi Gonbaki, S.; Shafiee Ardestani, M.; Jabbari Arabzadeh, A. Nisin-Loaded Chitosan/Alginate Nanoparticles: A Hopeful Hybrid Biopreservative. J. Food Saf. 2013, 33, 40–49. DOI: 10.1111/jfs.12021.
  • Gomes, C.; Moreira, R. G.; Castell‐Perez, E. Poly (Dl‐lactide‐co‐glycolide) (PLGA) Nanoparticles with Entrapped Trans‐cinnamaldehyde and Eugenol for Antimicrobial Delivery Applications. J. Food Sci. 2011, 76, N16–N24. DOI: 10.1111/j.1750-3841.2010.01985.x.
  • Hill, L. E.; Taylor, T. M.; Gomes, C. Antimicrobial Efficacy of Poly (Dl-lactide-co-glycolide) (PLGA) Nanoparticles with Entrapped Cinnamon Bark Extract against Listeria Monocytogenes and Salmonella Typhimurium. J. Food Sci. 2013, 2013(78), 626–632. DOI: 10.1111/1750-3841.12069.
  • Kim, S. W.; Garcia, C. V.; Lee, B. N.; Kwon, H. J.; Kim, J. T. Development of Turmeric Extract Nanoemulsions and Their Incorporation into Canned Ham. Korean J. Food Sci. An. 2017, 37, 889–897.
  • Ghaderi-Ghahfarokhi, M.; Barzegar, M.; Sahari, M. A.; Azizi, M. H. Nanoencapsulation Approach to Improve Antimicrobial and Antioxidant Activity of Thyme Essential Oil in Beef Burgers during Refrigerated Storage. Food Bioprocess. Tech. 2016, 9, 1187–1201.
  • Ghaderi-Ghahfarokhi, M.; Barzegar, M.; Sahari, M. A.; Gavlighi, H. A.; Gardini, F. Chitosan-cinnamon Essential Oil Nano-formulation: Application as a Novel Additive for Controlled Release and Shelf Life Extension of Beef Patties. Int. J. Biol. Macromol. 2017, 102, 19–28. DOI: 10.1016/j.ijbiomac.2017.04.002.
  • Cui, H.; Bai, M.; Li, C.; Liu, R.; Lin, L. Fabrication of Chitosan Nanofibers Containing Tea Tree Oil Liposomes against Salmonella Spp. In Chicken. LWT Food Sci. Technol. 2018, 96, 671–678. DOI: 10.1016/j.lwt.2018.06.026.
  • Lin, L.; Gu, Y.; Cui, H. Novel Electrospun gelatin-glycerin-ε-Poly-lysine Nanofibers for Controlling Listeria Monocytogenes on Beef. Food Packag. Shelf. 2018, 18, 21–30. DOI: 10.1016/j.fpsl.2018.08.004.
  • Jiang, W. J.; Tsai, M. L.; Liu, T. Chitin Nanofiber as a Promising Candidate for Improved Salty Taste. LWT Food Sci. Technol. 2017, 75, 65–71. DOI: 10.1016/j.lwt.2016.08.050.
  • Hsueh, C. Y.; Tsai, M. L.; Liu, T. Enhancing Saltiness Perception Using Chitin Nanofibers When Curing Tilapia Fillets. LWT Food Sci. Technol. 2017, 86, 93–98. DOI: 10.1016/j.lwt.2017.07.057.
  • Chuacharoen, T.; Sabliov, C. M. The Potential of Zein Nanoparticles to Protect Entrapped Beta-carotene in the Presence of Milk under Simulated Gastrointestinal (GI) Conditions. LWT Food Sci. Technol. 2016, 72, 302–309. DOI: 10.1016/j.lwt.2016.05.006.
  • Ramachandraiah, K.; Choi, M. J.; Hong, G. P. Micro-and Nano-scaled Materials for Strategy-based Applications in Innovative Livestock Products: A Review. Trends Food Sci. Tech. 2018, 2018(71), 25–35. DOI: 10.1016/j.tifs.2017.10.017.
  • Abeyrathne, N. S.;. Use of Lysozyme from Chicken Egg White as a Nitrite Replacer in an Italian-type Chicken Sausage. Funct. Food Health Dis. 2015, 5, 320–330. DOI: 10.31989/ffhd.v5i9.217.
