1,460
Views
11
CrossRef citations to date
0
Altmetric
Review

Fish Protein and Its Derivatives: The Novel Applications, Bioactivities, and Their Functional Significance in Food Products

, , , ORCID Icon, , , , , , & show all

References

  • Rehman, A.; Tong, Q.; Jafari, S. M.; Assadpour, E.; Shehzad, Q.; Aadil, R. M.; Iqbal, M. W.; Rashed, M. M. A.; Mushtaq, B. S.; Ashraf, W. Carotenoid-loaded Nanocarriers: A Comprehensive Review. Adv. Colloid Interface Sci. 2019, 102048.
  • French, K. M.; Somasuntharam, I.; Davis, M.; Somasuntharam, E.; Davis, M. E. Self-assembling Peptide-based Delivery of Therapeutics for Myocardial Infarction. Adv. Drug Delivery Rev. 2016, 96, 40–53. DOI: 10.1016/j.addr.2015.04.023.
  • Lynch, A. J.; Cooke, S. J.; Deines, A. M.; Bower, S. D.; Bunnell, D. B.; Cowx, I. G.; Nguyen, V. M.; Nohner, J.; Phouthavong, K.; Riley, B. The Social, Economic, and Environmental Importance of Inland Fish and Fisheries. Environ. Rev. 2016, 24(2), 115–121. DOI: 10.1139/er-2015-0064.
  • Mohanty, B. P.; Mahanty, A.; Ganguly, S.; Mitra, T.; Karunakaran, D.; Anandan, R. Nutritional Composition of Food Fishes and Their Importance in Providing Food and Nutritional Security. Food Chem. 2019, 293, 561–570. DOI: 10.1016/j.foodchem.2017.11.039.
  • Laxe, F. G.; Bermúdez, F. M.; Palmero, F. M.; Novo-Corti, I. Governance of the Fishery Industry: A New Global Context. Ocean Coast. Manag. 2018, 153, 33–45. DOI: 10.1016/j.ocecoaman.2017.12.009.
  • Nyboer, E. A.; Liang, C.; Chapman, L. J. Assessing the Vulnerability of Africa’s Freshwater Fishes to Climate Change: A Continent-wide Trait-based Analysis. Biolog. Conserv. 2019, 236, 505–520. DOI: 10.1016/j.biocon.2019.05.003.
  • Tacon, A. G.; Metian, M. Fish Matters: Importance of Aquatic Foods in Human Nutrition and Global Food Supply. Rev. Fish. Sci. 2013, 21(1), 22–38. DOI: 10.1080/10641262.2012.753405.
  • Ramos-Miras, J.; Sanchez-Muros, M.; Morote, E.; Torrijos, M.; Gil, C.; Zamani-Ahmadmahmoodi, R.; Martin, J. R. Potentially Toxic Elements in Commonly Consumed Fish Species from the Western Mediterranean Sea (Almería Bay): Bioaccumulation in Liver and Muscle Tissues in Relation to Biometric Parameters. Sci. Total Environ. 2019, 671, 280–287. DOI: 10.1016/j.scitotenv.2019.03.359.
  • Ytrestøyl, T.; Aas, T. S.; Åsgård, T. Utilisation of Feed Resources in Production of Atlantic Salmon (Salmo Salar) in Norway. Aquaculture. 2015, 448, 365–374. DOI: 10.1016/j.aquaculture.2015.06.023.
  • Belhabib, D.; Sumaila, U. R.; Pauly, D. Feeding the Poor: Contribution of West African Fisheries to Employment and Food Security. Ocean Coast. Manag. 2015, 111, 72–81. DOI: 10.1016/j.ocecoaman.2015.04.010.
  • Zamora-Sillero, J.; Gharsallaoui, A.; Prentice, C. Peptides from Fish By-product Protein Hydrolysates and Its Functional Properties: An Overview. Marine Biotech. 2018, 20(2), 118–130.
  • Lin, Y.; Cai, X.; Wu, X.; Lin, S.; Wang, S. Fabrication of Snapper Fish Scales Protein Hydrolysate-calcium Complex and the Promotion in Calcium Cellular Uptake. J. Funct. Foods. 2020, 65, 103717. DOI: 10.1016/j.jff.2019.103717.
  • Slizyte, R.; Rommi, K.; Mozuraityte, R.; Eck, P.; Five, K.; Rustad, T. Bioactivities of Fish Protein Hydrolysates from Defatted Salmon Backbones. Biotech. Reports. 2016, 11, 99–109. DOI: 10.1016/j.btre.2016.08.003.
  • Villamil, O.; Váquiro, H.; Solanilla, J. F. Fish Viscera Protein Hydrolysates: Production, Potential Applications and Functional and Bioactive Properties. Food Chem. 2017, 224, 160–171. DOI: 10.1016/j.foodchem.2016.12.057.
  • Gavva, C.; Patel, K.; Kudre, T.; Sharan, K.; Chilkunda, D. N. Glycosaminoglycans from Fresh Water Fish Processing discard-Isolation, Structural Characterization, and Osteogenic Activity. Int. J Biol. Macromol. 2020, 145, 558–567. DOI: 10.1016/j.ijbiomac.2019.12.189.
  • Hu, S.; Yu, J.; Wang, Y.; Li, Y.; Chen, H.; Shi, Y.; Ma, X. Fish Consumption Could Reduce the Risk of Oral Cancer in Europeans: A Meta-analysis. Archives Oral Biol. 2019, 107, 104494. DOI: 10.1016/j.archoralbio.2019.104494.
  • Daud, N. A.; Babji, A. S.; Yusop, S. M. Effects of Enzymatic Hydrolysis on the Antioxidative and Antihypertensive Activities from Red Tilapia Fish Protein. J. Nutr. F. Sci. 2015, 5(387).
  • De, D.; Sandeep, K.; Kumar, S.; Raja, R. A.; Mahalakshmi, P.; Sivaramakrishnan, T.; Vijayan, K. Effect of Fish Waste Hydrolysate on Growth, Survival, Health of Penaeus Vannamei and Plankton Diversity in Culture Systems. Aquaculture. 2020, 524, 735240. DOI: 10.1016/j.aquaculture.2020.735240.
  • Pilon, G.; Ruzzin, J.; Rioux, L.-E.; Lavigne, C.; White, P. J.; Frøyland, L.; Jacques, H.; Bryl, P.; Beaulieu, L.; Marette, A. Differential Effects of Various Fish Proteins in Altering Body Weight, Adiposity, Inflammatory Status, and Insulin Sensitivity in High-fat–fed Rats. Metabolism. 2011, 60(8), 1122–1130. DOI: 10.1016/j.metabol.2010.12.005.
  • Tørris, C.; Molin, M.; Cvancarova, M. S. Lean Fish Consumption Is Associated with Lower Risk of Metabolic Syndrome: A Norwegian Cross Sectional Study. BMC Public Health. 2016, 16(1), 347. DOI: 10.1186/s12889-016-3014-0.
  • Schmedes, M.; Aadland, E. K.; Sundekilde, U. K.; Jacques, H.; Lavigne, C.; Graff, I. E.; Young, J. F.; Holthe, A.; Mellgren, G.; Young, J. F. Lean‐seafood Intake Decreases Urinary Markers of Mitochondrial Lipid and Energy Metabolism in Healthy Subjects: Metabolomics Results from a Randomized Crossover Intervention Study. Mol. Nutr. Food Res. 2016, 60(7), 1661–1672. DOI: 10.1002/mnfr.201500785.
  • Cheetangdee, N. Characteristic of Sausages as Influenced by Partial Replacement of Pork Back-fat Using Pre-emulsified Soybean Oil Stabilized by Fish Proteins Isolate. Agric. Natural Res. 2017, 51(4), 310–318.
  • Phawaphuthanon, N.; Yu, D.; Ngamnikom, P.; Shin, I.-S.; Chung, D. Effect of Fish Gelatine-sodium Alginate Interactions on Foam Formation and Stability. Food Hydrocoll. 2019, 88, 119–126. DOI: 10.1016/j.foodhyd.2018.09.041.
  • Jemil, I.; Jridi, M.; Nasri, R.; Ktari, N.; Salem, R.-B. S.-B.; Mehiri, M.; Nasri, M. Functional, Antioxidant and Antibacterial Properties of Protein Hydrolysates Prepared from Fish Meat Fermented by Bacillus Subtilis A26. Process Biochem. 2014, 49(6), 963–972. DOI: 10.1016/j.procbio.2014.03.004.
  • Zhou, X.; Chen, H.; Lyu, F.; Lin, H.; Zhang, Q.; Ding, Y. Physicochemical Properties and Microstructure of Fish Myofibrillar Protein-lipid Composite Gels: Effects of Fat Type and Concentration. Food Hydrocoll. 2019, 90, 433–442. DOI: 10.1016/j.foodhyd.2018.12.032.
  • Pojić, M.; Mišan, A.; Tiwari, B. Eco-innovative Technologies for Extraction of Proteins for Human Consumption from Renewable Protein Sources of Plant Origin. Trends F. Sci. Tech. 2018, 75, 93–104. DOI: 10.1016/j.tifs.2018.03.010.
  • Hua, K.; Cobcroft, J. M.; Cole, A.; Condon, K.; Jerry, D. R.; Mangott, A.; Praeger, C.; Vucko, M. J.; Zeng, C.; Zenger, K. The Future of Aquatic Protein: Implications for Protein Sources in Aquaculture Diets. One Earth. 2019, 1(3), 316–329. DOI: 10.1016/j.oneear.2019.10.018.
  • Petrova, I.; Tolstorebrov, I.; Eikevik, T. M. Production of Fish Protein Hydrolysates Step by Step: Technological Aspects, Equipment Used, Major Energy Costs and Methods of Their Minimizing. Int. Aquatic Res. 2018, 10(3), 223–241. DOI: 10.1007/s40071-018-0207-4.
  • Chalamaiah, M.; Hemalatha, R.; Jyothirmayi, T. Fish Protein Hydrolysates: Proximate Composition, Amino Acid Composition, Antioxidant Activities and Applications: A Review. Food Chem. 2012, 135(4), 3020–3038. DOI: 10.1016/j.foodchem.2012.06.100.
  • Mohanty, B.; Mahanty, A.; Ganguly, S.; Sankar, T.; Chakraborty, K.; Rangasamy, A.; Asha, K. K. Amino Acid Compositions of 27 Food Fishes and Their Importance in Clinical Nutrition. J. Amino Acids. 2014, 269797.
  • Mohanty, B. P.; Ganguly, S.; Mahanty, A.; Sankar, T.; Anandan, R.; Chakraborty, K.; Venkateshwarlu, G. DHA and EPA Content and Fatty Acid Profile of 39 Food Fishes from India. BioMed Res. Int. 2016, 4027437.
  • Fontaine, R.; Ciani, E.; Haug, T. M.; Hodne, K.; Ager-Wick, E.; Baker, D. M.; Weltzien, F.-A. Gonadotrope Plasticity at Cellular, Population and Structural Levels: A Comparison between Fishes and Mammals. Gen. Compar. Endocrinol. 2019, 113344.
  • El-Deeb, S. I.; El-Seedy, A. S.; Gabal, A.; El-Wakeel, H. E.-D.; Ibrahim, N. Genetic Divergence and Phylogenetic Relationship among Five Sparid Species from the Coastal Waters of Egypt Based on Protein Profiling and RAPD Molecular Markers. Life Sci. J. 2014, 11, 779–789.
  • Nurilmala, M.; Ochiai, Y. Molecular Characterization of Southern Bluefin Tuna Myoglobin (Thunnus Maccoyii). Fish Physiol. Biochem. 2016, 42(5), 1407–1416. DOI: 10.1007/s10695-016-0228-0.
  • Azadian, M.; Moosavi-Nasab, M.; Abedi, E. Comparison of Functional Properties and SDS-PAGE Patterns between Fish Protein Isolate and Surimi Produced from Silver Carp. Europ. Food Res. Technol. 2012, 235(1), 83–90. DOI: 10.1007/s00217-012-1721-z.
  • Ghaly, A.; Ramakrishnan, V.; Brooks, M.; Budge, S.; Dave, D. Fish Processing Wastes as a Potential Source of Proteins. Amino Acids and Oils: A Critical Review. J. Microb. Biochem. Technol. 2013, 5(4), 107–129.
  • Pleer, D.; Wimmer, R.; Eriksen, N. T. Quantification of Amino Acids in Fermentation Media by Isocratic HPLC Analysis of Their α-hydroxy Acid Derivatives. Anal. Chem. 2011, 83(1), 175–181. DOI: 10.1021/ac1021908.
  • Mahboob, S. Isolation and Characterization of Collagen from Fish Waste Material-skin, Scales and Fins of Catla Catla and Cirrhinus Mrigala. J. Food Sci. Technol. 2015, 52(7), 4296–4305. DOI: 10.1007/s13197-014-1520-6.
  • Waheed, M.; Butt, M. S.; Shehzad, A.; Adzahan, N. M.; Shabbir, M. A.; Suleria, H. A. R.; Aadil, R. M. Eggshell Calcium: A Cheap Alternative to Expensive Supplements. Trends Food Sci. Technol. 2019, 91, 219–230. DOI: 10.1016/j.tifs.2019.07.021.
  • Nawaz, A.; Xiong, Z.; Xiong, H.; Chen, L.; Wang, P. K.; Ahmad, I.; Hu, C.; Irshad, S.; Ali, S. W. The Effects of Fish Meat and Fish Bone Addition on Nutritional Value, Texture and Microstructure of Optimised Fried Snacks. Int. J. Food Sci. Technol. 2019, 54(4), 1045–1053. DOI: 10.1111/ijfs.13974.
  • Zhou, X.; Hua, X.; Huang, L.; Xu, Y. Bio-utilization of Cheese Manufacturing Wastes (Cheese Whey Powder) for Bioethanol and Specific Product (Galactonic Acid) Production via a Two-step Bioprocess. Bioresour. Technol. 2019, 272, 70–76.
  • Poonsin, T.; Simpson, B. K.; Benjakul, S.; Visessanguan, W.; Yoshida, A.; Osatomi, K.; Klomklao, S. Anionic Trypsin from the Spleen of Albacore Tuna (Thunnus Alalunga): Purification, Biochemical Properties and Its Application for Proteolytic Degradation of Fish Muscle. Int. J Biol. Macromol. 2019, 133, 971–979. DOI: 10.1016/j.ijbiomac.2019.04.122.
  • Li, Z.; Liu, J.-Z.; Wang, Y.-J.; Liu, S.-H.; Sun, M. Comparison between Thermal Hydrolysis and Enzymatic Proteolysis Processes for the Preparation of Tilapia Skin Collagen Hydrolysates. Czech J. F. Sci. 2013, 31(1), 1–4. DOI: 10.17221/49/2012-CJFS.
  • Nasri, R.; Younes, I.; Jridi, M.; Trigui, M.; Bougatef, A.; Nedjar-Arroume, N.; Dhulster, P.; Nasri, M.; Karra-Châabouni, M. ACE Inhibitory and Antioxidative Activities of Goby (Zosterissessor Ophiocephalus) Fish Protein Hydrolysates: Effect on Meat Lipid Oxidation. Food Res. Int. 2013, 54(1), 552–561. DOI: 10.1016/j.foodres.2013.07.001.
  • Elavarasan, K.; Naveen Kumar, V.; Shamasundar, B. Antioxidant and Functional Properties of Fish Protein Hydrolysates from Fresh Water Carp (C Atla Catla) as Influenced by the Nature of Enzyme. J. Food. Process. Preserv. 2014, 38(3), 1207–1214. DOI: 10.1111/jfpp.12081.
  • Halim, N.; Yusof, H.; Sarbon, N. Functional and Bioactive Properties of Fish Protein Hydolysates and Peptides: A Comprehensive Review. Trends Food. Sci. Tech. 2016, 51, 24–33. DOI: 10.1016/j.tifs.2016.02.007.
  • Chi, C.-F.; Wang, B.; Hu, F.-Y.; Wang, Y.-M.; Zhang, B.; Deng, S.-G.; Wu, C.-W. Purification and Identification of Three Novel Antioxidant Peptides from Protein Hydrolysate of Bluefin Leatherjacket (Navodon Septentrionalis) Skin. Food Res. Int. 2015, 73, 124–129. DOI: 10.1016/j.foodres.2014.08.038.
  • Srichanun, M.; Tantikitti, C.; Kortner, T. M.; Krogdahl, Å.; Chotikachinda, R. Effects of Different Protein Hydrolysate Products and Levels on Growth, Survival Rate and Digestive Capacity in Asian Seabass (Lates Calcarifer Bloch) Larvae. Aquaculture. 2014, 428, 195–202. DOI: 10.1016/j.aquaculture.2014.03.004.