  • Yang, H.; Qu, L.; Wimbrow, A.; Jiang, X.; Sun, Y. P. Enhancing Antimicrobial Activity of Lysozyme against Listeria Monocytogenes Using Immunonanoparticles. J. Food Prot. 2007, 2007(70), 1844–1849. DOI: 10.4315/0362-028X-70.8.1844.
  • Devrim, B.; Kara, A.; Vural, I.; Bozkir, A. Lysozyme-loaded Lipid-polymer Hybrid Nanoparticles: Preparation, Characterization and Colloidal Stability Evaluation. Drug Dev. Ind. Pharm. 2016, 42, 1865–1876. DOI: 10.1080/03639045.2016.1180392.
  • Desmond, E.;. Reducing Salt: A Challenge for the Meat Industry. Meat Sci. 2006, 74, 188–196. DOI: 10.1016/j.meatsci.2006.04.014.
  • Yi, C.; Tsai, M.-L.; Liu, T. Spray-dried chitosan/acid/NaCl Microparticles Enhance Saltiness Perception. Carbohydr. Polym. 2017, 172, 246–254. DOI: 10.1016/j.carbpol.2017.05.066.
  • Brewer, M. S.;. Reducing the Fat Content in Ground Beef without Sacrificing Quality: A Review. Meat Sci. 2012, 91, 385–395. DOI: 10.1016/j.meatsci.2012.02.024.
  • Kim, H. Y.; Park, S. S.; Lim, S. T. Preparation, Characterization and Utilization of Starch Nanoparticles. Colloid. Surf. B. 2015, 126(2015), 607–620. DOI: 10.1016/j.colsurfb.2014.11.011.
  • Swanson, B. G.;. Tannins and Polyphenols. In Encyclopedia of Food Sciences and Nutrition, Second ed.; Caballero, B., Ed.; Academic Press: Oxford, 2003; pp 5729–5733.
  • Wang, Y.; Wang, W.; Jia, H.; Gao, G.; Wang, X.; Zhang, X.; Wang, Y. Using Cellulose Nanofibers and Its Palm Oil Pickering Emulsion as Fat Substitutes in Emulsified Sausage. J. Food Sci., 2018, 83, 1740–1747.
  • Javidi, F.; Razavi, S. M.; Mohammad Amini, A. Response Surface Optimization of Reduced Fat O/w Emulsions Formulated with Cornstarch Nanocrystal as a Novel Fat Replacer. Starch ‐ Stärke. 2019, 71, 1800311. DOI: 10.1002/star.201800311.
  • Zhang, X.; Wang, W.; Wang, Y.; Wang, Y.; Wang, X.; Gao, G.; Liu, A. Effects of Nanofiber Cellulose on Functional Properties of Heat-induced Chicken Salt-soluble Meat Protein Gel Enhanced with Microbial Transglutaminase. Food Hydrocoll. 2018, 84, 1–8. DOI: 10.1016/j.foodhyd.2018.05.046.
  • Gomez-Estaca, J.; Balaguer, M. P.; Gavara, R.; Hernandez-Munoz, P. Formation of Zein Nanoparticles by Electrohydrodynamic Atomization: Effect of the Main Processing Variables and Suitability for Encapsulating the Food Coloring and Active Ingredient Curcumin. Food Hydrocoll. 2012, 28, 82–91. DOI: 10.1016/j.foodhyd.2011.11.013.
  • Kim, M. Y.; Ha, H.-K.; Ayu, I. L.; Han, K.-S.; Lee, W.-J.; Lee, M.-R. Manufacture and Physicochemical Properties of Chitosan Oligosaccharide/A2 β-Casein Nano-Delivery System Entrapped with Resveratrol. Food Sci. Anim. Resour. 2019, 39, 831–843. DOI: 10.5851/kosfa.2019.e74.
  • Ha, H. K.; Lee, M. R.; Lee, W. J. Bioaccessibility of β-Lactoglobulin Nanoemulsions Containing Coenzyme Q10: Impact of Droplet Size on the Bioaccessibility of Coenzyme Q10. Korean F Food Sci An. 2018, 38, 1294–1304. DOI: 10.5851/kosfa.2018.e65.