  • Jamil, N.; Halim, N.; Sarbon, N. Optimization of Enzymatic Hydrolysis Condition and Functional Properties of Eel (Monopterus Sp.) Protein Using Response Surface Methodology (RSM). Int. F. Res. J. 2016, 23(1), 1–9.
  • Intarasirisawat, R.; Benjakul, S.; Visessanguan, W.; Wu, J. Effects of Skipjack Roe Protein Hydrolysate on Properties and Oxidative Stability of Fish Emulsion Sausage. LWT Food Sci. Tech. 2014, 58(1), 280–286. DOI: 10.1016/j.lwt.2014.02.036.
  • Morales, J. L.; Nocedal, J. Enriched Methods for Large-scale Unconstrained Optimization. Comput. Optim. And Appl. 2002, 21(2), 143–154. DOI: 10.1023/A:1013756631822.
  • Ben-Tal, A.; Nemirovski, A. Robust Optimization–methodology and Applications. Math. Program. 2002, 92(3), 453–480. DOI: 10.1007/s101070100286.
  • Arias-Moscoso, J. L.; Maldonado-Arce, A.; Rouzaud-Sandez, O.; Márquez-Ríos, E.; Torres-Arreola, W.; Santacruz-Ortega, H.; Gaxiola-Cortés, M. G.; Ezquerra-Brauer, J. M. Physicochemical Characterization of Protein Hydrolysates Produced by Autolysis of Jumbo Squid (Dosidicus Gigas) Byproducts. Food Biophy. 2015, 10(2), 145–154. DOI: 10.1007/s11483-014-9374-z.
  • Bhaskar, N.; Benila, T.; Radha, C.; Lalitha, R. G. Optimization of Enzymatic Hydrolysis of Visceral Waste Proteins of Catla (Catla Catla) for Preparing Protein Hydrolysate Using a Commercial Protease. Biores. Tech. 2008, 99(2), 335–343. DOI: 10.1016/j.biortech.2006.12.015.
  • Senphan, T.; Benjakul, S.; Kishimura, H. Characteristics and Antioxidative Activity of Carotenoprotein from Shells of Pacific White Shrimp Extracted Using Hepatopancreas Proteases. Food Biosci. 2014, 5, 54–63. DOI: 10.1016/j.fbio.2013.11.004.
  • da Silva, C. P.; Bezerra, R. S.; Dos Santos, A. C. O.; Messias, J. B.; de Castro, C. R. O. B.; Junior, L. B. C. Biological Value of Shrimp Protein Hydrolysate By-product Produced by Autolysis. LWT Food Sci. Tech. 2017, 80, 456–461. DOI: 10.1016/j.lwt.2017.03.008.
  • Cao, W.; Zhang, C.; Hong, P.; Ji, H.; Hao, J.; Zhang, J. Autolysis of Shrimp Head by Gradual Temperature and Nutritional Quality of the Resulting Hydrolysate. LWT Food Sci. Tech. 2009, 42(1), 244–249. DOI: 10.1016/j.lwt.2008.05.026.
  • Ramakrishnan, V.; Ghaly, A.; Brooks, M.; Budge, S. Extraction of Proteins from Mackerel Fish Processing Waste Using Alcalase Enzyme. Bioprocess Biotech. 2013, 3(2), 1–9.
  • Kobayashi, Y.; Park, J. W. Biochemical and Physical Characterizations of Fish Protein Isolate and Surimi Prepared from Fresh and Frozen Whole Fish. LWT Food Sci. Tech. 2017, 77, 200–207. DOI: 10.1016/j.lwt.2016.11.027.
  • Muhammed, M. A.; Manjunatha, N.; Murthy, K. V.; Bhaskar, N. Design and Testing of Small Scale Fish Meat Bone Separator Useful for Fish Processing. J. F Sci.Tech. 2015, 52(6), 3520–3528.
  • Park, J. W. Surimi and Surimi Seafood; CRC press, 2005.
  • Venugopal, V. Seafood Processing: Adding Value through Quick Freezing, Retortable Packaging and Cook-chilling; CRC press, 2005.
  • Hultin, H.; Kristinsson, H.; Lanier, T.; Park, J. Process for Recovery of Functional Proteins by pH Shifts. Surimi Surimi Seafood. 2005, 2, 107–139.
  • Banerjee, S. Glyoxal-induced Modification Enhances Stability of Hemoglobin and Lowers Iron-mediated Oxidation Reactions of the Heme Protein: An in Vitro Study. Int. J Biol. Macromol. 2018, 107, 494–501. DOI: 10.1016/j.ijbiomac.2017.08.180.
  • Abdollahi, M.; Undeland, I. Physicochemical and Gel-forming Properties of Protein Isolated from Salmon, Cod and Herring By-products Using the pH-shift Method. LWT Food Sci. Tech. 2019, 101, 678–684. DOI: 10.1016/j.lwt.2018.11.087.
  • Hultin, H. O.; Kelleher, S. D. Process for Isolating a Protein Composition from a Muscle Source and Protein Composition; Google Patents, 2001.
  • Shahidi, F. Maximising the Value of Marine By-products; Woodhead Publishing, 2006.
  • Børresen, T. Improving Seafood Products for the Consumer; Elsevier, 2008.
  • Lulijwa, R.; Alfaro, A. C.; Merien, F.; Meyer, J.; Young, T. Advances in Salmonid Fish Immunology: A Review of Methods and Techniques for Lymphoid Tissue and Peripheral Blood Leucocyte Isolation and Application. Fish Shellfish Immunol. 2019, 95, 44–80. DOI: 10.1016/j.fsi.2019.10.006.
  • Bao, Y.; Boeren, S.; Ertbjerg, P. Myofibrillar Protein Oxidation Affects Filament Charges, Aggregation and Water-holding. Meat Sci. 2018, 135, 102–108. DOI: 10.1016/j.meatsci.2017.09.011.
  • Shaviklo, A. R.; Etemadian, Y. Overcoming Current Challenges in Commercial Applications of Fish Protein Isolates in Food and Feed Systems: A Review. J. F Sci.Tech. 2019, 1–10.
  • Álvarez, C.; Lélu, P.; Lynch, S. A.; Tiwari, B. K. Optimised Protein Recovery from Mackerel Whole Fish by Using Sequential Acid/alkaline Isoelectric Solubilization Precipitation (ISP) Extraction Assisted by Ultrasound. LWT Food Sci. Tech. 2018, 88, 210–216. DOI: 10.1016/j.lwt.2017.09.045.
  • Shaviklo, A. R. Development of Fish Protein Powder as an Ingredient for Food Applications: A Review. J. F Sci.Tech. 2015, 52(2), 648–661. DOI: 10.1007/s13197-013-1042-7.
  • Sen, D. Advances in Fish Processing Technology; Allied Publishers, 2005; Vol. 1.
  • Stillings, B.; Knobl, G., Jr. Fish Protein Concentrate: A New Source of Dietary Protein. J. American Oil Chemists’ Society. 1971, 48(8), 412–414. DOI: 10.1007/BF02637364.
  • Mallikage, M. The Effect of Different Cooling System on Quality of Pelagic Species; Department of Fisheries and Aquatic Resources: Colombo, 2001.
  • Taheri, A.; Anvar, S.; Ahari, H.; Fogliano, V. Comparison the Functional Properties of Protein Hydrolysates from Poultry By-products and Rainbow Trout (Onchorhynchus Mykiss) Viscera. Iran. J Fisher Sci. 2013, 12(1), 154–169.
  • Tahergorabi, R.; Matak, K. E.; Jaczynski, J. Fish Protein Isolate: Development of Functional Foods with Nutraceutical Ingredients. J. Funct. Foods. 2015, 18, 746–756. DOI: 10.1016/j.jff.2014.05.006.
  • He, S.; Franco, C.; Zhang, W. Functions, Applications and Production of Protein Hydrolysates from Fish Processing Co-products (FPCP). Food Res. Int. 2013, 50(1), 289–297.
  • O’Brien, E. P.; Dima, R. I.; Brooks, B.; Thirumalai, D. Interactions between Hydrophobic and Ionic Solutes in Aqueous Guanidinium Chloride and Urea Solutions: Lessons for Protein Denaturation Mechanism. J.American Chem. Soc. 2007, 129(23), 7346–7353.
  • Bauer, K. C.; Haemmerling, F.; Kittelmann, J.; Duerr, C.; Goerlich, F.; Hubbuch, J. Influence of Structure Properties on Protein–protein interactions—QSAR Modeling of Changes in Diffusion Coefficients. Biotech. Bioeng. 2017, 114(4), 821–831. DOI: 10.1002/bit.26210.
  • Vijaykrishnaraj, M.; Prabhasankar, P. Marine Protein Hydrolysates: Their Present and Future Perspectives in Food Chemistry–a Review. RSC Adv. 2015, 5(44), 34864–34877. DOI: 10.1039/C4RA17205A.
  • Haque, M. A.; Timilsena, B.; Adhikari, B. Food Proteins, Structure, and Function. Reference Module in Food Science; Elsevier, 2016. DOI: 10.1016/B978-0-08-100596-5.03057-2.
  • Abdollahi, M.; Undeland, I. Structural, Functional, and Sensorial Properties of Protein Isolate Produced from Salmon, Cod, and Herring By-products. Food Bioprocess. Tech. 2018, 11(9), 1733–1749. DOI: 10.1007/s11947-018-2138-x.
  • Cardoso, C.; Nunes, M. L. Improved Utilization of Fish Waste, Discards, and By-products and Low-value Fish Towards Food and Health Products. Utilization of Fish Waste; Taylor & Francis Group: Boca Raton, FL, 2013; pp 26–58.
  • Shevkani, K.; Singh, N.; Kaur, A.; Rana, J. C. Structural and Functional Characterization of Kidney Bean and Field Pea Protein Isolates: A Comparative Study. Food Hydrocoll. 2015, 43, 679–689. DOI: 10.1016/j.foodhyd.2014.07.024.
  • Panpipat, W.; Chaijan, M. Functional Properties of pH-shifted Protein Isolates from Bigeye Snapper (Priacanthus Tayenus) Head By-product. Int. J F Prop. 2017, 20(3), 596–610. DOI: 10.1080/10942912.2016.1171778.
  • Kristinsson, H. G.; Hultin, H. O. Effect of Low and High pH Treatment on the Functional Properties of Cod Muscle Proteins. J. Agric. F. Chem. 2003, 51(17), 5103–5110. DOI: 10.1021/jf026138d.
  • Abaee, A.; Mohammadian, M.; Jafari, S. M. Whey and Soy Protein-based Hydrogels and Nano-hydrogels as Bioactive Delivery Systems. Trends F. Sci. Tech. 2017, 70, 69–81. DOI: 10.1016/j.tifs.2017.10.011.
  • Romani, V. P.; Olsen, B.; Collares, M. P.; Oliveira, J. R. M.; Prentice-Hernández, C.; Martins, V. G. Improvement of Fish Protein Films Properties for Food Packaging through Glow Discharge Plasma Application. Food Hydrocoll. 2019, 87, 970–976. DOI: 10.1016/j.foodhyd.2018.09.022.
  • Kaewprachu, P.; Rawdkuen, S. Mechanical and Physico-chemical Properties of Biodegradable Protein-based Films: A Comparative Study. Food Appl. Biosci. J. 2014, 2(1), 15–30.
  • Lee, J. H.; Lee, J. H.; Yang, H. J.; Won, M.; Song, K. B. Characterisation of Jellyfish Protein Films with Added Transglutaminase and Wasabi Extract. Int. J. F. Sci. Tech. 2015, 50(7), 1683–1689. DOI: 10.1111/ijfs.12826.
  • Nuanmano, S.; Prodpran, T.; Benjakul, S. Potential Use of Gelatin Hydrolysate as Plasticizer in Fish Myofibrillar Protein Film. Food Hydrocoll. 2015, 47, 61–68.
  • Batista, J.; Araújo, C.; Joele, M. P.; Júnior, J. S.; Lourenço, L. Study of the Effect of the Chitosan Use on the Properties of Biodegradable Films of Myofibrillar Proteins of Fish Residues Using Response Surface Methodology. Food Packag. Shelf Life. 2019, 20, 100306. DOI: 10.1016/j.fpsl.2019.100306.
  • Wittaya, T. Protein-based Edible Films: Characteristics and Improvement of Properties. St. Funct. F Eng. 2012, 43–70.
  • Iwata, K.; Ishizaki, S.; Handa, A.; Tanaka, M. Preparation and Characterization of Edible Films from Fish Water-soluble Proteins. Fish. Sci. 2000, 66(2), 372–378. DOI: 10.1046/j.1444-2906.2000.00057.x.
  • Chinabhark, K.; Benjakul, S.; Prodpran, T. Effect of pH on the Properties of Protein-based Film from Bigeye Snapper (Priacanthus Tayenus) Surimi. Biores. Tech. 2007, 98(1), 221–225. DOI: 10.1016/j.biortech.2005.11.012.
  • Hanani, Z. N.; Roos, Y.; Kerry, J. P. Use of Beef, Pork and Fish Gelatin Sources in the Manufacture of Films and Assessment of Their Composition and Mechanical Properties. Food Hydrocoll. 2012, 29(1), 144–151. DOI: 10.1016/j.foodhyd.2012.01.015.
  • Wittaya, T. Influence of Type and Concentration of Plasticizers on the Properties of Edible Film from Mung Bean Proteins. Curr. Appl. Sci. Tech. 2013, 13(1), 51–58.
  • Shiku, Y.; Hamaguchi, P. Y.; Tanaka, M. Effect of pH on the Preparation of Edible Films Based on Fish Myofibrillar Proteins. Fish. Sci. 2003, 69(5), 1026–1032. DOI: 10.1046/j.1444-2906.2003.00722.x.
  • Kaewprachu, P.; Osako, K.; Benjakul, S.; Rawdkuen, S. Effect of Protein Concentrations on the Properties of Fish Myofibrillar Protein Based Film Compared with PVC Film. J. F Sci.Tech. 2016, 53(4), 2083–2091. DOI: 10.1007/s13197-016-2170-7.
  • Ganesan, A. R.; Guru, M. S.; Balasubramanian, B.; Mohan, K.; Liu, W. C.; Arasu, M. V.; Seedevi, P. Biopolymer from Edible Marine Invertebrates: A Potential Functional Food; Journal of King Saud University-Science, 2020.
  • Arfat, Y. A.; Benjakul, S.; Prodpran, T.; Osako, K. Development and Characterisation of Blend Films Based on Fish Protein Isolate and Fish Skin Gelatin. Food Hydrocoll. 2014, 39, 58–67. DOI: 10.1016/j.foodhyd.2013.12.028.
  • Mohammadi, M.; Mirabzadeh, S.; Shahvalizadeh, R.; Hamishehkar, H. Development of Novel Active Packaging Films Based on Whey Protein Isolate Incorporated with Chitosan Nanofiber and Nano-formulated Cinnamon Oil. Int. J Biol. Macromol. 2020, 149, 11–20.
  • Espitia, P. J. P.; Soares, N. D. F. F.; Teófilo, R. F.; Dos Reis Coimbra, J. S.; Vitor, D. M.; Batista, R. A.; Medeiros, E. A. A.; de Andrade, N. J.; Medeiros, E. A. A. Physical–mechanical and Antimicrobial Properties of Nanocomposite Films with Pediocin and ZnO Nanoparticles. Carb. Polymer. 2013, 94(1), 199–208. DOI: 10.1016/j.carbpol.2013.01.003.
  • Huang, T.; Tu, Z.-C.; Wang, H.; Shangguan, X.; Zhang, L.; Niu, P.; Sha, X.-M. Promotion of Foam Properties of Egg White Protein by Subcritical Water Pre-treatment and Fish Scales Gelatin. Colloid. Surfaces A Physicochem. Eng. Asp. 2017, 512, 171–177. DOI: 10.1016/j.colsurfa.2016.10.013.
  • Lam, A.; Can Karaca, A.; Tyler, R. Nickerson, M Pea Protein Isolates: Structure, Extraction, and Functionality. Food Rev. Int. 2018, 34(2), 126–147.
  • Yang, S.-C.; Baldwin, R. E. Functional Properties of Eggs in Foods, in Egg Science and Technology; CRC Press, 2017; pp 405–463.
  • Qin, Z.; Guo, X.; Lin, Y.; Chen, J.; Liao, X.; Hu, X.; Wu, J. Effects of High Hydrostatic Pressure on Physicochemical and Functional Properties of Walnut (Juglans Regia L.) Protein Isolate. J. Sci. F. Agric. 2013, 93(5), 1105–1111. DOI: 10.1002/jsfa.5857.