  • Hong, L.; Kim, W. S.; Lee, S. M.; Kang, S. K.; Choi, Y. J.; Cho, C. S. Pullulan Nanoparticles as Prebiotics Enhanced Anti-bacterial Properties of Lactobacillus Plantarum through an Induction of Mild Stress in Probiotics. Front Microbiol. 2019, (2019(10), 142. DOI: 10.3389/fmicb.2019.00142.
  • Fares, M. M.; Salem, M. T. S. Dissolution Enhancement of Curcumin via Curcumin–prebiotic Inulin Nanoparticles. Drug Dev. Ind. Pharm. 2015, 41(11), 1785–1792. DOI: 10.3109/03639045.2015.1004184.
  • Afjeh, M. E. A.; Pourahmad, R.; Akbari-adergani, B.; Azin, M. Use of Glucose Oxidase Immobilized on Magnetic Chitosan Nanoparticles in Probiotic Drinking Yogurt. Food Sci. An. Res. 2019, 2019(39), 73–83. DOI: 10.5851/kosfa.2019.e5.
  • Moghadam, F. V.; Pourahmad, R.; Mortazavi, A.; Davoodi, D.; Azizinezhad, R. Use of Fish Oil Nanoencapsulated with Gum Arabic Carrier in Low Fat Probiotic Fermented Milk. Food Sci. An. Res. 2019, 39, 309–323. DOI: 10.5851/kosfa.2019.e25.
  • Kim, W. S.; Lee, J. Y.; Singh, B.; Maharjan, S.; Hong, L.; Lee, S. M.; Kang, S. K.; Lee, K.-J.; Kim, G.; Yun, C.-H. A New Way of Producing Pediocin in Pediococcus Acidilactici through Intracellular Stimulation by Internalized Inulin Nanoparticles. Sci. Rep. 2018, 8, 5878.
  • Dave, D.; Ghaly, A. E. Meat Spoilage Mechanisms and Preservation Techniques: A Critical Review. Am. J. Agric. Biol. Sci. 2011, 6, 486–510. DOI: 10.3844/ajabssp.2011.486.510.
  • Gezgin, Z.; Lee, T. C.; Huang, Q. Engineering Functional Nanothin Multilayers on Food Packaging: Ice-nucleating Polyethylene Films. J. Agr. Food Chem. 2013, 61, 5130–5138. DOI: 10.1021/jf400541q.
  • Lin, L.; Mao, X.; Sun, Y.; Rajivgandhi, G.; Cui, H. Antibacterial Properties of Nanofibers Containing Chrysanthemum Essential Oil and Their Application as Beef Packaging. Int. J. Food Microbiol. 2019, 292, 21–30. DOI: 10.1016/j.ijfoodmicro.2018.12.007.
  • Amjadi, S.; Hamishehkar, H.; Ghorbani, M. A Novel Smart PEGylated Gelatin Nanoparticle for Co-delivery of Doxorubicin and Betanin: A Strategy for Enhancing the Therapeutic Efficacy of Chemotherapy. Mater. Sci. Eng. C. 2019, 97, 833–841. DOI: 10.1016/j.msec.2018.12.104.
  • Gezgin, Z.; Lee, T. C.; Huang, Q. Nanoscale Properties of Biopolymer Multilayers. Food Hydrocoll. 2017, 63, 209–218. DOI: 10.1016/j.foodhyd.2016.08.040.
  • Nugraheni, P. S.; Soeriyadi, A. H.; Sediawan, W. B.; Budhijanto, W. Influence of Salt Addition and Freezing-thawing on Particle Size and Zeta Potential of Nano-chitosan. IOP Conference Series: Environ. Earth Sci. 2019, 278, 12052. DOI: 10.1088/1755-1315/278/1/012052.
  • Arkoun, M.; Daigle, F.; Holley, R. A.; Marie, C. H.; Ajji, A. Chitosan‐based Nanofibers as Bioactive Meat Packaging Materials. Packag. Technol Sci. 2018, 31, 185–195. DOI: 10.1002/pts.2366.
  • Ceylan, Z.; Sengor, G. F. U.; Basahel, A.; Yilmaz, M. T. Determination of Quality Parameters of Gilthead Sea Bream (Sparus Aurata) Fillets Coated with Electrospun Nanofibers. J. Food Saf. 2018, 38, e12518. DOI: 10.1111/jfs.12518.