  • Benelhadj, S.; Gharsallaoui, A.; Degraeve, P.; Attia, H.; Ghorbel, D. Effect of pH on the Functional Properties of Arthrospira (Spirulina) Platensis Protein Isolate. Food Chem. 2016, 194, 1056–1063. DOI: 10.1016/j.foodchem.2015.08.133.
  • Yang, X. Effects of Sucrose on the Foaming and Interfacial Properties of Egg White Protein and Whey Protein Isolate, 2008.
  • Ramshaw, J. A.; Werkmeister, J. A.; Glattauer, V. Recent Progress with Recombinant Collagens Produced in Escherichia Coli. Curr. Opin. Biomed. Eng. 2019, 10, 149–155. DOI: 10.1016/j.cobme.2019.06.001.
  • Gómez-Guillén, M. C.; Turnay, J.; Fernández-Dıaz, M.; Ulmo, N.; Lizarbe, M. A.; Montero, P. Structural and Physical Properties of Gelatin Extracted from Different Marine Species: A Comparative Study. Food Hydrocoll. 2002, 16(1), 25–34. DOI: 10.1016/S0268-005X(01)00035-2.
  • Arumugam, G. K. S.; Sharma, D.; Balakrishnan, R. M.; Ettiyappan, J. B. P. Extraction, Optimization and Characterization of Collagen from Sole Fish Skin. Sustain. Chem.Pharm. 2018, 9, 19–26. DOI: 10.1016/j.scp.2018.04.003.
  • Ahmad, T.; Ismail, A.; Ahmad, S. A.; Khalil, K. A.; Kumar, Y.; Adeyemi, K. D.; Sazili, A. Q. Recent Advances on the Role of Process Variables Affecting Gelatin Yield and Characteristics with Special Reference to Enzymatic Extraction: A Review. Food Hydrocoll. 2017, 63, 85–96. DOI: 10.1016/j.foodhyd.2016.08.007.
  • Karim, A.; Bhat, R. Fish Gelatin: Properties, Challenges, and Prospects as an Alternative to Mammalian Gelatins. Food Hydrocoll. 2009, 23(3), 563–576. DOI: 10.1016/j.foodhyd.2008.07.002.
  • Sha, X.-M.; Tu, Z.-C.; Liu, W.; Wang, H.; Shi, Y.; Huang, T.; Man, -Z.-Z. Effect of Ammonium Sulfate Fractional Precipitation on Gel Strength and Characteristics of Gelatin from Bighead Carp (Hypophthalmichthys Nobilis) Scale. Food Hydrocoll. 2014, 36, 173–180. DOI: 10.1016/j.foodhyd.2013.09.024.
  • Huang, T.; Tu, Z.-C.; Wang, H.; Liu, W.; Zhang, L.; Zhang, Y.; ShangGuan, X.-C. Comparison of Rheological Behaviors and Nanostructure of Bighead Carp Scales Gelatin Modified by Different Modification Methods. J. F Sci.Tech. 2017, 54(5), 1256–1265. DOI: 10.1007/s13197-017-2511-1.
  • Lin, L.; Regenstein, J. M.; Lv, S.; Lu, J.; Jiang, S. An Overview of Gelatin Derived from Aquatic Animals: Properties and Modification. Trends F. Sci. Tech. 2017, 68, 102–112. DOI: 10.1016/j.tifs.2017.08.012.
  • da Trindade Alfaro, A.; Balbinot, E.; Weber, C. I.; Tonial, I. B.; Machado-Lunkes, A. Fish Gelatin: Characteristics, Functional Properties, Applications and Future Potentials. Food Eng. Rev. 2015, 7(1), 33–44.
  • Sila, A.; Martinez-Alvarez, O.; Krichen, F.; Gómez-Guillén, M. C.; Bougatef, A. Gelatin Prepared from European Eel (Anguilla Anguilla) Skin: Physicochemical, Textural, Viscoelastic and Surface Properties. Coll. Surfaces A: Physicochem. Eng. Asp. 2017, 529, 643–650. DOI: 10.1016/j.colsurfa.2017.06.032.
  • Tu, Z.-C.; Huang, T.; Wang, H.; Sha, X.-M.; Shi, Y.; Huang, X.-Q.; Li, D.-J. Physico-chemical Properties of Gelatin from Bighead Carp (Hypophthalmichthys Nobilis) Scales by Ultrasound-assisted Extraction. J. F Sci.Tech. 2015, 52(4), 2166–2174. DOI: 10.1007/s13197-013-1239-9.
  • Kaewdang, O.; Benjakul, S. Effect of Ethanolic Extract of Coconut Husk on Gel Properties of Gelatin from Swim Bladder of Yellowfin Tuna. LWT Food Sci. Tech. 2015, 62(2), 955–961. DOI: 10.1016/j.lwt.2015.02.006.
  • Hoque, M. E.; Nuge, T.; Yeow, T. K.; Nordin, N.; Prasad, R. Gelatin Based Scaffolds for Tissue Engineering-a Review. Polym. Res. J. 2015, 9(1), 15.
  • Huang, T.; Tu, Z.-C.; Wang, H.; Shangguan, X.; Zhang, L.; Zhang, N.-H.; Bansal, N. Pectin and Enzyme Complex Modified Fish Scales Gelatin: Rheological Behavior, Gel Properties and Nanostructure. Carb. Polym. 2017, 156, 294–302. DOI: 10.1016/j.carbpol.2016.09.040.
  • Tang, M.; Dai, H.; Ma, L.; Yu, Y.; Liu, T.; Feng, X.; Zhang, Y. Degradation of Structural Proteins and Their Relationship with the Quality of Mandarin Fish (Siniperca Chuatsi) during Post‐mortem Storage and Cooking. Int. J. F. Sci. Tech. 2020, 55(4), 1617–1628.
  • Huda, N.; Seow, E.; Normawati, M.; Aisyah, N. N.; Fazilah, A.; Easa, A. Effect of Duck Feet Collagen Addition on Physicochemical Properties of Surimi. Int. Food. Res. J. 2013, 20(2), 537.
  • Zhang, Z.; Regenstein, J. M.; Zhou, P.; Yang, Y. Effects of High Intensity Ultrasound Modification on Physicochemical Property and Water in Myofibrillar Protein Gel. Ultrasonics Sonochem. 2017, 34, 960–967. DOI: 10.1016/j.ultsonch.2016.08.008.
  • Agustini, T. W.; Darmanto, Y.; Putri, D. P. K. Evaluation on Utilization of Small Marine Fish to Produce Surimi Using Different Cryoprotective Agents to Increase the Quality of Surimi. J. Coastal Dev. 2008, 11(3), 131–140.
  • Elsohaimy, S.; Refaay, T.; Zaytoun, M. Physicochemical and Functional Properties of Quinoa Protein Isolate. Annal. Agric. Sci. 2015, 60(2), 297–305. DOI: 10.1016/j.aoas.2015.10.007.
  • Yu, C.; Wu, F.; Cha, Y.; Zou, H.; Bao, J.; Xu, R.; Du, M. Effects of High-pressure Homogenization on Functional Properties and Structure of Mussel (Mytilus Edulis) Myofibrillar Proteins. Int. J Biol. Macromol. 2018, 118, 741–746. DOI: 10.1016/j.ijbiomac.2018.06.134.
  • Steffolani, E.; Martinez, M. M.; León, A. E.; Gómez, M. Effect of Pre-hydration of Chia (Salvia Hispanica L.), Seeds and Flour on the Quality of Wheat Flour Breads. LWT Food Sci. Tech. 2015, 61(2), 401–406. DOI: 10.1016/j.lwt.2014.12.056.
  • Mbatia, B.; Ogonda, L.; Muge, E.; Mulaa, F. Antioxidative and Functional Properties of Rastrineobola Argentea (Dagaa) Fish Protein Hydrolysate. Discourse J. Agric. F. Sci. 2014, 2(6), 180–189.
  • Sathivel, S.; Bechtel, P. J.; Babbitt, J. K.; Prinyawiwatkul, W.; Patterson, M. Functional and Nutritional Properties of Red Salmon (Oncorhynchus Nerka) Enzymatic Hydrolysates. J. Food Sci. 2005, 70(6), c401–c406. DOI: 10.1111/j.1365-2621.2005.tb11437.x.
  • Wasswa, J.; Tang, J.; Gu, X.-H.; Yuan, X.-Q. Influence of the Extent of Enzymatic Hydrolysis on the Functional Properties of Protein Hydrolysate from Grass Carp (Ctenopharyngodon Idella) Skin. Food Chem. 2007, 104(4), 1698–1704.