  • Ceylan, Z.; Yaman, M.; Sağdıç, O.; Karabulut, E.; Yilmaz, M. T. Effect of Electrospun Thymol-loaded Nanofiber Coating on Vitamin B Profile of Gilthead Sea Bream Fillets (Sparus Aurata). LWT Food Sci.Technol. 2018, 98, 162–169. DOI: 10.1016/j.lwt.2018.08.027.
  • Ceylan, Z.; Meral, R.; Karakas, C. Y.; Dertli, E.; Yilmaz, M. T. A Novel Strategy for Probiotic Bacteria: Ensuring Microbial Stability of Fish Fillets Using Characterized Probiotic Bacteria‐loaded Nanofibers. Innov. Food Sci. Emerg. 2018, 48, 212–218. DOI: 10.1016/j.ifset.2018.07.002.
  • Souza, V. G. L.; Pires, J. R. A.; Rodrigues, C.;Rodrigues, P. F.; Lopes, A.; Fernando, A. L. Physical and Morphological Characterization of Chitosan/Montmorillonite Films Incorporated with Ginger Essential Oil. Coatings, 2019, 9, 700. https://www.mdpi.com/2079-6412/9/11/700
  • Yu, Z.; Alsammarraie, F. K.; Nayigiziki, F. X.; Wang, W.; Vardhanabhuti, B.; Mustapha, A.; Lin, M. Effect and Mechanism of Cellulose Nanofibrils on the Active Functions of Biopolymer-based Nanocomposite Films. Food Res. Int. 2017, 99, 166–172. DOI: 10.1016/j.foodres.2017.05.009.
  • Chouljenko, A.; Chotiko, A.; Bonilla, F.; Moncada, M.; Reyes, V.; Sathivel, S. Effects of Vacuum Tumbling with Chitosan Nanoparticles on the Quality Characteristics of Cryogenically Frozen Shrimp. LWT Food Sci. Technol. 2017, 75, 114–123. DOI: 10.1016/j.lwt.2016.08.029.
  • Ceylan, Z.;. Use of Characterized Chitosan Nanoparticles Integrated in Poly (Vinyl Alcohol) Nanofibers as an Alternative Nanoscale Material for Fish Balls. J. Food Saf. 2018, 38(6), e12551. DOI: 10.1111/jfs.12551.
  • Jamróz, E.; Kulawik, P.; Kopel, P. The Effect of Nanofillers on the Functional Properties of Biopolymer-based Films: A Review. Polymers. 2019, 11, 675. DOI: 10.3390/polym11040675.
  • Han, C.; Zhao, A.; Varughese, E.; Sahle-Demessie, E. Evaluating Weathering of Food Packaging Polyethylene-nano-clay Composites: Release of Nanoparticles and Their Impacts. NanoImpact. 2018, 9, 61–71. DOI: 10.1016/j.impact.2017.10.005.
  • Vasile, C.;. Polymeric Nanocomposites and Nanocoatings for Food Packaging: A Review. Materials. 2018, 11, 1834. DOI: 10.3390/ma11101834.
  • Jeevahan, J.; Chandrasekaran, M. Nanoedible Films for Food Packaging: A Review. J. Mater. Sci. 2019, 54, 12290–12318.
  • Echeverría, I.; López-Caballero, M. E.; Gómez-Guillén, M. C.; Mauri, A. N.; Montero, M. P. Active Nanocomposite Films Based on Soy Proteins-montmorillonite- Clove Essential Oil for the Preservation of Refrigerated Bluefin Tuna (Thunnus Thynnus) Fillets. Int. J. Food Microbiol. 2018, 266, 142–149. DOI: 10.1016/j.ijfoodmicro.2017.10.003.
  • Rahman, P. M.; Mujeeb, V. A.; Muraleedharan, K. Flexible Chitosan-nano ZnO Antimicrobial Pouches as a New Material for Extending the Shelf Life of Raw Meat. Int. J. Biol. Macromol. 2017, 97, 382–391. DOI: 10.1016/j.ijbiomac.2017.01.052.
  • Saini, S.; Sillard, C.; Belgacem, M. N.; Bras, J. Nisin Anchored Cellulose Nanofibers for Long Term Antimicrobial Active Food Packaging. RSC Adv. 2016, 6, 12437–12445. DOI: 10.1039/C5RA22748H.