  • Shaviklo, G. R. Quality Assessment of Fish Protein Isolates Using Surimi Standard Methods; The United Nations University, fisheries training programme, 2006.
  • Pires, C.; Batista, I.; Fradinho, P.; Costa, S. Utilization of Alkaline-recovered Proteins from Cape Hake By-products in the Preparation of Frankfurter-type Fish Sausages. J. Aqua. F. Pro. Tech. 2009, 18(1–2), 170–190.
  • Shaviklo, A. R.; Moradinezhad, N.; Abolghasemi, S. J.; Motamedzadegan, A.; Kamali-Damavandi, N. Rafipour. Product Optimization of Fish Burger Containing Tuna Protein Isolates for Better Sensory Quality and Frozen Storage Stability. Turk. J. Fish. Aqua. Sci. 2016, 16(4), 923–933.
  • Ochoa, T. J.; Baiocchi, N.; Valdiviezo, G.; Bullon, V.; Campos, M.; Llanos-Cuentas, A. Evaluation of the Efficacy, Safety and Acceptability of a Fish Protein Isolate in the Nutrition of Children under 36 Months of Age. Public. Health. Nutr. 2017, 20(15), 2819–2826. DOI: 10.1017/S136898001700163X.
  • Ibrahim, H. M. Chemical Composition, Minerals Content, Amino Acids Bioavailability and Sensory Properties of Meat and Fish Balls Containing Fish Protein Isolate. Int. J. Curr. Microbiol. Appl. Sci. 2015, 4(4), 917–933.
  • Shaviklo, G. R.; Arason, S.; Thorkelsson, G.; Sveinsdottir, K.; Martinsdottir, E. Sensory Attributes of Haddock Balls Affected by Added Fish Protein Isolate and Frozen Storage. J. Sens. Studies. 2010, 25(3), 316–331. DOI: 10.1111/j.1745-459X.2009.00260.x.
  • Moosavi‐Nasab, M.; Mohammadi, R.; Oliyaei, N. Physicochemical Evaluation of Sausages Prepared by Lantern Fish (Benthosema Pterotum) Protein Isolate. Food Sci. Nutr. 2018, 6(3), 617–626. DOI: 10.1002/fsn3.583.
  • Shaviklo, A. R.; Etemadian, Y. Overcoming Current Challenges in Commercial Applications of Fish Protein Isolates in Food and Feed Systems: A Review. J. F Sci.Tech. 1–10.
  • Shaviklo, A.; Rezapanah, S.; Motamedzadegan, A.; Damavandi-Kamali, N.; Mozafari, H. Optimum Conditions for Protein Extraction from Tuna Processing By-products Using Isoelectric Solubilization and Precipitation Processes. Iran. J. Fish. Sci. 2017, 16(2), 774–792.
  • Roslan, J.; Kamal, S. M. M.; Yunos, K. F. M.; Abdullah, N. Assessment on Multilayer Ultrafiltration Membrane for Fractionation of Tilapia By-product Protein Hydrolysate with Angiotensin I-converting Enzyme (ACE) Inhibitory Activity. Sep. Purif. Tech. 2017, 173, 250–257.
  • Raghavan, S.; Kristinsson, H. G. ACE-inhibitory Activity of Tilapia Protein Hydrolysates. Food Chem. 2009, 117(4), 582–588. DOI: 10.1016/j.foodchem.2009.04.058.
  • Suarez-Jimenez, G.-M.; Burgos-Hernandez, A.; Ezquerra-Brauer, J.-M. Bioactive Peptides and Depsipeptides with Anticancer Potential: Sources from Marine Animals. Mar. Drugs. 2012, 10(5), 963–986. DOI: 10.3390/md10050963.
  • Hsu, K.-C.; Li-Chan, E. C.; Jao, C.-L. Antiproliferative Activity of Peptides Prepared from Enzymatic Hydrolysates of Tuna Dark Muscle on Human Breast Cancer Cell Line MCF-7. Food Chem. 2011, 126(2), 617–622. DOI: 10.1016/j.foodchem.2010.11.066.
  • Hung, -C.-C.; Yang, Y.-H.; Kuo, P.-F.; Hsu, K.-C. Protein Hydrolysates from Tuna Cooking Juice Inhibit Cell Growth and Induce Apoptosis of Human Breast Cancer Cell Line MCF-7. J. Funct. Foods. 2014, 11, 563–570. DOI: 10.1016/j.jff.2014.08.015.
  • Roblet, C.; Akhtar, M. J.; Mikhaylin, S.; Pilon, G.; Gill, T.; Marette, A.; Bazinet, L. Enhancement of Glucose Uptake in Muscular Cell by Peptide Fractions Separated by Electrodialysis with Filtration Membrane from Salmon Frame Protein Hydrolysate. J. Funct. Foods. 2016, 22, 337–346. DOI: 10.1016/j.jff.2016.01.003.
  • Wang, T.-Y.; Hsieh, C.-H.; Hung, -C.-C.; Jao, C.-L.; Chen, M.-C.; Hsu, K.-C. Fish Skin Gelatin Hydrolysates as Dipeptidyl Peptidase IV Inhibitors and Glucagon-like Peptide-1 Stimulators Improve Glycaemic Control in Diabetic Rats: A Comparison between Warm-and Cold-water Fish. J. Funct. Foods. 2015, 19, 330–340. DOI: 10.1016/j.jff.2015.09.037.
  • Li-Chan, E. C.; Hunag, S.-L.; Jao, C.-L.; Ho, K.-P.; Hsu, K.-C. Peptides Derived from Atlantic Salmon Skin Gelatin as Dipeptidyl-peptidase IV Inhibitors. J. Agric. F. Chem. 2012, 60(4), 973–978. DOI: 10.1021/jf204720q.
  • Ahn, C.-B.; Je, J.-Y.; Cho, Y.-S. Antioxidant and Anti-inflammatory Peptide Fraction from Salmon Byproduct Protein Hydrolysates by Peptic Hydrolysis. Food Res. Int. 2012, 49(1), 92–98. DOI: 10.1016/j.foodres.2012.08.002.
  • Karayannakidis, P. D.; Zotos, A. Fish Processing By-products as A Potential Source of Gelatin: A Review. J. Aqua Food Prod. Tech. 2016, 25(1), 65–92. DOI: 10.1080/10498850.2013.827767.
  • Guaadaoui, A.; Benaicha, S.; Elmajdoub, N.; Bellaoui, M.; Hamal, A.; Elsohaimy, S. A.; Refaay, T. M. What Is A Bioactive Compound? A Combined Definition for A Preliminary Consensus. Int. J. Nutr. Food Sci. 2014, 3(3), 174–179. DOI: 10.11648/j.ijnfs.20140303.16.
  • Chakrabarti, S.; Jahandideh, F.; Wu, J. Food-derived Bioactive Peptides on Inflammation and Oxidative Stress. Biomed Res. Int. 2014, 2014, 1–11] has been updated. OK?</chg>. DOI: 10.1155/2014/608979.
  • Bavol, D.; Economou, A.; Zima, J.; Barek, J.; Dejmkova, H. Simultaneous Determination of Tert-butylhydroquinone, Propyl Gallate, and Butylated Hydroxyanisole by Flow-injection Analysis with Multiple-pulse Amperometric Detection. Talanta. 2018, 178, 231–236.
  • Altınelataman, C.; Koroleva, O.; Fedorova, T.; Torkova, A.; Lisitskaya, K.; Tsentalovich, M.; Kononikhin, A.; Popov, I.; Vasina, D.; Kovalyov, L. An in Vitro and in Silico Study on the Antioxidant and Cell Culture-based Study on the Chemoprotective Activities of Fish Muscle Protein Hydrolysates Obtained from European Seabass and Gilthead Seabream. Food Chem. 2019, 271, 724–732. DOI: 10.1016/j.foodchem.2018.08.004.
  • Wijesekara, I.; Kim, S.-K. Angiotensin-I-converting Enzyme (ACE) Inhibitors from Marine Resources: Prospects in the Pharmaceutical Industry. Mar. Drugs. 2010, 8(4), 1080–1093. DOI: 10.3390/md8041080.
  • Redza-Dutordoir, M.; Averill-Bates, D. A. Activation of Apoptosis Signalling Pathways by Reactive Oxygen Species. Biochimica Et Biophysica Acta (Bba)-mol. Cell Res. 2016, 1863(12), 2977–2992. DOI: 10.1016/j.bbamcr.2016.09.012.