  • Arkoun, M.; Daigle, F.; Heuzey, M. C.; Ajji, A. Antibacterial Electrospun Chitosan-based Nanofibers: A Bacterial Membrane Perforator. Food Sci. Nutr. 2017, 5, 865–874. DOI: 10.1002/fsn3.468.
  • Sani, M. A.; Ehsani, A.; Hashemi, M. Whey Protein Isolate/cellulose nanofibre/TiO2 Nanoparticle/rosemary Essential Oil Nanocomposite Film: Its Effect on Microbial and Sensory Quality of Lamb Meat and Growth of Common Foodborne Pathogenic Bacteria during Refrigeration. Int. J. Food Microbiol. 2017, 251, 8–14. DOI: 10.1016/j.ijfoodmicro.2017.03.018.
  • Dehnad, D.; Emam-Djomeh, Z.; Mirzaei, H.; Jafari, S. M.; Dadashi, S. Optimization of Physical and Mechanical Properties for Chitosan- Nanocellulose Biocomposites. Carbohydr. Polym. 2014, 105, 222–228. DOI: 10.1016/j.carbpol.2014.01.094.
  • Pavase, T. R.; Lin, H.; Kalhoro, M. T.; Kalhoro, M. T.; Kalhoro, M. T.; Kalhoro, M. T.; Kalhoro, M. T.; Sun, L.; Shah, S. B. H.; Kalhoro, M. T. Recent Advances of Conjugated Polymer (CP) Nanocomposite-based Chemical Sensors and Their Applications in Food Spoilage Detection: A Comprehensive Review. Sensor Actuat B-Chem. 2018, 273, 1113–1138. DOI: 10.1016/j.snb.2018.06.118.
  • Zhong, H.; Liu, C.; Ge, W.; Sun, R.; Huang, F.; Wang, X. Self-assembled Conjugated Polymer/chitosan-graft-oleic Acid Micelles for Fast Visible Detection of Aliphatic Biogenic Amines by “Turn-on” FRET. ACS Appl. Mater. Inter. 2017, 9, 22875–22884. DOI: 10.1021/acsami.7b06168.
  • Chun, H. N.; Kim, B.; Shin, H. S. Evaluation of a Freshness Indicator for Quality of Fish Products during Storage. Food Sci. Biotechnol. 2014, 23, 1719–1725.
  • Arshak, K.; Adley, C.; Moore, E.; Cunniffe, C.; Campion, M.; Harris, J. Characterisation of Polymer Nanocomposite Sensors for Quantification of Bacterial Cultures. Sensor Actuat B-Chem. 2007, 126, 226–231. DOI: 10.1016/j.snb.2006.12.006.
  • Ashley, J.; Shukor, Y.; D’Aurelio, R.; Trinh, L.; Rodgers, T. L.; Temblay, J.; Tothill, I. E.; Tothill, I. E. Synthesis of Molecularly Imprinted Polymer Nanoparticles for α-casein Detection Using Surface Plasmon Resonance as a Milk Allergen Sensor. ACS Sens. 2018, 3, 418–424. DOI: 10.1021/acssensors.7b00850.
  • Zhang, L.; Zhu, C.; Chen, C.; Zhu, S.; Zhou, J.; Wang, M.; Shang, P. Determination of Kanamycin Using a Molecularly Imprinted SPR Sensor. Food Chem. 2018, 266, 170–174. DOI: 10.1016/j.foodchem.2018.05.128.
  • Canfarotta, F.; Czulak, J.; Guerreiro, A.; Cruz, A. G.; Piletsky, S.; Bergdahl, G. E.; Hedström, M.; Mattiasson, B. A Novel Capacitive Sensor Based on Molecularly Imprinted Nanoparticles as Recognition Elements. Biosens. Bioelectron. 2018, 120, 108–114. DOI: 10.1016/j.bios.2018.07.070.
  • Ahmad, O. S.; Bedwell, T. S.; Esen, C.; Garcia-Cruz, A.; Piletsky, S. A. Molecularly Imprinted Polymers in Electrochemical and Optical Sensors. Trends Biotechnol. 2018, 37, 294–309. DOI: 10.1016/j.tibtech.2018.08.009.
  • Altintas, Z.;. Surface Plasmon Resonance Based Sensor for the Detection of Glycopeptide Antibiotics in Milk Using Rationally Designed nanoMIPs. Sci. Rep. 2018, 8, 11222. DOI: 10.1038/s41598-018-29585-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.