  • Ahmadi, A.; Shadboorestan, A. Oxidative Stress and Cancer; the Role of Hesperidin, a Citrus Natural Bioflavonoid, as a Cancer Chemoprotective Agent. Nutr. Cancer. 2016, 68(1), 29–39. DOI: 10.1080/01635581.2015.1078822.
  • Monserrat, J. M.; Lima, J. V.; Ferreira, J. L. R.; Acosta, D.; Garcia, M. L.; Ramos, P. B.; Amado, L. L. Modulation of Antioxidant and Detoxification Responses Mediated by Lipoic Acid in the Fish Corydoras Paleatus (Callychthyidae). Compar. Biochem. Physiol. Part C: Toxicol. Pharma. 2008, 148(3), 287–292.
  • Galano, A.; Castañeda-Arriaga, R.; Pérez-González, A.; Tan, D.-X.; Reiter, R. J. Phenolic Melatonin-related Compounds: Their Role as Chemical Protectors against Oxidative Stress. Molecul. 2016, 21(11), 1442.
  • Gaschler, M. M.; Stockwell, B. R. Lipid Peroxidation in Cell Death. Biochem. Biophys. Res. Comm. 2017, 482(3), 419–425. DOI: 10.1016/j.bbrc.2016.10.086.
  • Centenaro, G. S.; Salas-Mellado, M.; Pires, C.; Batista, I.; Nunes, M. L.; Prentice, C. Fractionation of Protein Hydrolysates of Fish and Chicken Using Membrane Ultrafiltration: Investigation of Antioxidant Activity. Appl. Biochem. Biotech. 2014, 172(6), 2877–2893. DOI: 10.1007/s12010-014-0732-6.
  • Vignesh, R.; Haq, M. B.; Devanathan, K.; Srinivasan, M. Pharmacological Potential of Fish Extracts. Arch. Appl. Sci. Res. 2011, 3(5), 52–58.
  • Lassoued, I.; Mora, L.; Nasri, R.; Jridi, M.; Toldrá, F.; Aristoy, M.-C.; Nasri, M. Characterization, Antioxidative and ACE Inhibitory Properties of Hydrolysates Obtained from Thornback Ray (Raja Clavata) Muscle. J. Proteomics. 2015, 128, 458–468. DOI: 10.1016/j.jprot.2015.05.007.
  • Samaranayaka, A. G.; Li-Chan, E. C. Food-derived Peptidic Antioxidants: A Review of Their Production, Assessment, and Potential Applications. J. Funct. Foods. 2011, 3(4), 229–254.
  • Sabbione, A. C.; Ibañez, S. M.; Martínez, E. N.; Añón, M. C.; Scilingo, A. A. Antithrombotic and Antioxidant Activity of Amaranth Hydrolysate Obtained by Activation of an Endogenous Protease. Plant Foods Human Nutr. 2016, 71(2), 174–182. DOI: 10.1007/s11130-016-0540-y.
  • Sarmadi, B. H.; Ismail, A. Antioxidative Peptides from Food Proteins: A Review. Peptides. 2010, 31(10), 1949–1956. DOI: 10.1016/j.peptides.2010.06.020.
  • Lassoued, I.; Mora, L.; Nasri, R.; Aydi, M.; Toldrá, F.; Aristoy, M.-C.; Nasri, M. Characterization and Comparative Assessment of Antioxidant and ACE Inhibitory Activities of Thornback Ray Gelatin Hydrolysates. J. Funct. Foods. 2015, 13, 225–238. DOI: 10.1016/j.jff.2014.12.042.
  • Ahn, C.-B.; Kim, J.-G.; Je, J.-Y. Purification and Antioxidant Properties of Octapeptide from Salmon Byproduct Protein Hydrolysate by Gastrointestinal Digestion. Food Chem. 2014, 147, 78–83. DOI: 10.1016/j.foodchem.2013.09.136.
  • Jang, H. L.; Shin, S. R.; Yoon, K. Y. Isolation of Antioxidant Peptide from Sandfish (Arctoscopus Japonicus) Roe Hydrolysate. 한국식품저장유통학회지. Korean J. Food Preserv. 2017, 24(4), 542–549. DOI: 10.11002/kjfp.2017.24.4.542.
  • Pan, X.; Zhao, Y.-Q.; Hu, F.-Y.; Wang, B. Preparation and Identification of Antioxidant Peptides from Protein Hydrolysate of Skate (Raja Porosa) Cartilage. J. Funct. Foods. 2016, 25, 220–230. DOI: 10.1016/j.jff.2016.06.008.
  • Mattiuzzi, C.; Sanchis-Gomar, F.; Lippi, G. Worldwide Burden of LDL Cholesterol: Implications in Cardiovascular Disease. Nutr. Metabol. Cardiovas. Disease. 2020, 30(2), 241–244. DOI: 10.1016/j.numecd.2019.09.008.
  • Lee, S. Y.; Hur, S. J. Antihypertensive Peptides from Animal Products, Marine Organisms, and Plants. Food Chem. 2017, 228, 506–517. DOI: 10.1016/j.foodchem.2017.02.039.
  • Himaya, S.; Ngo, D.-H.; Ryu, B.; Kim, S.-K. An Active Peptide Purified from Gastrointestinal Enzyme Hydrolysate of Pacific Cod Skin Gelatin Attenuates Angiotensin-1 Converting Enzyme (ACE) Activity and Cellular Oxidative Stress. Food Chem. 2012, 132(4), 1872–1882. DOI: 10.1016/j.foodchem.2011.12.020.
  • Andrews, P.; Carson, J.; Caselli, A.; Spark, M.; Woods, R. Conformational Analysis and Active Site Modeling of Angiotensin-converting Enzyme Inhibitors. J. Med. Chem. 1985, 28(3), 393–399. DOI: 10.1021/jm00381a021.
  • Intarasirisawat, R.; Benjakul, S.; Wu, J.; Visessanguan, W. Isolation of Antioxidative and ACE Inhibitory Peptides from Protein Hydrolysate of Skipjack (Katsuwana Pelamis) Roe. J. Funct. Foods. 2013, 5(4), 1854–1862. DOI: 10.1016/j.jff.2013.09.006.
  • Ahn, C.-B.; Jeon, Y.-J.; Kim, Y.-T.; Je, J.-Y. Angiotensin I Converting Enzyme (ACE) Inhibitory Peptides from Salmon Byproduct Protein Hydrolysate by Alcalase Hydrolysis. Process Biochem. 2012, 47(12), 2240–2245.
  • Gu, R.-Z.; Li, C.-Y.; Liu, W.-Y.; Yi, W.-X.; Cai, M.-Y. Angiotensin I-converting Enzyme Inhibitory Activity of Low-molecular-weight Peptides from Atlantic Salmon (Salmo Salar L.) Skin. Food Res. Int. 2011, 44(5), 1536–1540. DOI: 10.1016/j.foodres.2011.04.006.
  • Najafian, L.; Babji, A. S. A Review of Fish-derived Antioxidant and Antimicrobial Peptides: Their Production, Assessment, and Applications. Peptides. 2012, 33(1), 178–185. DOI: 10.1016/j.peptides.2011.11.013.
  • Sila, A.; Hedhili, K.; Przybylski, R.; Ellouz-Chaabouni, S.; Dhulster, P.; Bougatef, A.; Nedjar-Arroume, N. Antibacterial Activity of New Peptides from Barbel Protein Hydrolysates and Mode of Action via a Membrane Damage Mechanism against Listeria Monocytogenes. J. Funct. Foods. 2014, 11, 322–329. DOI: 10.1016/j.jff.2014.10.006.
  • Wald, M.; Schwarz, K.; Rehbein, H.; Bußmann, B.; Beermann, C. Detection of Antibacterial Activity of an Enzymatic Hydrolysate Generated by Processing Rainbow Trout By-products with Trout Pepsin. Food Chem. 2016, 205, 221–228. DOI: 10.1016/j.foodchem.2016.03.002.
  • Rajanbabu, V.; Chen, J.-Y. Applications of Antimicrobial Peptides from Fish and Perspectives for the Future. Peptides. 2011, 32(2), 415–420. DOI: 10.1016/j.peptides.2010.11.005.
  • Ennaas, N.; Hammami, R.; Beaulieu, L.; Fliss, I. Purification and Characterization of Four Antibacterial Peptides from Protamex Hydrolysate of Atlantic Mackerel (Scomber Scombrus) By-products. Biochem. Biophy. Res. Comm. 2015, 462(3), 195–200. DOI: 10.1016/j.bbrc.2015.04.091.
  • Singh, S. S.; De Mandal, S.; Mathipi, V.; Ghatak, S.; Kumar, N. S. Traditional Fermented Fish Harbors Bacteria with Potent Probiotic and Anticancer Properties. Biocat. Agric.Biotech. 2018, 15, 283–290. DOI: 10.1016/j.bcab.2018.07.007.
  • Song, R.; Wei, R.; Zhang, B.; Yang, Z.; Wang, D. Antioxidant and Antiproliferative Activities of Heated Sterilized Pepsin Hydrolysate Derived from Half-fin Anchovy (Setipinna Taty). Mar. Drugs. 2011, 9(6), 1142–1156. DOI: 10.3390/md9061142.
  • Krichen, F.; Volpi, N.; Sila, A.; Maccari, F.; Mantovani, V.; Galeotti, F.; Bougatef, A. Purification, Structural Characterization and Antiproliferative Properties of Chondroitin Sulfate/dermatan Sulfate from Tunisian Fish Skins. Int. J Biol. Macromol. 2017, 95, 32–39. DOI: 10.1016/j.ijbiomac.2016.10.108.
  • Rehman, A.; Jafari, S. M.; Tong, Q.; Karim, A.; Mahdi, A. A.; Iqbal, M. W.; Manzoor, M. F. Role of Peppermint Oil in Improving the Oxidative Stability and Antioxidant Capacity of Borage Seed Oil-loaded Nanoemulsions Fabricated by Modified Starch. Int. J Biol. Macromol. 2020, 153, 697–707. DOI: 10.1016/j.ijbiomac.2020.02.292.
  • Rehman, A.; Ahmad, T.; Aadil, R. M.; Spotti, M. J.; Bakry, A. M.; Khan, I. M.; Tong, Q. Pectin Polymers as Wall Materials for the Nano-encapsulation of Bioactive Compounds. Trends F. Sci. Tech. 2019, 90, 35–46] has been updated. OK?</chg>. DOI: 10.1016/j.tifs.2019.05.015.
  • Khan, S.; Shehzad, Q.; Ali, A.; Rehman, A.; Shah, H.; Yang, F.; Khan, S.; Xia, W. Development of Eggless Cake Using Grass Carp (Ctenopharyngodon Idella) Protein Concentrate and Its Quality Attributes. Adv. Food Technol. Nutr. Sci. 2020, 6, 21–28. DOI: 10.17140/AFTNSOJ-6-165.
  • Shaviklo, A. R.; Dehkordi, A. K.; Zangeneh, P. Interactions and Effects of the Seasoning Mixture Containing Fish Protein Powder/omega‐3 Fish Oil on Children’s Liking and Stability of Extruded Corn Snacks Using a Mixture Design Approach. J. Food Process. Preserv. 2014, 38(3), 1097–1105. DOI: 10.1111/jfpp.12068.
  • Shaviklo, G. R.; Thorkelsson, G.; Arason, S.; Kristinsson, H. G.; Sveinsdottir, K. The Influence of Additives and Drying Methods on Quality Attributes of Fish Protein Powder Made from Saithe (Pollachius Virens). J. Food Sci. Tech. Agric. 2010, 90(12), 2133–2143.
  • Murueta, J. H. C.; Navarrete Del Toro, M. D. L. Á.; García Carreño, ,. F. Concentrates of Fish Protein from Bycatch Species Produced by Various Drying Processes. Food Chem. 2007, 100(2), 705–711. DOI: 10.1016/j.foodchem.2005.10.029.
  • Shamay, A.; Werner, D.; Moallem, U.; Barash, H.; Bruckental, I. Effect of Nursing Management and Skeletal Size at Weaning on Puberty, Skeletal Growth Rate, and Milk Production during First Lactation of Dairy Heifers. J. Dairy Sci. 2005, 88(4), 1460–1469. DOI: 10.3168/jds.S0022-0302(05)72814-9.
  • Hussain, I.; Akhtar, N.; Hussain, S. Evaluation of Weaning Food Khitchri Incorporated with Different Levels of Fish Protein Concentrate. Animal Plant Sci. 2007, 17(1–2), 12–17.
  • Ibrahim, S. Evaluation of Production and Quality of Salt-biscuits Supplemented with Fish Protein Concentrate. World J. Dairy Food Sci. 2009, 4(1), 28–31.
  • Olapade, O.; Karim, M. Utilization of Bonga (Ethmalosa Fimbriata Bodwich) Fish Concentrate in Bread Baking in Njala-Mokonde Community, Sierra Leone. J. Res.Forest. Wildlife Environ. 2011, 3(2), 119–125.
  • Binsi, P.; Shamasundar, B. Purification and Characterisation of Transglutaminase from Four Fish Species: Effect of Added Transglutaminase on the Viscoelastic Behaviour of Fish Mince. Food Chem. 2012, 132(4), 1922–1929. DOI: 10.1016/j.foodchem.2011.12.027.
  • Saritha, K.; Patterson, J. Processing of Innovative Ready to Fry Crackers from Penaeus Japonicas. World J. Dairy Food Sci. 2012, 7(1), 66–73.
  • Neiva, C. R. P.; Machado, T. M.; Tomita, R. Y.; Furlan, É. F.; Lemos Neto, M. J.; Bastos, D. H. M. Fish Crackers Development from Minced Fish and Starch: An Innovative Approach to a Traditional Product. Food Sci. Tech. 2011, 31(4), 973–979. DOI: 10.1590/S0101-20612011000400024.
  • Oliveira Filho, P. R. C. D.; Maria Netto, F.; Ramos, K. K.; Trindade, M. A.; Viegas, E. M. M. Elaboration of Sausage Using Minced Fish of Nile Tilapia Filleting Waste. Brazil. Arch. Biol. Tech. 2010, 53(6), 1383–1391.
  • Reddy, M.; Elavarasan, A.; Reddy, D.; Bhandary, M. Suitability of Reef Cod (Epinephelus Diacanthus) Minced Meat for Preparation of Ready to Serve Product. Adv. Appl. Sci. Res. 2012, 3(3), 1513–1517.
  • Man, H. C.; Chin, W. H.; Zadeh, M. R.; Yusof, M. R. M. Adsorption Potential of Unmodified Rice Husk for Boron Removal. BioRes. 2012, 7(3), 3810–3822.
  • Shaviklo, G. R.; Thorkelsson, G.; Sveinsdottir, K.; Rafipour, F. Chemical Properties and Sensory Quality of Ice Cream Fortified with Fish Protein. J. Sci. Food Agric. 2011, 91(7), 1199–1204. DOI: 10.1002/jsfa.4299.
  • Shaviklo, G. R.; Thorkelsson, G.; Rafipour, F.; Sigurgisladottir, S. Quality and Storage Stability of Extruded Puffed Corn‐fish Snacks during 6‐month Storage at Ambient Temperature. J. Sci. Food Agric. 2011, 91(5), 886–893. DOI: 10.1002/jsfa.4261.
  • Adeleke, R.; Odedeji, J. Acceptability Studies on Bread Fortified with Tilapia Fish Flour. Pak. J. Nutr. 2010, 9(6), 531–534. DOI: 10.3923/pjn.2010.531.534.
  • Huda, N.; Abdullah, A.; Babji, A. S. Substitution of Tapioca Flour with Surimi Powder in Traditional Crackers (Keropok Palembang). in 16th Scientific Conference Nutrition Society of Malaysia. 2001.
  • Sathivel, S.; Smiley, S.; Prinyawiwatkul, W.; Bechtel, P. J. Functional, Nutritional, and Rheological Properties of Protein Powders from Arrowtooth Flounder and Their Application in Mayonnaise. J. Food Sci. 2005, 70(2), E57–E63.
  • Shaviklo, G. R.; Thorkelsson, G.; Arason, S.; Sveinsdottir, K. Characteristics of Freeze-dried Fish Protein Isolated from Saithe (Pollachius Virens). J. Food Sci. Tech. 2012, 49(3), 309–318. DOI: 10.1007/s13197-011-0285-4.
  • Shaviklo, G. R.; Olafsdottir, A.; Sveinsdottir, K.; Thorkelsson, G.; Rafipour, F. Quality Characteristics and Consumer Acceptance of a High Fish Protein Puffed Corn-fish Snack. J. Food Sci. Tech. 2011, 48(6), 668–676. DOI: 10.1007/s13197-010-0191-1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.